Skip to main content

2019 | OriginalPaper | Buchkapitel

9. Nonlinear Guided Waves and Thermal Stresses

verfasst von : Francesco Lanza di Scalea, Ankit Srivastava, Claudio Nucera

Erschienen in: Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The first part of the chapter covers theoretical considerations and numerical modeling of higher-harmonic generation in elastic waves propagating in nonlinear prismatic waveguides, including plates, rods, and waveguides of arbitrary cross-sections and/or of inhomogeneous and anisotropic composition. The main purpose of these analyses is to identify suitable combinations of primary and secondary guided modes for the waveguide. The last part of the chapter examines the role of thermal stresses in higher-harmonic wave generation. The latter topic is relevant to the prevention of thermal buckling of slender structural components (e.g., rail tracks).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat M.F. Hamilton, D.T. Blackstock, Nonlinear Acoustics (Acoustical Society of America, New York, 2008) M.F. Hamilton, D.T. Blackstock, Nonlinear Acoustics (Acoustical Society of America, New York, 2008)
2.
Zurück zum Zitat A. Jeffrey, J. Engelbrecht, Nonlinear Waves in Solids (Springer, Berlin-New York, 1994)CrossRefMATH A. Jeffrey, J. Engelbrecht, Nonlinear Waves in Solids (Springer, Berlin-New York, 1994)CrossRefMATH
3.
Zurück zum Zitat A.V. Porubov, Amplification of Nonlinear Strain Waves in Solids (World Scientific Pub Co, Singapore, 2003)CrossRefMATH A.V. Porubov, Amplification of Nonlinear Strain Waves in Solids (World Scientific Pub Co, Singapore, 2003)CrossRefMATH
4.
Zurück zum Zitat A.M. Samsonov, Strain Solitons in Solids and how to Construct them (CRC Press, Boca Raton, 2001)CrossRefMATH A.M. Samsonov, Strain Solitons in Solids and how to Construct them (CRC Press, Boca Raton, 2001)CrossRefMATH
5.
Zurück zum Zitat M. Deng, Second-harmonic properties of horizontally polarized shear modes in an isotropic plate. Jap. J. Appl. Phys. 35, 4004–4010 (1996)CrossRef M. Deng, Second-harmonic properties of horizontally polarized shear modes in an isotropic plate. Jap. J. Appl. Phys. 35, 4004–4010 (1996)CrossRef
6.
Zurück zum Zitat M. Deng, Cumulative second-harmonic generation accompanying nonlinear shear horizontal mode propagation in a solid plate. J. Appl. Phys. 84, 3500 (1998)CrossRef M. Deng, Cumulative second-harmonic generation accompanying nonlinear shear horizontal mode propagation in a solid plate. J. Appl. Phys. 84, 3500 (1998)CrossRef
7.
Zurück zum Zitat M. Deng, Cumulative second-harmonic generation of Lamb-mode propagation in a solid plate. J. Appl. Phys. 85, 3051 (1999)CrossRef M. Deng, Cumulative second-harmonic generation of Lamb-mode propagation in a solid plate. J. Appl. Phys. 85, 3051 (1999)CrossRef
8.
Zurück zum Zitat W.J.N. De Lima, M.F. Hamilton, Finite-amplitude waves in isotropic elastic plates. J. Sound Vibr. 265, 819–839 (2003)CrossRef W.J.N. De Lima, M.F. Hamilton, Finite-amplitude waves in isotropic elastic plates. J. Sound Vibr. 265, 819–839 (2003)CrossRef
9.
Zurück zum Zitat M. Deng, Analysis of second-harmonic generation of Lamb modes using a modal analysis approach. J. Appl. Phys. 94, 4152 (2003)CrossRef M. Deng, Analysis of second-harmonic generation of Lamb modes using a modal analysis approach. J. Appl. Phys. 94, 4152 (2003)CrossRef
10.
