Skip to main content
Erschienen in: Neural Computing and Applications 8/2017

14.01.2016 | Original Article

Nonlinear radiation effects on MHD flow of nanofluid over a nonlinearly stretching/shrinking wedge

verfasst von: Umar Khan, Naveed Ahmed, Syed Tauseef Mohyud-Din, Bandar Bin-Mohsin

Erschienen in: Neural Computing and Applications | Ausgabe 8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Flow over a moving wedge in a nanofluid is considered. Magneto-hydrodynamic effects are incorporated along with the passive control model of nanofluids that also takes into account the Brownian motion and thermophoresis effects. In energy equation, nonlinear radiation is taken into account. The equations governing the flow are transformed into a set of ordinary differential equations by employing suitable similarity transforms. The reduced system of equations is then solved numerically using a well-known Runge–Kutta–Fehlberg method coupled with shooting technique. Influence of parameters involved on velocity, temperature and concentration profiles is highlighted with the help of graphical aid. Expressions for skin friction coefficient, local Nusselt number and Sherwood number are obtained and presented graphically. A comparison between the passive and active control models is also provided with focus on the variations in Nusselt and Sherwood numbers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer DA, Wang HP (eds) Developments and applications of non-newtonian flows, ASME FED, vol 231/MD-vol 66, pp 99–105 Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer DA, Wang HP (eds) Developments and applications of non-newtonian flows, ASME FED, vol 231/MD-vol 66, pp 99–105
2.
Zurück zum Zitat Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalously thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254CrossRef Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalously thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254CrossRef
3.
Zurück zum Zitat Buongiorno J (2006) Convective transport in nanofluids. ASME Journal of Heat Transfer 128:240–250CrossRef Buongiorno J (2006) Convective transport in nanofluids. ASME Journal of Heat Transfer 128:240–250CrossRef
4.
Zurück zum Zitat Khan W, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53(11):2477–2483CrossRefMATH Khan W, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53(11):2477–2483CrossRefMATH
5.
Zurück zum Zitat Sheikholeslami M, Ellahi R (2015) Electrohydrodynamic nanofluid hydrothermal treatment in an enclosure with sinusoidal upper wall. Applied Sciences 5(3):294–306CrossRef Sheikholeslami M, Ellahi R (2015) Electrohydrodynamic nanofluid hydrothermal treatment in an enclosure with sinusoidal upper wall. Applied Sciences 5(3):294–306CrossRef
6.
Zurück zum Zitat Sheikholeslami M, Ellahi R (2015) Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf 89:799–808CrossRef Sheikholeslami M, Ellahi R (2015) Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf 89:799–808CrossRef
7.
Zurück zum Zitat Ellahi R, Hassan M, Zeeshan A (2015) Study on magnetohydrodynamic nanofluid by means of single and multi-walled carbon nanotubes suspended in a salt water solution. IEEE Trans Nanotechnol 14(4):726–734CrossRef Ellahi R, Hassan M, Zeeshan A (2015) Study on magnetohydrodynamic nanofluid by means of single and multi-walled carbon nanotubes suspended in a salt water solution. IEEE Trans Nanotechnol 14(4):726–734CrossRef
8.
Zurück zum Zitat Sheikholeslami M, Ellahi R (2015) Simulation of ferrofluid flow for magnetic drug targeting using Lattice Boltzmann method. J Z Fur Naturforschung A 70(2):115–124 Sheikholeslami M, Ellahi R (2015) Simulation of ferrofluid flow for magnetic drug targeting using Lattice Boltzmann method. J Z Fur Naturforschung A 70(2):115–124
9.
Zurück zum Zitat Akbar NS, Raza M, Ellahi R (2015) Influence of induced magnetic field and heat flux with the suspension of carbon nanotubes for the peristaltic flow in a permeable channel. J Magn Magn Mater 381:405–415CrossRef Akbar NS, Raza M, Ellahi R (2015) Influence of induced magnetic field and heat flux with the suspension of carbon nanotubes for the peristaltic flow in a permeable channel. J Magn Magn Mater 381:405–415CrossRef
