Skip to main content

2019 | OriginalPaper | Buchkapitel

Nonlinear Wave Interaction in Coastal and Open Seas: Deterministic and Stochastic Theory

verfasst von : Raphael Stuhlmeier, Teodor Vrecica, Yaron Toledo

Erschienen in: Nonlinear Water Waves

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We review the theory of wave interaction in finite and infinite depth. Both of these strands of water-wave research begin with the deterministic governing equations for water waves, from which simplified equations can be derived to model situations of interest, such as the mild slope and modified mild slope equations, the Zakharov equation, or the nonlinear Schrödinger equation. These deterministic equations yield accompanying stochastic equations for averaged quantities of the sea-state, like the spectrum or bispectrum. We discuss several of these in depth, touching on recent results about the stability of open ocean spectra to inhomogeneous disturbances, as well as new stochastic equations for the nearshore.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
However, the ω i satisfy the dispersion relation of the NLS rather than the linear deep-water dispersion relation in (3.3).
 
2
“Over 2000 wave spectra were measured; about […] 121 corresponded to “ideal” stationary and homogeneous wind conditions.” p. 10.
 
Literatur
1.
Zurück zum Zitat T.A. Adcock, P.H. Taylor, The physics of anomalous (‘rogue’) ocean waves. Rep. Prog. Phys. 77, 105901 (2014)CrossRef T.A. Adcock, P.H. Taylor, The physics of anomalous (‘rogue’) ocean waves. Rep. Prog. Phys. 77, 105901 (2014)CrossRef
2.
Zurück zum Zitat Y. Agnon, A. Sheremet, Stochastic nonlinear shoaling of directional spectra. J. Fluid Mech. 345, 79–99 (1997)MATHCrossRef Y. Agnon, A. Sheremet, Stochastic nonlinear shoaling of directional spectra. J. Fluid Mech. 345, 79–99 (1997)MATHCrossRef
3.
Zurück zum Zitat Y. Agnon, A. Sheremet, Stochastic evolution models for nonlinear gravity waves over uneven topography. Adv. Coast. Ocean Eng. 6, 103–133 (2000)CrossRef Y. Agnon, A. Sheremet, Stochastic evolution models for nonlinear gravity waves over uneven topography. Adv. Coast. Ocean Eng. 6, 103–133 (2000)CrossRef
4.
Zurück zum Zitat Y. Agnon, A. Sheremet, J. Gonsalves, M. Stiassnie, A unidirectional model for shoaling gravity waves. Coast. Eng. 20, 29–58 (1993)CrossRef Y. Agnon, A. Sheremet, J. Gonsalves, M. Stiassnie, A unidirectional model for shoaling gravity waves. Coast. Eng. 20, 29–58 (1993)CrossRef
5.
Zurück zum Zitat I.E. Alber, The effects of randomness on the stability of two-dimensional surface wavetrains. Proc. Roy. Soc. A 363, 525–546 (1978)MathSciNetMATHCrossRef I.E. Alber, The effects of randomness on the stability of two-dimensional surface wavetrains. Proc. Roy. Soc. A 363, 525–546 (1978)MathSciNetMATHCrossRef
6.
Zurück zum Zitat D. Andrade, R. Stuhlmeier, M. Stiassnie, On the generalized kinetic equation for surface gravity waves, blow-up and its restraint. Fluids 4, 2 (2019)CrossRef D. Andrade, R. Stuhlmeier, M. Stiassnie, On the generalized kinetic equation for surface gravity waves, blow-up and its restraint. Fluids 4, 2 (2019)CrossRef
7.
Zurück zum Zitat S.Y. Annenkov, V.I. Shrira, Role of non-resonant interactions in the evolution of nonlinear random water wave fields. J. Fluid Mech. 561, 181–207 (2006)MathSciNetMATHCrossRef S.Y. Annenkov, V.I. Shrira, Role of non-resonant interactions in the evolution of nonlinear random water wave fields. J. Fluid Mech. 561, 181–207 (2006)MathSciNetMATHCrossRef
8.
Zurück zum Zitat S.Y. Annenkov, V.I. Shrira, Spectral evolution of weakly nonlinear random waves: kinetic description versus direct numerical simulations. J. Fluid Mech. 844, 766–795 (2018)MathSciNetMATHCrossRef S.Y. Annenkov, V.I. Shrira, Spectral evolution of weakly nonlinear random waves: kinetic description versus direct numerical simulations. J. Fluid Mech. 844, 766–795 (2018)MathSciNetMATHCrossRef
9.