Zurück zum Zitat B.A. Auld, Acoustic Fields and Waves in Solids (R.E. Krieger, Malabar, 1990) B.A. Auld, Acoustic Fields and Waves in Solids (R.E. Krieger, Malabar, 1990)
11.
Zurück zum Zitat W.J.N. De Lima, M.F. Hamilton, Finite amplitude waves in isotropic elastic waveguides with arbitrary constant cross-sectional area. Wave Motion 41, 1–11 (2005)MathSciNetCrossRefMATH W.J.N. De Lima, M.F. Hamilton, Finite amplitude waves in isotropic elastic waveguides with arbitrary constant cross-sectional area. Wave Motion 41, 1–11 (2005)MathSciNetCrossRefMATH
12.
Zurück zum Zitat M. Deng, Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach. Appl. Phys. Lett. 90, 121902 (2007)CrossRef M. Deng, Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach. Appl. Phys. Lett. 90, 121902 (2007)CrossRef
13.
Zurück zum Zitat A. Srivastava, F. Lanza di Scalea, On the existence of antisymmetric or symmetric Lamb waves at nonlinear higher harmonics. J. Sound Vibr. 323, 932–943 (2009)CrossRef A. Srivastava, F. Lanza di Scalea, On the existence of antisymmetric or symmetric Lamb waves at nonlinear higher harmonics. J. Sound Vibr. 323, 932–943 (2009)CrossRef
14.
Zurück zum Zitat A. Srivastava, F. Lanza di Scalea, On the existence of longitudinal or flexural waves in rods at nonlinear higher harmonics. J. Sound Vibr. 329, 1499–1506 (2010)CrossRef A. Srivastava, F. Lanza di Scalea, On the existence of longitudinal or flexural waves in rods at nonlinear higher harmonics. J. Sound Vibr. 329, 1499–1506 (2010)CrossRef
15.
Zurück zum Zitat A. Srivastava, I. Bartoli, S. Salamone, F. Lanza di Scalea, Higher harmonic generation in nonlinear waveguides of arbitrary cross-section. J. Acoust. Soc. Am. 127, 2790–2796 (2010)CrossRef A. Srivastava, I. Bartoli, S. Salamone, F. Lanza di Scalea, Higher harmonic generation in nonlinear waveguides of arbitrary cross-section. J. Acoust. Soc. Am. 127, 2790–2796 (2010)CrossRef
16.
Zurück zum Zitat M.F. Muller, J.K. Kim, J. Qu, L.J. Jacobs, Characteristics of second harmonic generation of lamb waves in nonlinear elastic plates. J. Acoust. Soc. Am. 127, 2141–2152 (2010)CrossRef M.F. Muller, J.K. Kim, J. Qu, L.J. Jacobs, Characteristics of second harmonic generation of lamb waves in nonlinear elastic plates. J. Acoust. Soc. Am. 127, 2141–2152 (2010)CrossRef
17.
Zurück zum Zitat C. Bermes, J.Y. Kim, J.M. Qu, L.J. Jacobs, Experimental characterization of material nonlinearity using Lamb waves. Appl. Phys. Lett. 90, 021901 (2007)CrossRef C. Bermes, J.Y. Kim, J.M. Qu, L.J. Jacobs, Experimental characterization of material nonlinearity using Lamb waves. Appl. Phys. Lett. 90, 021901 (2007)CrossRef
18.
Zurück zum Zitat N. Matsuda, S. Biwa, Phase and group velocity matching for cumulative harmonic generation in lamb waves. J. Appl. Phys. 109, 094903 (2011)CrossRef N. Matsuda, S. Biwa, Phase and group velocity matching for cumulative harmonic generation in lamb waves. J. Appl. Phys. 109, 094903 (2011)CrossRef
19.