10.
Zurück zum Zitat Ellahi R, Hassan M, Zeeshan A (2015) Shape effects of nanosize particles in Cu–H2O nanofluid on entropy generation. Int J Heat Mass Transf 81:449–456CrossRef Ellahi R, Hassan M, Zeeshan A (2015) Shape effects of nanosize particles in Cu–H2O nanofluid on entropy generation. Int J Heat Mass Transf 81:449–456CrossRef
11.
Zurück zum Zitat Sheikholeslami M, Ganji DD, Javed MY, Ellahi R (2015) Effect of thermal radiation on nanofluid flow and heat transfer using two phase model. J Magn Magn Mater 374:36–43CrossRef Sheikholeslami M, Ganji DD, Javed MY, Ellahi R (2015) Effect of thermal radiation on nanofluid flow and heat transfer using two phase model. J Magn Magn Mater 374:36–43CrossRef
12.
Zurück zum Zitat Rashidi S, Dehghan M, Ellahi R, Riaz M, Jamal-Abad MT (2015) Study of stream wise transverse magnetic fluid flow with heat transfer around a porous obstacle. J Magn Magn Mater 378:128–137CrossRef Rashidi S, Dehghan M, Ellahi R, Riaz M, Jamal-Abad MT (2015) Study of stream wise transverse magnetic fluid flow with heat transfer around a porous obstacle. J Magn Magn Mater 378:128–137CrossRef
13.
Zurück zum Zitat Ellahi R (2013) The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl Math Model 37(3):1451–1457MathSciNetCrossRefMATH Ellahi R (2013) The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl Math Model 37(3):1451–1457MathSciNetCrossRefMATH
14.
Zurück zum Zitat Ul R, Haq S, Nadeem ZH, Khan NFM (2015) Noor, Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Physica B 457:40–47CrossRef Ul R, Haq S, Nadeem ZH, Khan NFM (2015) Noor, Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Physica B 457:40–47CrossRef
15.
Zurück zum Zitat Mabood F, Khan WA, Ismail AIM (2015) MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: a numerical study. J Magn Magn Mater 374:569–576CrossRef Mabood F, Khan WA, Ismail AIM (2015) MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: a numerical study. J Magn Magn Mater 374:569–576CrossRef
16.
Zurück zum Zitat Khan U, Ahmed N, Mohyud-Din ST (2015) Heat transfer effects on carbon nanotubes suspended nanofluid flow in a channel with non-parallel walls under the effect of velocity slip boundary condition: a numerical study. doi:10.1007/s00521-015-2035-4 Khan U, Ahmed N, Mohyud-Din ST (2015) Heat transfer effects on carbon nanotubes suspended nanofluid flow in a channel with non-parallel walls under the effect of velocity slip boundary condition: a numerical study. doi:10.​1007/​s00521-015-2035-4
17.
Zurück zum Zitat Mohyud-Din ST, Zaidi ZA, Khan U, Ahmed N (2015) On heat and mass transfer analysis for the flow of a nanofluid between rotating parallel plates. Aerosp Sci Technol 46:514–522CrossRef Mohyud-Din ST, Zaidi ZA, Khan U, Ahmed N (2015) On heat and mass transfer analysis for the flow of a nanofluid between rotating parallel plates. Aerosp Sci Technol 46:514–522CrossRef
18.
Zurück zum Zitat Mohyud-Din ST, Khan U, Ahmed N, Hassan SM (2015) Magnetohydrodynamic flow and heat transfer of nanofluids in stretchable convergent/divergent channels. Applied Sciences 5:1639–1664CrossRef Mohyud-Din ST, Khan U, Ahmed N, Hassan SM (2015) Magnetohydrodynamic flow and heat transfer of nanofluids in stretchable convergent/divergent channels. Applied Sciences 5:1639–1664CrossRef
19.
Zurück zum Zitat Khan U, Ahmed N, Mohyud-Din ST (2016) Thermo-diffusion, diffusion-thermo and chemical reaction effects on MHD flow of viscous fluid in divergent and convergent channels. Chem Eng Sci 141:17–27CrossRef Khan U, Ahmed N, Mohyud-Din ST (2016) Thermo-diffusion, diffusion-thermo and chemical reaction effects on MHD flow of viscous fluid in divergent and convergent channels. Chem Eng Sci 141:17–27CrossRef
20.
