Skip to main content

2016 | OriginalPaper | Buchkapitel

3. Robust Principal Component Analysis

verfasst von : René Vidal, Yi Ma, S. Shankar Sastry

Erschienen in: Generalized Principal Component Analysis

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the previous chapter, we considered the PCA problem under the assumption that all the sample points are drawn from the same statistical or geometric model: a low-dimensional subspace.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
If \(U \in \mathbb{R}^{D\times d}\) and \(V \in \mathbb{R}^{N\times d}\), then U and V have dD + dN degrees of freedom in general. However, to specify the subspace, it suffices to specify \(UV ^{\top }\), which is equal to \(UAA^{-1}V ^{\top }\) for every invertible matrix \(A \in \mathbb{R}^{d\times d}\); hence the matrix \(UV ^{\top }\) has dD + dNd 2 degrees of freedom.
 
2
Such conditions typically require that the linear measurements and the matrix X be in some sense incoherent.
 
3
X can be factorized as \(X = UAA^{-1}V ^{\top }\), where \(U,V \in \mathbb{R}^{N\times d}\) have Nd entries each, and \(A \in \mathbb{R}^{d\times d}\) is an invertible matrix.
 
4
Previously, we have used M to denote the number of observed entries in a specific matrix X. Notice that here, M is the expected number of observed entries under a random model in which the locations are sampled independently and uniformly at random. Thus, if p is the probability that an entry is observed, then the expected number of observed entries is pDN. Therefore, one can state the result either in terms of p or in terms of the expected number of observed entries, as we have done. For ease of exposition, we will continue to refer to M as the number of observed entries in the main text, but the reader is reminded that all the theoretical results refer to the expected number of observed entries, because the model for the observed entries is random.
 
5
A polylog factor means a polynomial in the \(\log\) function, i.e., O(polylog(N)) means \(O(\log (N)^{k})\) for some integer k.
 
6
Further performance gains might be possible by replacing this partial SVD with an approximate SVD, as suggested in (Goldfarb and Ma 2009) for nuclear norm minimization.
 
7
For a more thorough exposition of outliers in statistics, we recommend the books of (Barnett and Lewis 1983; Huber 1981).
 
8
In fact, it can be shown that (Ferguson 1961), if the outliers have a Gaussian distribution of a different covariance matrix \(a\Sigma \), then \(\varepsilon _{i}\) is a sufficient statistic for the test that maximizes the probability of correct decision about the outlier (in the class of tests that are invariant under linear transformations). Interested readers may want to find out how this distance is equivalent (or related) to the sample influence \(\hat{\Sigma }_{N}^{(i)} -\hat{ \Sigma }_{N}\) or the approximate sample influence given in (B.91).
 