Zurück zum Zitat K.H. Matlack, J.J. Wall, J.Y. Kim, J. Qu, L.J. Jacobs, H.W. Viehrig, Evaluation of radiation damage using nonlinear ultrasound. J. Appl. Phys. 111, 1–3 (2012)CrossRef K.H. Matlack, J.J. Wall, J.Y. Kim, J. Qu, L.J. Jacobs, H.W. Viehrig, Evaluation of radiation damage using nonlinear ultrasound. J. Appl. Phys. 111, 1–3 (2012)CrossRef
20.
Zurück zum Zitat V.K. Chillara, C.J. Lissenden, Interaction of guided wave modes in isotropic weakly nonlinear elastic plates: higher harmonic generation. J. Appl. Phys. 111, 124909 (2012)CrossRef V.K. Chillara, C.J. Lissenden, Interaction of guided wave modes in isotropic weakly nonlinear elastic plates: higher harmonic generation. J. Appl. Phys. 111, 124909 (2012)CrossRef
21.
Zurück zum Zitat V.K. Chillara, C.J. Lissenden, D.O. Thompson, D.E. Chimenti, Higher harmonic guided waves in isotropic weakly nonlinear elastic plates. AIP Conf. Proc. 1511, 145–150 (2013)CrossRef V.K. Chillara, C.J. Lissenden, D.O. Thompson, D.E. Chimenti, Higher harmonic guided waves in isotropic weakly nonlinear elastic plates. AIP Conf. Proc. 1511, 145–150 (2013)CrossRef
22.
Zurück zum Zitat Y. Liu, V.K. Chillara, C.J. Lissenden, On selection of primary modes for generation of strong internally resonant second harmonics in plate. J. Sound Vibr. 332, 4517–4528 (2013)CrossRef Y. Liu, V.K. Chillara, C.J. Lissenden, On selection of primary modes for generation of strong internally resonant second harmonics in plate. J. Sound Vibr. 332, 4517–4528 (2013)CrossRef
23.
Zurück zum Zitat V.K. Chillara, C.J. Lissenden, Analysis of second harmonic guided waves in pipes using a large-radius asymptotic approximation for axis-symmetric longitudinal modes. Ultrasonics 53, 862–869 (2013)CrossRef V.K. Chillara, C.J. Lissenden, Analysis of second harmonic guided waves in pipes using a large-radius asymptotic approximation for axis-symmetric longitudinal modes. Ultrasonics 53, 862–869 (2013)CrossRef
24.
Zurück zum Zitat N. Matsuda, S. Biwa, Frequency dependence of second-harmonic generation in Lamb waves. J. Nondestruct. Eval. 33, 169–177 (2014)CrossRef N. Matsuda, S. Biwa, Frequency dependence of second-harmonic generation in Lamb waves. J. Nondestruct. Eval. 33, 169–177 (2014)CrossRef
25.
Zurück zum Zitat R. Radecki, M.J. Lemay, T. Uhl, W.J. Staszewski, Z. Su, L. Cheng, P. Packo, Investigation on high–order harmonic generation of guided waves using local computation approaches: theory and comparison with analytical modelling. in 7th European Workshop on Structural Health Monitoring, 8–11 July (Nantes, France, 2014) R. Radecki, M.J. Lemay, T. Uhl, W.J. Staszewski, Z. Su, L. Cheng, P. Packo, Investigation on high–order harmonic generation of guided waves using local computation approaches: theory and comparison with analytical modelling. in 7th European Workshop on Structural Health Monitoring, 8–11 July (Nantes, France, 2014)
26.
Zurück zum Zitat M. Ryles, F.H. Ngau, I. McDonald, W.J. Staszewski, Comparative study of nonlinear acoustic and Lamb wave techniques for fatigue crack detection in metallic structures. Fatigue Fract. Eng. Mech. 31, 674–683 (2008)CrossRef M. Ryles, F.H. Ngau, I. McDonald, W.J. Staszewski, Comparative study of nonlinear acoustic and Lamb wave techniques for fatigue crack detection in metallic structures. Fatigue Fract. Eng. Mech. 31, 674–683 (2008)CrossRef
27.