Zurück zum Zitat A.G. Athanassoulis, G.A. Athanassoulis, M. Ptashnyk, T. Sapsis, Landau damping for the Alber equation and observability of unidirectional wave spectra. Preprint. arXiv:1808.05191 A.G. Athanassoulis, G.A. Athanassoulis, M. Ptashnyk, T. Sapsis, Landau damping for the Alber equation and observability of unidirectional wave spectra. Preprint. arXiv:1808.05191
10.
Zurück zum Zitat J.A. Battjes, J.P.F.M. Janssen, Energy loss and set-up due to breaking of random waves, in Proceedings of the 16th International Conference of Coastal Engineering (ASCE), vol. 1 (1978), pp. 569–587 J.A. Battjes, J.P.F.M. Janssen, Energy loss and set-up due to breaking of random waves, in Proceedings of the 16th International Conference of Coastal Engineering (ASCE), vol. 1 (1978), pp. 569–587
11.
Zurück zum Zitat F. Becq-Girard, P. Forget, M. Benoit, Non-linear propagation of unidirectional wave fields over varying topography. Coast. Eng. 38, 91–113 (1999)CrossRef F. Becq-Girard, P. Forget, M. Benoit, Non-linear propagation of unidirectional wave fields over varying topography. Coast. Eng. 38, 91–113 (1999)CrossRef
12.
Zurück zum Zitat D.J. Benney, P.G. Saffman, Nonlinear interactions of random waves. Proc. Roy. Soc. London – A 289, 301–321 (1966)CrossRef D.J. Benney, P.G. Saffman, Nonlinear interactions of random waves. Proc. Roy. Soc. London – A 289, 301–321 (1966)CrossRef
13.
Zurück zum Zitat H. Bredmose, Y. Agnon, P.A. Madsen, H.A. Schaffer, Wave transformation models with exact second-order transfer. Eur. J. Mech. B. Fluids 24(6), 659–682 (2005)MathSciNetMATHCrossRef H. Bredmose, Y. Agnon, P.A. Madsen, H.A. Schaffer, Wave transformation models with exact second-order transfer. Eur. J. Mech. B. Fluids 24(6), 659–682 (2005)MathSciNetMATHCrossRef
15.
Zurück zum Zitat D.R. Crawford, P.G. Saffman, H.C. Yuen, Evolution of a random inhomogeneous field of nonlinear deep-water gravity waves. Wave Motion 2(1), 1–16 (1980)MathSciNetMATHCrossRef D.R. Crawford, P.G. Saffman, H.C. Yuen, Evolution of a random inhomogeneous field of nonlinear deep-water gravity waves. Wave Motion 2(1), 1–16 (1980)MathSciNetMATHCrossRef
16.
17.
Zurück zum Zitat K. Dysthe, K. Trulsen, H.E. Krogstad, H. Socquet-Juglard, Evolution of a narrow-band spectrum of random surface gravity waves. J. Fluid Mech. 478, 1–10 (2003)MathSciNetMATHCrossRef K. Dysthe, K. Trulsen, H.E. Krogstad, H. Socquet-Juglard, Evolution of a narrow-band spectrum of random surface gravity waves. J. Fluid Mech. 478, 1–10 (2003)MathSciNetMATHCrossRef
18.
Zurück zum Zitat Y. Eldeberky, J.A. Battjes, Parameterization of triad interactions in wave energy models, in Coastal Dynamics‘95, ed. by W.R. Dally, R.B. Zeidler (ASCE, Reston, 1995), pp. 140–148 Y. Eldeberky, J.A. Battjes, Parameterization of triad interactions in wave energy models, in Coastal Dynamics‘95, ed. by W.R. Dally, R.B. Zeidler (ASCE, Reston, 1995), pp. 140–148
19.
Zurück zum Zitat Y. Eldeberky, J.A. Battjes, Spectral modelling of wave breaking: application to Boussinesq equations. J. Geophys. Res. 101, 1253–1264 (1996)CrossRef Y. Eldeberky, J.A. Battjes, Spectral modelling of wave breaking: application to Boussinesq equations. J. Geophys. Res. 101, 1253–1264 (1996)CrossRef
20.
Zurück zum Zitat Y. Eldeberky, P.A. Madsen, Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves. Coast. Eng. 38, 1–24 (1999)CrossRef Y. Eldeberky, P.A. Madsen, Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves. Coast. Eng. 38, 1–24 (1999)CrossRef
21.