Literatur
Zurück zum Zitat Amaldi, E., & Kann, V. (1998). On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theoretical Computer Science, 209, 237–260.MathSciNetCrossRefMATH Amaldi, E., & Kann, V. (1998). On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theoretical Computer Science, 209, 237–260.MathSciNetCrossRefMATH
Zurück zum Zitat Bach, F. (2013). Convex relaxations of structured matrix factorizations. arXiv:1309.3117v1. Bach, F. (2013). Convex relaxations of structured matrix factorizations. arXiv:1309.3117v1.
Zurück zum Zitat Barnett, V., & Lewis, T. (1983). Outliers in statistical data (2nd ed.). New York: Wiley.MATH Barnett, V., & Lewis, T. (1983). Outliers in statistical data (2nd ed.). New York: Wiley.MATH
Zurück zum Zitat Basri, R., & Jacobs, D. (2003). Lambertian reflection and linear subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2), 218–233.CrossRef Basri, R., & Jacobs, D. (2003). Lambertian reflection and linear subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2), 218–233.CrossRef
Zurück zum Zitat Bertsekas, D. P. (1999). Nonlinear programming (2nd ed.). Optimization and computation (Vol. 2) Belmont: Athena Scientific. Bertsekas, D. P. (1999). Nonlinear programming (2nd ed.). Optimization and computation (Vol. 2) Belmont: Athena Scientific.
Zurück zum Zitat Brandt, S. (2002). Closed-form solutions for affine reconstruction under missing data. In In Proceedings Statistical Methods for Video Processing (ECCV’02 Workshop). Brandt, S. (2002). Closed-form solutions for affine reconstruction under missing data. In In Proceedings Statistical Methods for Video Processing (ECCV’02 Workshop).
Zurück zum Zitat Buchanan, A., & Fitzgibbon, A. (2005). Damped Newton algorithms for matrix factorization with missing data. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 316–322). Buchanan, A., & Fitzgibbon, A. (2005). Damped Newton algorithms for matrix factorization with missing data. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 316–322).
Zurück zum Zitat Burer, S., & Monteiro, R. D. C. (2005). Local minima and convergence in low-rank semidefinite programming. Mathematical Programming, Series A, 103(3), 427–444.MathSciNetCrossRefMATH Burer, S., & Monteiro, R. D. C. (2005). Local minima and convergence in low-rank semidefinite programming. Mathematical Programming, Series A, 103(3), 427–444.MathSciNetCrossRefMATH
Zurück zum Zitat Cai, J.-F., Candés, E. J., & Shen, Z. (2008). A singular value thresholding algorithm for matrix completion. SIAM Journal of Optimization, 20(4), 1956–1982.MathSciNetCrossRefMATH Cai, J.-F., Candés, E. J., & Shen, Z. (2008). A singular value thresholding algorithm for matrix completion. SIAM Journal of Optimization, 20(4), 1956–1982.MathSciNetCrossRefMATH
Zurück zum Zitat Candès, E. (2006). Compressive sampling. In Proceedings of the International Congress of Mathematics. Candès, E. (2006). Compressive sampling. In Proceedings of the International Congress of Mathematics.
Zurück zum Zitat Candès, E. (2008). The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique, 346(9–10), 589–592.MathSciNetCrossRefMATH Candès, E. (2008). The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique, 346(9–10), 589–592.MathSciNetCrossRefMATH
Zurück zum Zitat Candès, E., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis? Journal of the ACM, 58(3). Candès, E., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis? Journal of the ACM, 58(3).
Zurück zum Zitat Candès, E., & Plan, Y. (2010). Matrix completion with noise. Proceedings of the IEEE, 98(6), 925–936.CrossRef Candès, E., & Plan, Y. (2010). Matrix completion with noise. Proceedings of the IEEE, 98(6), 925–936.CrossRef
Zurück zum Zitat Candès, E., & Recht, B. (2009). Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9, 717–772.MathSciNetCrossRefMATH Candès, E., & Recht, B. (2009). Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9, 717–772.MathSciNetCrossRefMATH