Zurück zum Zitat V.K. Chillara, C.J. Lissenden, Review of nonlinear ultra sonic guided wave nondestructive evaluation: theory, numerics, and experiments. Opt. Eng. 55, 011002–011002 (2016)CrossRef V.K. Chillara, C.J. Lissenden, Review of nonlinear ultra sonic guided wave nondestructive evaluation: theory, numerics, and experiments. Opt. Eng. 55, 011002–011002 (2016)CrossRef
28.
Zurück zum Zitat M. Deng, Y.X. Xiang, L.B. Liu, Time-domain analysis and experimental examination of cumulative second-harmonic generation by primary Lamb wave propagation. J. Appl. Phys. 109, 113525 (2011)CrossRef M. Deng, Y.X. Xiang, L.B. Liu, Time-domain analysis and experimental examination of cumulative second-harmonic generation by primary Lamb wave propagation. J. Appl. Phys. 109, 113525 (2011)CrossRef
29.
Zurück zum Zitat Z.A. Goldberg, Interaction of plane longitudinal and transverse elastic waves. Sov. Phys. Acoust. 6, 306–310 (1961) Z.A. Goldberg, Interaction of plane longitudinal and transverse elastic waves. Sov. Phys. Acoust. 6, 306–310 (1961)
30.
Zurück zum Zitat A.C. Eringen, E.S. Suhubi, Elastodynamics (Academic Press, New York, 1975)MATH A.C. Eringen, E.S. Suhubi, Elastodynamics (Academic Press, New York, 1975)MATH
31.
Zurück zum Zitat A.I. Lurie, Nonlinear Elasticity (Nauka Publishers, Moscow, 1980) A.I. Lurie, Nonlinear Elasticity (Nauka Publishers, Moscow, 1980)
32.
Zurück zum Zitat J. Engelbrecht, Nonlinear Wave Processes of Deformation in Solids (Pitman Advanced Pub. Program, Boston, 1983)MATH J. Engelbrecht, Nonlinear Wave Processes of Deformation in Solids (Pitman Advanced Pub. Program, Boston, 1983)MATH
33.
Zurück zum Zitat K.A. Lurie, Nonlinear Theory of Elasticity (North-Holland, Amsterdam, 1990)MATH K.A. Lurie, Nonlinear Theory of Elasticity (North-Holland, Amsterdam, 1990)MATH
34.
Zurück zum Zitat F.D. Murnaghan, Finite Deformations (Wiley, New York, 1951) F.D. Murnaghan, Finite Deformations (Wiley, New York, 1951)
35.
Zurück zum Zitat L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Addison-Wesley Pub. Co, London, 1959)MATH L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Addison-Wesley Pub. Co, London, 1959)MATH
36.
Zurück zum Zitat R. Truell, C. Elbaum, B. Chick, Ultrasonic Methods in Solid State Physics (Academic Press, New York, 1969) R. Truell, C. Elbaum, B. Chick, Ultrasonic Methods in Solid State Physics (Academic Press, New York, 1969)
37.
Zurück zum Zitat A.H. Meitzler, Mode coupling occurring in the propagation of elastic pulses in wires. J. Acoust. Soc. Am. 33, 435 (1961)CrossRef A.H. Meitzler, Mode coupling occurring in the propagation of elastic pulses in wires. J. Acoust. Soc. Am. 33, 435 (1961)CrossRef
38.
Zurück zum Zitat C. Nucera, F. Lanza di Scalea, Nonlinear semi-analytical finite element algorithm for the analysis of internal resonance conditions in complex waveguides. ASCE J Eng Mech 140, 502–522 (2014)CrossRef C. Nucera, F. Lanza di Scalea, Nonlinear semi-analytical finite element algorithm for the analysis of internal resonance conditions in complex waveguides. ASCE J Eng Mech 140, 502–522 (2014)CrossRef
39.