Zurück zum Zitat Nield DA, Kuznetsov AV (2014) The onset of convection in a horizontal nanofluid layer of finite depth: a revised model. Int J Heat Mass Transf 77:915–918CrossRef Nield DA, Kuznetsov AV (2014) The onset of convection in a horizontal nanofluid layer of finite depth: a revised model. Int J Heat Mass Transf 77:915–918CrossRef
21.
Zurück zum Zitat Kuznetsov AV, Nield DA (2014) Natural convective boundary-layer flow of a nanofluid past a vertical plate: a revised model. Int J Therm Sci 77:126–129CrossRef Kuznetsov AV, Nield DA (2014) Natural convective boundary-layer flow of a nanofluid past a vertical plate: a revised model. Int J Therm Sci 77:126–129CrossRef
22.
Zurück zum Zitat Falkner VM, Skan SW (1931) Some approximate solutions of the boundary layer equations. Phil Mag 80(12):865–896CrossRefMATH Falkner VM, Skan SW (1931) Some approximate solutions of the boundary layer equations. Phil Mag 80(12):865–896CrossRefMATH
23.
Zurück zum Zitat Hartree DR (1937) Onan equation occurring in Falkner and Skan’s approximate treatment of the equations of the boundary layer. Math Proc Cambridge Philos Soc 33(2):223–239CrossRefMATH Hartree DR (1937) Onan equation occurring in Falkner and Skan’s approximate treatment of the equations of the boundary layer. Math Proc Cambridge Philos Soc 33(2):223–239CrossRefMATH
24.
Zurück zum Zitat Koh JCY, Hartnett JP (1961) Skin friction and heat transfer for incompressible laminar flow over porous wedges with suction and variable wall temperature. Int J Heat Mass Transf 2(3):185–198CrossRef Koh JCY, Hartnett JP (1961) Skin friction and heat transfer for incompressible laminar flow over porous wedges with suction and variable wall temperature. Int J Heat Mass Transf 2(3):185–198CrossRef
25.
Zurück zum Zitat Takhar HS, Pop I (1984) On MHD heat transfer from a wedge at large Prandtl numbers. Mech Res Commun 11(3):191–194CrossRefMATH Takhar HS, Pop I (1984) On MHD heat transfer from a wedge at large Prandtl numbers. Mech Res Commun 11(3):191–194CrossRefMATH
26.
Zurück zum Zitat Lin H-T, Lin L-K (1987) Similarity solutions for laminar forced convection heat transfer from wedges to fluids of any Prandtl number. Int J Heat Mass Transf 30(6):1111–1118CrossRef Lin H-T, Lin L-K (1987) Similarity solutions for laminar forced convection heat transfer from wedges to fluids of any Prandtl number. Int J Heat Mass Transf 30(6):1111–1118CrossRef
27.
Zurück zum Zitat Abbasbandy S, Hayat T, Alsaedi A, Rashidi MM (2014) Numerical and analytical solutions for Falkner–Skan flow of MHD Oldroyd-B fluid. Int J Numer Meth Heat Fluid Flow 24(2):390–401MathSciNetCrossRefMATH Abbasbandy S, Hayat T, Alsaedi A, Rashidi MM (2014) Numerical and analytical solutions for Falkner–Skan flow of MHD Oldroyd-B fluid. Int J Numer Meth Heat Fluid Flow 24(2):390–401MathSciNetCrossRefMATH
28.
Zurück zum Zitat Khan WA, Pop I (2013) Boundary layer flow past a wedge moving in a nanofluid. Mathematical Problems in Engineering, Article ID 637285 Khan WA, Pop I (2013) Boundary layer flow past a wedge moving in a nanofluid. Mathematical Problems in Engineering, Article ID 637285
29.
Zurück zum Zitat Rashidi MM, Vishnu Ganesh N, Abdul Hakeem AK, Ganga B (2014) Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J Mol Liq 198:234–238CrossRef Rashidi MM, Vishnu Ganesh N, Abdul Hakeem AK, Ganga B (2014) Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J Mol Liq 198:234–238CrossRef
30.
Zurück zum Zitat Haq RU, Nadeem S, Khan ZH, Akbar NS (2015) Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Physica E 65:17–23CrossRef Haq RU, Nadeem S, Khan ZH, Akbar NS (2015) Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Physica E 65:17–23CrossRef
Metadaten
Titel
Nonlinear radiation effects on MHD flow of nanofluid over a nonlinearly stretching/shrinking wedge
verfasst von
Umar Khan
Naveed Ahmed
Syed Tauseef Mohyud-Din
Bandar Bin-Mohsin
Publikationsdatum
14.01.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 8/2017
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2187-x

Weitere Artikel der Ausgabe 8/2017

Neural Computing and Applications 8/2017 Zur Ausgabe