Zurück zum Zitat Candès, E., & Tao, T. (2010). The power of convex relaxation: Near-optimal matrix completion. IEEE Transactions on Information Theory, 56(5), 2053–2080.MathSciNetCrossRef Candès, E., & Tao, T. (2010). The power of convex relaxation: Near-optimal matrix completion. IEEE Transactions on Information Theory, 56(5), 2053–2080.MathSciNetCrossRef
Zurück zum Zitat Chandrasekaran, V., Sanghavi, S., Parrilo, P., & Willsky, A. (2009). Sparse and low-rank matrix decompositions. In IFAC Symposium on System Identification. Chandrasekaran, V., Sanghavi, S., Parrilo, P., & Willsky, A. (2009). Sparse and low-rank matrix decompositions. In IFAC Symposium on System Identification.
Zurück zum Zitat De la Torre, F., & Black, M. J. (2004). A framework for robust subspace learning. International Journal of Computer Vision, 54(1), 117–142.MATH De la Torre, F., & Black, M. J. (2004). A framework for robust subspace learning. International Journal of Computer Vision, 54(1), 117–142.MATH
Zurück zum Zitat Fei-Fei, L., Fergus, R., & Perona, P. (2004). Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In Workshop on Generative Model Based Vision. Fei-Fei, L., Fergus, R., & Perona, P. (2004). Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In Workshop on Generative Model Based Vision.
Zurück zum Zitat Ferguson, T. (1961). On the rejection of outliers. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability. Ferguson, T. (1961). On the rejection of outliers. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability.
Zurück zum Zitat Fischler, M. A., & Bolles, R. C. (1981). RANSAC random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 26, 381–395.MathSciNetCrossRef Fischler, M. A., & Bolles, R. C. (1981). RANSAC random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 26, 381–395.MathSciNetCrossRef
Zurück zum Zitat Ganesh, A., Wright, J., Li, X., Candès, E., & Ma, Y. (2010). Dense error correction for low-rank matrices via principal component pursuit. In International Symposium on Information Theory. Ganesh, A., Wright, J., Li, X., Candès, E., & Ma, Y. (2010). Dense error correction for low-rank matrices via principal component pursuit. In International Symposium on Information Theory.
Zurück zum Zitat Geman, S., & McClure, D. (1987). Statistical methods for tomographic image reconstruction. In Proceedings of the 46th Session of the ISI, Bulletin of the ISI (Vol. 52, pp. 5–21). Geman, S., & McClure, D. (1987). Statistical methods for tomographic image reconstruction. In Proceedings of the 46th Session of the ISI, Bulletin of the ISI (Vol. 52, pp. 5–21).
Zurück zum Zitat Goldfarb, D., & Ma, S. (2009). Convergence of fixed point continuation algorithms for matrix rank minimization. Preprint. Goldfarb, D., & Ma, S. (2009). Convergence of fixed point continuation algorithms for matrix rank minimization. Preprint.
Zurück zum Zitat Golub, H., & Loan, C. V. (1996). Matrix Computations (2nd ed.). Baltimore: Johns Hopkins University Press.MATH Golub, H., & Loan, C. V. (1996). Matrix Computations (2nd ed.). Baltimore: Johns Hopkins University Press.MATH
Zurück zum Zitat Gross, D. (2011). Recovering low-rank matrices from few coefficients in any basis. IEEE Trans on Information Theory, 57(3), 1548–1566.MathSciNetCrossRef Gross, D. (2011). Recovering low-rank matrices from few coefficients in any basis. IEEE Trans on Information Theory, 57(3), 1548–1566.MathSciNetCrossRef
Zurück zum Zitat Gruber, A., & Weiss, Y. (2004). Multibody factorization with uncertainty and missing data using the EM algorithm. In IEEE Conference on Computer Vision and Pattern Recognition (Vol. I, pp. 707–714). Gruber, A., & Weiss, Y. (2004). Multibody factorization with uncertainty and missing data using the EM algorithm. In IEEE Conference on Computer Vision and Pattern Recognition (Vol. I, pp. 707–714).
Zurück zum Zitat H.Aanaes, Fisker, R., Astrom, K., & Carstensen, J. M. (2002). Robust factorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(9), 1215–1225. H.Aanaes, Fisker, R., Astrom, K., & Carstensen, J. M. (2002). Robust factorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(9), 1215–1225.