Zurück zum Zitat C. Nucera, F. Lanza di Scalea, Nondestructive measurement of neutral temperature in continuous welded rails by nonlinear ultrasonic guided waves. J. Acoust. Soc. Am. 136, 2561–2574 (2014)CrossRef C. Nucera, F. Lanza di Scalea, Nondestructive measurement of neutral temperature in continuous welded rails by nonlinear ultrasonic guided waves. J. Acoust. Soc. Am. 136, 2561–2574 (2014)CrossRef
40.
Zurück zum Zitat C. Nucera, F. Lanza di Scalea, Modeling of nonlinear guided waves and applications to structural health monitoring. ASCE J Comput Civ Eng 29, B40140011–B401400115 (2015)CrossRef C. Nucera, F. Lanza di Scalea, Modeling of nonlinear guided waves and applications to structural health monitoring. ASCE J Comput Civ Eng 29, B40140011–B401400115 (2015)CrossRef
41.
Zurück zum Zitat N. Apetre, M. Ruzzene, S. Hanagud, S Gopalakrishnan, Nonlinear spectral methods for the analysis of wave propagation. in 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (Schaumburg, IL, 7–10 April, 2008) N. Apetre, M. Ruzzene, S. Hanagud, S Gopalakrishnan, Nonlinear spectral methods for the analysis of wave propagation. in 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (Schaumburg, IL, 7–10 April, 2008)
42.
Zurück zum Zitat B. Aalami, Waves in prismatic guides of arbitrary cross-section. J Appl Mech-T ASME 40, 1067–1077 (1973)CrossRef B. Aalami, Waves in prismatic guides of arbitrary cross-section. J Appl Mech-T ASME 40, 1067–1077 (1973)CrossRef
43.
Zurück zum Zitat P.E. Lagasse, Higher-order finite-element analysis of topographic guides supporting elastic surface-waves. J. Acoust. Soc. Am. 53, 1116–1122 (1973)CrossRef P.E. Lagasse, Higher-order finite-element analysis of topographic guides supporting elastic surface-waves. J. Acoust. Soc. Am. 53, 1116–1122 (1973)CrossRef
44.
Zurück zum Zitat L. Gavrić, Finite-element computation of dispersion properties of thin-walled waveguides. J. Sound Vib. 173, 113–124 (1994)CrossRefMATH L. Gavrić, Finite-element computation of dispersion properties of thin-walled waveguides. J. Sound Vib. 173, 113–124 (1994)CrossRefMATH
45.
Zurück zum Zitat L. Gavrić, Computation of propagative waves in free rail using a finite element technique. J. Sound Vib. 185, 531–543 (1995)CrossRefMATH L. Gavrić, Computation of propagative waves in free rail using a finite element technique. J. Sound Vib. 185, 531–543 (1995)CrossRefMATH
46.
Zurück zum Zitat K.H. Huang, S.B. Dong, Propagating waves and edge vibrations in anisotropic composite cylinders. J. Sound Vib. 96, 363–379 (1984)CrossRefMATH K.H. Huang, S.B. Dong, Propagating waves and edge vibrations in anisotropic composite cylinders. J. Sound Vib. 96, 363–379 (1984)CrossRefMATH
47.
Zurück zum Zitat S. Finnveden, Spectral finite element analysis of the vibration of straight fluid-filled pipes with flanges. J. Sound Vib. 199, 125–154 (1997)CrossRef S. Finnveden, Spectral finite element analysis of the vibration of straight fluid-filled pipes with flanges. J. Sound Vib. 199, 125–154 (1997)CrossRef
48.
Zurück zum Zitat A.C. Hladky Hennion, Finite element analysis of the propagation of acoustic waves in waveguides. J. Sound Vib. 194, 119–136 (1996)CrossRef A.C. Hladky Hennion, Finite element analysis of the propagation of acoustic waves in waveguides. J. Sound Vib. 194, 119–136 (1996)CrossRef
49.
Zurück zum Zitat T. Mazuch, Wave dispersion modelling in anisotropic shells and rods by the finite element method. J. Sound Vib. 198, 429–438 (1996)CrossRef T. Mazuch, Wave dispersion modelling in anisotropic shells and rods by the finite element method. J. Sound Vib. 198, 429–438 (1996)CrossRef
50.