Zurück zum Zitat S. Elgar, R.T. Guza, Observations of bispectra of shoaling of surface gravity waves. J. Fluid Mech. 161, 425–448 (1985)MATHCrossRef S. Elgar, R.T. Guza, Observations of bispectra of shoaling of surface gravity waves. J. Fluid Mech. 161, 425–448 (1985)MATHCrossRef
22.
Zurück zum Zitat M.H. Freilich, R.T. Guza, S.L. Elgar, Observations of nonlinear effects in directional spectra of shoaling gravity waves. J. Geophys. Res. Oceans 95, 9645–9656 (1990)CrossRef M.H. Freilich, R.T. Guza, S.L. Elgar, Observations of nonlinear effects in directional spectra of shoaling gravity waves. J. Geophys. Res. Oceans 95, 9645–9656 (1990)CrossRef
23.
Zurück zum Zitat O. Gramstad, Modulational instability in JONSWAP sea states using the alber equation, in 36th International Conference on Ocean, Offshore and Arctic Engineering, V07BT06A051 (ASME, New York, 2017) O. Gramstad, Modulational instability in JONSWAP sea states using the alber equation, in 36th International Conference on Ocean, Offshore and Arctic Engineering, V07BT06A051 (ASME, New York, 2017)
24.
26.
Zurück zum Zitat O. Gramstad, Y. Agnon, M. Stiassnie, The localized Zakharov equation: derivation and validation. Eur. J. Mech. B. Fluids 30, 137–146 (2011)MathSciNetMATHCrossRef O. Gramstad, Y. Agnon, M. Stiassnie, The localized Zakharov equation: derivation and validation. Eur. J. Mech. B. Fluids 30, 137–146 (2011)MathSciNetMATHCrossRef
27.
Zurück zum Zitat K. Hasselmann, On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory. J. Fluid Mech. 12, 481–500 (1962)MathSciNetMATHCrossRef K. Hasselmann, On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory. J. Fluid Mech. 12, 481–500 (1962)MathSciNetMATHCrossRef
28.
Zurück zum Zitat K. Hasselmann, W. Munk, G. MacDonald, M. Rosenblatt, Time series analysis, in Bispectra of Ocean Waves (1963), pp. 125–139 K. Hasselmann, W. Munk, G. MacDonald, M. Rosenblatt, Time series analysis, in Bispectra of Ocean Waves (1963), pp. 125–139
29.
Zurück zum Zitat K. Hasselmann, T.P. Barnett, E. Bouws, H. Carlson, D.E. Cartwright, K. Enke, J.A. Ewing, H. Gienapp, D.E. Hasselmann, P. Kruseman, A. Meerburg, P. Müller, D.J. Olbers, K. Richter, W. Sell, H. Walden, Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Technical report, Deutsches Hydrographisches Institut, Hamburg (1973) K. Hasselmann, T.P. Barnett, E. Bouws, H. Carlson, D.E. Cartwright, K. Enke, J.A. Ewing, H. Gienapp, D.E. Hasselmann, P. Kruseman, A. Meerburg, P. Müller, D.J. Olbers, K. Richter, W. Sell, H. Walden, Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Technical report, Deutsches Hydrographisches Institut, Hamburg (1973)
30.
Zurück zum Zitat G. Holloway, Oceanic internal waves are not weak waves. J. Phys. Oceanog. 10, 906–914 (1980)CrossRef G. Holloway, Oceanic internal waves are not weak waves. J. Phys. Oceanog. 10, 906–914 (1980)CrossRef
31.
Zurück zum Zitat L. Holthuijsen, Waves in Oceanic and Coastal Waters (Cambridge University Press, Cambridge, 2008) L. Holthuijsen, Waves in Oceanic and Coastal Waters (Cambridge University Press, Cambridge, 2008)
32.
33.
Zurück zum Zitat P.A.E.M. Janssen, The Interaction of Ocean Waves and Wind (Cambridge University Press, Cambridge, 2004)CrossRef P.A.E.M. Janssen, The Interaction of Ocean Waves and Wind (Cambridge University Press, Cambridge, 2004)CrossRef
34.
Zurück zum Zitat T. Janssen, Nonlinear surface waves over topography. Ph.D. Thesis, University of Delft (2006) T. Janssen, Nonlinear surface waves over topography. Ph.D. Thesis, University of Delft (2006)
35.