Zurück zum Zitat Haeffele, B., Young, E., & Vidal, R. (2014). Structured low-rank matrix factorization: Optimality, algorithm, and applications to image processing. In International Conference on Machine Learning. Haeffele, B., Young, E., & Vidal, R. (2014). Structured low-rank matrix factorization: Optimality, algorithm, and applications to image processing. In International Conference on Machine Learning.
Zurück zum Zitat Hardt, M. (2014). Understanding alternating minimization for matrix completion. In Symposium on Foundations of Computer Science. Hardt, M. (2014). Understanding alternating minimization for matrix completion. In Symposium on Foundations of Computer Science.
Zurück zum Zitat Hartley, R., & Schaffalitzky, F. (2003). Powerfactorization: An approach to affine reconstruction with missing and uncertain data. In Proceedings of Australia-Japan Advanced Workshop on Computer Vision. Hartley, R., & Schaffalitzky, F. (2003). Powerfactorization: An approach to affine reconstruction with missing and uncertain data. In Proceedings of Australia-Japan Advanced Workshop on Computer Vision.
Zurück zum Zitat Jacobs, D. (2001). Linear fitting with missing data: Applications to structure-from-motion. Computer Vision and Image Understanding, 82, 57–81.CrossRefMATH Jacobs, D. (2001). Linear fitting with missing data: Applications to structure-from-motion. Computer Vision and Image Understanding, 82, 57–81.CrossRefMATH
Zurück zum Zitat Jain, P., Meka, R., & Dhillon, I. (2010). Guaranteed rank minimization via singular value projection. In Neural Information Processing Systems (pp. 937–945). Jain, P., Meka, R., & Dhillon, I. (2010). Guaranteed rank minimization via singular value projection. In Neural Information Processing Systems (pp. 937–945).
Zurück zum Zitat Johnson, C. (1990). Matrix completion problems: A survey. In Proceedings of Symposia in Applied Mathematics. Johnson, C. (1990). Matrix completion problems: A survey. In Proceedings of Symposia in Applied Mathematics.
Zurück zum Zitat Jolliffe, I. (2002). Principal Component Analysis (2nd ed.). New York: Springer.MATH Jolliffe, I. (2002). Principal Component Analysis (2nd ed.). New York: Springer.MATH
Zurück zum Zitat Ke, Q., & Kanade, T. (2005). Robust ℓ 1-norm factorization in the presence of outliers and missing data. In IEEE Conference on Computer Vision and Pattern Recognition. Ke, Q., & Kanade, T. (2005). Robust 1-norm factorization in the presence of outliers and missing data. In IEEE Conference on Computer Vision and Pattern Recognition.
Zurück zum Zitat Keshavan, R., Montanari, A., & Oh, S. (2010a). Matrix completion from a few entries. IEEE Transactions on Information Theory. Keshavan, R., Montanari, A., & Oh, S. (2010a). Matrix completion from a few entries. IEEE Transactions on Information Theory.
Zurück zum Zitat Keshavan, R., Montanari, A., & Oh, S. (2010b). Matrix completion from noisy entries. Journal of Machine Learning Research, 11, 2057–2078.MathSciNetMATH Keshavan, R., Montanari, A., & Oh, S. (2010b). Matrix completion from noisy entries. Journal of Machine Learning Research, 11, 2057–2078.MathSciNetMATH
Zurück zum Zitat Keshavan, R. H. (2012). Efficient algorithms for collaborative filtering. Ph.D. Thesis. Stanford University. Keshavan, R. H. (2012). Efficient algorithms for collaborative filtering. Ph.D. Thesis. Stanford University.
Zurück zum Zitat Kontogiorgis, S., & Meyer, R. (1989). A variable-penalty alternating direction method for convex optimization. Mathematical Programming, 83, 29–53.MathSciNetMATH Kontogiorgis, S., & Meyer, R. (1989). A variable-penalty alternating direction method for convex optimization. Mathematical Programming, 83, 29–53.MathSciNetMATH
Zurück zum Zitat Lanczos, C. (1950). An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. Journal of Research of the National Bureau of Standards, 45, 255–282.MathSciNetCrossRef Lanczos, C. (1950). An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. Journal of Research of the National Bureau of Standards, 45, 255–282.MathSciNetCrossRef