Zurück zum Zitat U. Orrenius, S. Finnveden, Calculation of wave propagation in rib-stiffened plate structures. J. Sound Vib. 198, 203–224 (1996)CrossRef U. Orrenius, S. Finnveden, Calculation of wave propagation in rib-stiffened plate structures. J. Sound Vib. 198, 203–224 (1996)CrossRef
51.
Zurück zum Zitat I. Bartoli, A. Marzani, F. Lanza di Scalea, E. Viola, Modeling wave propagation in damped waveguides of arbitrary cross-section. J. Sound Vib. 295, 685–707 (2006)CrossRef I. Bartoli, A. Marzani, F. Lanza di Scalea, E. Viola, Modeling wave propagation in damped waveguides of arbitrary cross-section. J. Sound Vib. 295, 685–707 (2006)CrossRef
52.
Zurück zum Zitat T. Hayashi, W.J. Song, J.L. Rose, Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example. Ultrasonics 41, 175–183 (2003)CrossRef T. Hayashi, W.J. Song, J.L. Rose, Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example. Ultrasonics 41, 175–183 (2003)CrossRef
53.
Zurück zum Zitat P.W. Loveday, Semi-analytical finite element analysis of elastic waveguides subjected to axial loads. Ultrasonics 49, 298–300 (2009)CrossRef P.W. Loveday, Semi-analytical finite element analysis of elastic waveguides subjected to axial loads. Ultrasonics 49, 298–300 (2009)CrossRef
54.
Zurück zum Zitat S.S. Sekoyan, A.E. Eremeev, Measurement of the third-order elasticity constants for steel by the ultrasonic method. Meas. Tech. 0543–1972, 888–893 (1966)CrossRef S.S. Sekoyan, A.E. Eremeev, Measurement of the third-order elasticity constants for steel by the ultrasonic method. Meas. Tech. 0543–1972, 888–893 (1966)CrossRef
55.
Zurück zum Zitat E. Onate, Structural Analysis with the Finite Element Method. Linear Statics – Volume I (Springer, Dordrecht, 2009)CrossRefMATH E. Onate, Structural Analysis with the Finite Element Method. Linear Statics – Volume I (Springer, Dordrecht, 2009)CrossRefMATH
56.
Zurück zum Zitat A. Bernard, M. Deschamps, M.J.S. Lowe, Energy velocity and group velocity for guided waves propagating within an absorbing or non-absorbing plate in vacuum. Rev Progr Quant NDE 18, 183–190 (1999) A. Bernard, M. Deschamps, M.J.S. Lowe, Energy velocity and group velocity for guided waves propagating within an absorbing or non-absorbing plate in vacuum. Rev Progr Quant NDE 18, 183–190 (1999)
57.
Zurück zum Zitat A. Bernard, M.J.S. Lowe, M. Deschamps, Guided waves energy velocity in absorbing and non-absorbing plates. J. Acoust. Soc. Am. 110, 186–196 (2001)CrossRef A. Bernard, M.J.S. Lowe, M. Deschamps, Guided waves energy velocity in absorbing and non-absorbing plates. J. Acoust. Soc. Am. 110, 186–196 (2001)CrossRef
58.
Zurück zum Zitat M.V. Predoi, M. Castaings, B. Hosten, C. Bacon, Wave propagation along transversely periodic structures. J. Acoust. Soc. Am. 121, 1935–1944 (2007)CrossRef M.V. Predoi, M. Castaings, B. Hosten, C. Bacon, Wave propagation along transversely periodic structures. J. Acoust. Soc. Am. 121, 1935–1944 (2007)CrossRef
59.
Zurück zum Zitat B. Pavlakovic, M.J.S. Lowe, Disperse User Manual (Imperial College, London, 2003) B. Pavlakovic, M.J.S. Lowe, Disperse User Manual (Imperial College, London, 2003)
60.