Zurück zum Zitat P.A.E.M. Janssen, M. Onorato, The intermediate water depth limit of the Zakharov equation and consequences for wave prediction. J. Phys. Oceanog. 37, 2389–2400 (2007)CrossRef P.A.E.M. Janssen, M. Onorato, The intermediate water depth limit of the Zakharov equation and consequences for wave prediction. J. Phys. Oceanog. 37, 2389–2400 (2007)CrossRef
36.
Zurück zum Zitat T.T. Janssen, T.H.C. Herbers, J.A. Battjes, Generalized evolution equations for nonlinear surface gravity waves over two-dimensional topography. J. Fluid Mech. 552, 393–418 (2006)MathSciNetMATHCrossRef T.T. Janssen, T.H.C. Herbers, J.A. Battjes, Generalized evolution equations for nonlinear surface gravity waves over two-dimensional topography. J. Fluid Mech. 552, 393–418 (2006)MathSciNetMATHCrossRef
37.
Zurück zum Zitat R.S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves (Cambridge University Press, Cambridge, 1997)MATHCrossRef R.S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves (Cambridge University Press, Cambridge, 1997)MATHCrossRef
38.
Zurück zum Zitat J.M. Kaihatu, J.T. Kirby, Nonlinear transformation of waves in finite water depth. Phys. Fluids 8, 175–188 (1995)MathSciNetMATH J.M. Kaihatu, J.T. Kirby, Nonlinear transformation of waves in finite water depth. Phys. Fluids 8, 175–188 (1995)MathSciNetMATH
39.
Zurück zum Zitat Y.C. Kim, E.J. Powers, Digital bispectral analysis and its applications to nonlinear wave interactions. IEEE Trans. Plasma Sci. 7, 120–131 (1979)CrossRef Y.C. Kim, E.J. Powers, Digital bispectral analysis and its applications to nonlinear wave interactions. IEEE Trans. Plasma Sci. 7, 120–131 (1979)CrossRef
40.
Zurück zum Zitat B. Kinsman, Wind Waves (Dover, New York, 1984) B. Kinsman, Wind Waves (Dover, New York, 1984)
41.
Zurück zum Zitat H. Kofoed-Hansen, J.H. Rasmussen, Modeling of nonlinear shoaling based on stochastic evolution equations. Coast. Eng. 33, 203–232 (1998)CrossRef H. Kofoed-Hansen, J.H. Rasmussen, Modeling of nonlinear shoaling based on stochastic evolution equations. Coast. Eng. 33, 203–232 (1998)CrossRef
42.
Zurück zum Zitat V.P. Krasitskii, On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves. J. Fluid Mech. 272, 1–20 (1994)MathSciNetMATHCrossRef V.P. Krasitskii, On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves. J. Fluid Mech. 272, 1–20 (1994)MathSciNetMATHCrossRef
43.
44.
Zurück zum Zitat M.S. Longuet-Higgins, On the nonlinear transfer of energy in the peak of a gravity-wave spectrum: a simplified model. Proc. R. Soc. A 347, 311–328 (1976)MATHCrossRef M.S. Longuet-Higgins, On the nonlinear transfer of energy in the peak of a gravity-wave spectrum: a simplified model. Proc. R. Soc. A 347, 311–328 (1976)MATHCrossRef
45.
Zurück zum Zitat M.S. Longuet-Higgins, O. M. Phillips, Phase velocity effects in tertiary wave interactions. J. Fluid Mech. 12, 333–336 (1962)MathSciNetMATHCrossRef M.S. Longuet-Higgins, O. M. Phillips, Phase velocity effects in tertiary wave interactions. J. Fluid Mech. 12, 333–336 (1962)MathSciNetMATHCrossRef
46.
Zurück zum Zitat P.A. Madsen, D.R. Fuhrman, B. Wang, A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry. Coast. Eng. 53, 487–504 (2006)CrossRef P.A. Madsen, D.R. Fuhrman, B. Wang, A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry. Coast. Eng. 53, 487–504 (2006)CrossRef
47.
Zurück zum Zitat H. Mase, J.T. Kirby, Hybrid frequency-domain KdV equation for random wave transformation, in Coastal Engineering 1992: Proceedings of the 23rd International Conference (1992) H. Mase, J.T. Kirby, Hybrid frequency-domain KdV equation for random wave transformation, in Coastal Engineering 1992: Proceedings of the 23rd International Conference (1992)
48.