Zurück zum Zitat Lin, Z., Chen, M., Wu, L., & Ma, Y. (2011). The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv:1009.5055v2. Lin, Z., Chen, M., Wu, L., & Ma, Y. (2011). The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv:1009.5055v2.
Zurück zum Zitat Lions, P., & Mercier, B. (1979). Splitting algorithms for the sum of two nonlinear operators. SIAM Journal on Numerical Analysis, 16(6), 964–979.MathSciNetCrossRefMATH Lions, P., & Mercier, B. (1979). Splitting algorithms for the sum of two nonlinear operators. SIAM Journal on Numerical Analysis, 16(6), 964–979.MathSciNetCrossRefMATH
Zurück zum Zitat Recht, B., Fazel, M., & Parrilo, P. (2010). Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review, 52(3), 471–501.MathSciNetCrossRefMATH Recht, B., Fazel, M., & Parrilo, P. (2010). Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review, 52(3), 471–501.MathSciNetCrossRefMATH
Zurück zum Zitat Shum, H.-Y., Ikeuchi, K., & Reddy, R. (1995). Principal component analysis with missing data and its application to polyhedral object modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(9), 854–867.CrossRef Shum, H.-Y., Ikeuchi, K., & Reddy, R. (1995). Principal component analysis with missing data and its application to polyhedral object modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(9), 854–867.CrossRef
Zurück zum Zitat Soltanolkotabi, M., & Candès, E. J. (2013). A geometric analysis of subspace clustering with outliers. Annals of Statistics, 40(4), 2195–2238.MathSciNetCrossRefMATH Soltanolkotabi, M., & Candès, E. J. (2013). A geometric analysis of subspace clustering with outliers. Annals of Statistics, 40(4), 2195–2238.MathSciNetCrossRefMATH
Zurück zum Zitat Udell, M., Horn, C., Zadeh, R., & Boyd, S. (2015). Generalized low rank models. Working manuscript. Udell, M., Horn, C., Zadeh, R., & Boyd, S. (2015). Generalized low rank models. Working manuscript.
Zurück zum Zitat Wiberg, T. (1976). Computation of principal components when data are missing. In Symposium on Computational Statistics (pp. 229–326). Wiberg, T. (1976). Computation of principal components when data are missing. In Symposium on Computational Statistics (pp. 229–326).
Zurück zum Zitat Wright, J., Ganesh, A., Kerui, M., & Ma, Y. (2013). Compressive principal component analysis. IMA Journal on Information and Inference, 2(1), 32–68.CrossRefMATH Wright, J., Ganesh, A., Kerui, M., & Ma, Y. (2013). Compressive principal component analysis. IMA Journal on Information and Inference, 2(1), 32–68.CrossRefMATH
Zurück zum Zitat Wright, J., Ganesh, A., Rao, S., Peng, Y., & Ma, Y. (2009a). Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In NIPS. Wright, J., Ganesh, A., Rao, S., Peng, Y., & Ma, Y. (2009a). Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In NIPS.
Zurück zum Zitat Xu, H., Caramanis, C., & Sanghavi, S. (2010). Robust pca via outlier pursuit. In Neural Information Processing Systems (NIPS). Xu, H., Caramanis, C., & Sanghavi, S. (2010). Robust pca via outlier pursuit. In Neural Information Processing Systems (NIPS).
Zurück zum Zitat Yuan, X., & Yang, J. (2009). Sparse and low-rank matrix decomposition via alternating direction methods. Preprint. Yuan, X., & Yang, J. (2009). Sparse and low-rank matrix decomposition via alternating direction methods. Preprint.
Zurück zum Zitat Zhou, M., Wang, C., Chen, M., Paisley, J., Dunson, D., & Carin, L. (2010a). Nonparametric bayesian matrix completion. In Sensor Array and Multichannel Signal Processing Workshop. Zhou, M., Wang, C., Chen, M., Paisley, J., Dunson, D., & Carin, L. (2010a). Nonparametric bayesian matrix completion. In Sensor Array and Multichannel Signal Processing Workshop.
Zurück zum Zitat Zhou, Z., Wright, J., Li, X., Candès, E., & Ma, Y. (2010b). Stable principal component pursuit. In International Symposium on Information Theory. Zhou, Z., Wright, J., Li, X., Candès, E., & Ma, Y. (2010b). Stable principal component pursuit. In International Symposium on Information Theory.
Metadaten
Titel
Robust Principal Component Analysis
verfasst von
René Vidal
Yi Ma
S. Shankar Sastry
Copyright-Jahr
2016
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-0-387-87811-9_3

Neuer Inhalt