Zurück zum Zitat C. Cattani, Y.Y. Rushchitskii, Wavelet and Wave Analysis as Applied to Materials with Micro or Nanostructure (World Scientific Pub. Co., Hackensack, 2007)CrossRefMATH C. Cattani, Y.Y. Rushchitskii, Wavelet and Wave Analysis as Applied to Materials with Micro or Nanostructure (World Scientific Pub. Co., Hackensack, 2007)CrossRefMATH
61.
Zurück zum Zitat W.H. Prosser, Ultrasonic characterization of the nonlinear elastic properties of unidirectional graphite/epoxy composites. NASA Contr. Rep. 4100, 75–120 (1987) W.H. Prosser, Ultrasonic characterization of the nonlinear elastic properties of unidirectional graphite/epoxy composites. NASA Contr. Rep. 4100, 75–120 (1987)
63.
Zurück zum Zitat A. Bouhadjera, Simulation of in-situ concrete conditions using a novel ultrasonic technique. in Proceedings of 16th World Conf Non-Destructive Testing (2004) A. Bouhadjera, Simulation of in-situ concrete conditions using a novel ultrasonic technique. in Proceedings of 16th World Conf Non-Destructive Testing (2004)
64.
Zurück zum Zitat C. Payan, V. Garnier, J. Moysan, Potential of nonlinear ultrasonic indicators for nondestructive testing of concrete. Adv. Civ. Eng. 2010, 1–8 (2009) C. Payan, V. Garnier, J. Moysan, Potential of nonlinear ultrasonic indicators for nondestructive testing of concrete. Adv. Civ. Eng. 2010, 1–8 (2009)
65.
Zurück zum Zitat M.A. Biot, Nonlinear thermoelasticity, irreversible thermodynamics and elastic instability. Indiana U. Math. J. 23, 309–335 (1973)CrossRefMATH M.A. Biot, Nonlinear thermoelasticity, irreversible thermodynamics and elastic instability. Indiana U. Math. J. 23, 309–335 (1973)CrossRefMATH
67.
Zurück zum Zitat M. Slemrod, Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional non-linear thermoelasticity. Arch. Ration. Mech. Ann. 76, 97–133 (1981)CrossRefMATH M. Slemrod, Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional non-linear thermoelasticity. Arch. Ration. Mech. Ann. 76, 97–133 (1981)CrossRefMATH
68.
Zurück zum Zitat A.D. Kerr, Thermal buckling of straight tracks: fundamentals, analyses and preventive measures. Tech Rep FRA/ORD-78-49 (1978) A.D. Kerr, Thermal buckling of straight tracks: fundamentals, analyses and preventive measures. Tech Rep FRA/ORD-78-49 (1978)
69.
Zurück zum Zitat A. Kish, Fundamentals of CWR rail stress management. in TRB 90th Annual Meeting (Washington, DC, 2011) A. Kish, Fundamentals of CWR rail stress management. in TRB 90th Annual Meeting (Washington, DC, 2011)
70.
Zurück zum Zitat C. Nucera, R. Phillips, F. Lanza di Scalea, M. Fateh, G. Carr, RAIL-NT system for the in-situ measurement of neutral temperature in CWR: Results from laboratory and field test. J. Transp. Res. Board 2374, 154–161 (2013)CrossRef C. Nucera, R. Phillips, F. Lanza di Scalea, M. Fateh, G. Carr, RAIL-NT system for the in-situ measurement of neutral temperature in CWR: Results from laboratory and field test. J. Transp. Res. Board 2374, 154–161 (2013)CrossRef
71.
Zurück zum Zitat H. Ledbetter, Thermal-expansion and elastic-constants. Int. J. Thermophys. 12, 637–642 (1991)CrossRef H. Ledbetter, Thermal-expansion and elastic-constants. Int. J. Thermophys. 12, 637–642 (1991)CrossRef
72.