Zurück zum Zitat C.C. Mei, M. Stiassnie, D.K.-P. Yue, Theory and Applications of Ocean Surface Waves (World Scientific Publishing Co., Singapore, 2005)MATH C.C. Mei, M. Stiassnie, D.K.-P. Yue, Theory and Applications of Ocean Surface Waves (World Scientific Publishing Co., Singapore, 2005)MATH
49.
50.
Zurück zum Zitat A.C. Newell, P.J. Aucoin, Semidispersive wave systems. J. Fluid Mech. 49, 593–609 (1971)MATHCrossRef A.C. Newell, P.J. Aucoin, Semidispersive wave systems. J. Fluid Mech. 49, 593–609 (1971)MATHCrossRef
52.
Zurück zum Zitat M. Onorato, A. Osborne, R. Fedele, M. Serio, Landau damping and coherent structures in narrow-banded 1 + 1 deep water gravity waves. Phys. Rev. E 67, 46305 (2003)CrossRef M. Onorato, A. Osborne, R. Fedele, M. Serio, Landau damping and coherent structures in narrow-banded 1 + 1 deep water gravity waves. Phys. Rev. E 67, 46305 (2003)CrossRef
53.
Zurück zum Zitat A. Papoulis, S.U. Pillai, Probability, Random Variables, and Stochastic Processes, 4th edn. (McGraw-Hill, New York, 2002) A. Papoulis, S.U. Pillai, Probability, Random Variables, and Stochastic Processes, 4th edn. (McGraw-Hill, New York, 2002)
54.
Zurück zum Zitat O.M. Phillips, On the dynamics of unsteady gravity waves of finite amplitude Part 1. The elementary interactions. J. Fluid Mech. 9, 193 (1960)MATHCrossRef O.M. Phillips, On the dynamics of unsteady gravity waves of finite amplitude Part 1. The elementary interactions. J. Fluid Mech. 9, 193 (1960)MATHCrossRef
57.
58.
Zurück zum Zitat A. Ribal, A.V. Babanin, I. Young, A. Toffoli, M. Stiassnie, Recurrent solutions of the Alber equation initialized by Joint North Sea Wave Project spectra. J. Fluid Mech. 719, 314–344 (2013)MathSciNetMATHCrossRef A. Ribal, A.V. Babanin, I. Young, A. Toffoli, M. Stiassnie, Recurrent solutions of the Alber equation initialized by Joint North Sea Wave Project spectra. J. Fluid Mech. 719, 314–344 (2013)MathSciNetMATHCrossRef
59.
Zurück zum Zitat J. Salmon, P. Smit, T. Janssen, L. Holthuijsen, A consistent collinear triad approximation for operational wave models. Ocean Model. 104, 203–212 (2016)CrossRef J. Salmon, P. Smit, T. Janssen, L. Holthuijsen, A consistent collinear triad approximation for operational wave models. Ocean Model. 104, 203–212 (2016)CrossRef
60.
Zurück zum Zitat L. Shemer, A. Chernyshova, Spatial evolution of an initially narrow-banded wave train. J. Ocean Eng. Mar. Energy 3, 333–351 (2017)CrossRef L. Shemer, A. Chernyshova, Spatial evolution of an initially narrow-banded wave train. J. Ocean Eng. Mar. Energy 3, 333–351 (2017)CrossRef
61.
Zurück zum Zitat P.B. Smit, T.T. Janssen, The evolution of nonlinear wave statistics through a variable medium. J. Phys. Oceanog. 46, 621–634 (2016)CrossRef P.B. Smit, T.T. Janssen, The evolution of nonlinear wave statistics through a variable medium. J. Phys. Oceanog. 46, 621–634 (2016)CrossRef
62.
Zurück zum Zitat M. Stiassnie, N. Drimer, Prediction of long forcing waves for harbor agitation studies. J. Waterw. Port Coast. Ocean Eng. 132(3), 166–171 (2006)CrossRef M. Stiassnie, N. Drimer, Prediction of long forcing waves for harbor agitation studies. J. Waterw. Port Coast. Ocean Eng. 132(3), 166–171 (2006)CrossRef
63.
Zurück zum Zitat M. Stiassnie, O. Gramstad, On Zakharov’s kernel and the interaction of non-collinear wavetrains in finite water depth. J. Fluid Mech. 639, 433–442 (2009)MathSciNetMATHCrossRef M. Stiassnie, O. Gramstad, On Zakharov’s kernel and the interaction of non-collinear wavetrains in finite water depth. J. Fluid Mech. 639, 433–442 (2009)MathSciNetMATHCrossRef
64.