Zurück zum Zitat D.M. Egle, D.E. Bray, Measurement of acoustoelastic and 3rd-order elastic-constants for rail steel. J. Acoust. Soc. Am. 60, 741–744 (1976)CrossRef D.M. Egle, D.E. Bray, Measurement of acoustoelastic and 3rd-order elastic-constants for rail steel. J. Acoust. Soc. Am. 60, 741–744 (1976)CrossRef
73.
Zurück zum Zitat J.H. Cantrell, in Fundamentals and Applications of Nonlinear Ultrasonic Nondestructive Evaluation, ed. By T. Kundu. Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization (CRC Press, Boca Raton, 2004), pp. 363–433 J.H. Cantrell, in Fundamentals and Applications of Nonlinear Ultrasonic Nondestructive Evaluation, ed. By T. Kundu. Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization (CRC Press, Boca Raton, 2004), pp. 363–433
74.
Zurück zum Zitat J.H. Cantrell, Quantitative assessment of fatigue damage accumulation in wavy slip metals from acoustic harmonic generation. Philos. Mag. 86, 1539–1554 (2006)CrossRef J.H. Cantrell, Quantitative assessment of fatigue damage accumulation in wavy slip metals from acoustic harmonic generation. Philos. Mag. 86, 1539–1554 (2006)CrossRef
75.
Zurück zum Zitat J.H. Cantrell, W.T. Yost, Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue 23, S487–S490 (2001)CrossRef J.H. Cantrell, W.T. Yost, Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue 23, S487–S490 (2001)CrossRef
76.
Zurück zum Zitat R.J.D. Tilley, Understanding Solids: The Science of Materials (Wiley, Chichester, West Sussex, England and Hoboken, 2004)CrossRef R.J.D. Tilley, Understanding Solids: The Science of Materials (Wiley, Chichester, West Sussex, England and Hoboken, 2004)CrossRef
77.
Zurück zum Zitat G. Mie, Zur kinetischen theorie der einatomigen körper. Ann. Phys. 316, 657–697 (1903)CrossRefMATH G. Mie, Zur kinetischen theorie der einatomigen körper. Ann. Phys. 316, 657–697 (1903)CrossRefMATH
78.
Zurück zum Zitat C. Nucera, F. Lanza di Scalea, Nonlinear wave propagation in constrained solids subjected to thermal loads. J. Sound Vibr. 333, 541–554 (2014)CrossRef C. Nucera, F. Lanza di Scalea, Nonlinear wave propagation in constrained solids subjected to thermal loads. J. Sound Vibr. 333, 541–554 (2014)CrossRef
79.
Zurück zum Zitat J. Lennard-Jones, On the determination of molecular fields I – from the variation of the viscosity of a gas with temperature. Proc. R. Soc. Lond. 106, 441–462 (1924)CrossRef J. Lennard-Jones, On the determination of molecular fields I – from the variation of the viscosity of a gas with temperature. Proc. R. Soc. Lond. 106, 441–462 (1924)CrossRef
80.
Zurück zum Zitat J.E. Lennard-Jones, On the determination of molecular fields II – from the equation of state of a gas. Proc. R. Soc. Lond. 106, 463–477 (1924)CrossRef J.E. Lennard-Jones, On the determination of molecular fields II – from the equation of state of a gas. Proc. R. Soc. Lond. 106, 463–477 (1924)CrossRef
81.
Zurück zum Zitat J.E. Lennard-Jones, On the determination of molecular fields III – from crystal measurements and kinetic theory data. Proc. R. Soc. Lond. 106, 709–718 (1924)CrossRef J.E. Lennard-Jones, On the determination of molecular fields III – from crystal measurements and kinetic theory data. Proc. R. Soc. Lond. 106, 709–718 (1924)CrossRef
Metadaten
Titel
Nonlinear Guided Waves and Thermal Stresses
verfasst von
Francesco Lanza di Scalea
Ankit Srivastava
Claudio Nucera
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-94476-0_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.