Zurück zum Zitat M. Stiassnie, L. Shemer, On modification of the Zakharov equation for surface gravity waves. J. Fluid Mech. 143, 47–67 (1984)MathSciNetMATHCrossRef M. Stiassnie, L. Shemer, On modification of the Zakharov equation for surface gravity waves. J. Fluid Mech. 143, 47–67 (1984)MathSciNetMATHCrossRef
66.
Zurück zum Zitat M. Stiassnie, A. Regev, Y. Agnon, Recurrent solutions of Alber’s equation for random water-wave fields. J. Fluid Mech. 598, 245–266 (2008)MathSciNetMATHCrossRef M. Stiassnie, A. Regev, Y. Agnon, Recurrent solutions of Alber’s equation for random water-wave fields. J. Fluid Mech. 598, 245–266 (2008)MathSciNetMATHCrossRef
67.
Zurück zum Zitat R. Stuhlmeier, M. Stiassnie, Evolution of statistically inhomogeneous degenerate water wave quartets. Philos. Trans. R. Soc. A 376, 20170101 (2018)MathSciNetMATHCrossRef R. Stuhlmeier, M. Stiassnie, Evolution of statistically inhomogeneous degenerate water wave quartets. Philos. Trans. R. Soc. A 376, 20170101 (2018)MathSciNetMATHCrossRef
69.
Zurück zum Zitat M. Tanaka, On the role of resonant interactions in the short-term evolution of deep-water ocean spectra. J. Phys. Oceanog. 37, 1022–1036 (2007)CrossRef M. Tanaka, On the role of resonant interactions in the short-term evolution of deep-water ocean spectra. J. Phys. Oceanog. 37, 1022–1036 (2007)CrossRef
70.
Zurück zum Zitat L.J. Tick, A non-linear random model of gravity waves I. J. Math. Mech. 8, 643–651 (1959)MathSciNet L.J. Tick, A non-linear random model of gravity waves I. J. Math. Mech. 8, 643–651 (1959)MathSciNet
71.
Zurück zum Zitat Y. Toledo, Y. Agnon, Stochastic evolution equations with localized nonlinear shoaling coefficients. Eur. J. Mech. B. Fluids 34, 13–18 (2012)MathSciNetMATHCrossRef Y. Toledo, Y. Agnon, Stochastic evolution equations with localized nonlinear shoaling coefficients. Eur. J. Mech. B. Fluids 34, 13–18 (2012)MathSciNetMATHCrossRef
72.
Zurück zum Zitat K. Trulsen, Weakly nonlinear and stochastic properties of ocean wave fields: application to an extreme wave event, in Waves in Geophysical Fluids, CISM International Centre for Mechanical Sciences, vol. 489 (Springer, Vienna, 2006), pp. 49–106MATH K. Trulsen, Weakly nonlinear and stochastic properties of ocean wave fields: application to an extreme wave event, in Waves in Geophysical Fluids, CISM International Centre for Mechanical Sciences, vol. 489 (Springer, Vienna, 2006), pp. 49–106MATH
73.
Zurück zum Zitat T. Vrecica, Y. Toledo, Consistent nonlinear stochastic evolution equations for deep to shallow water wave shoaling. J. Fluid Mech. 794, 310–342 (2016)MathSciNetMATHCrossRef T. Vrecica, Y. Toledo, Consistent nonlinear stochastic evolution equations for deep to shallow water wave shoaling. J. Fluid Mech. 794, 310–342 (2016)MathSciNetMATHCrossRef
74.
Zurück zum Zitat G.B. Whitham, Linear and Nonlinear Waves (John Wiley & Sons, Hoboken, 1974)MATH G.B. Whitham, Linear and Nonlinear Waves (John Wiley & Sons, Hoboken, 1974)MATH
75.
Zurück zum Zitat Y. Yevnin, Y. Toledo, Reflection source term for the wave action equation. Ocean Model. 127, 40–45 (2018)CrossRef Y. Yevnin, Y. Toledo, Reflection source term for the wave action equation. Ocean Model. 127, 40–45 (2018)CrossRef
76.
Zurück zum Zitat H.C. Yuen, B.M. Lake, Nonlinear dynamics of deep-water gravity waves, in Advances in Applied Mechanics (Academic Press, Cambridge, 1982), pp. 68–229 H.C. Yuen, B.M. Lake, Nonlinear dynamics of deep-water gravity waves, in Advances in Applied Mechanics (Academic Press, Cambridge, 1982), pp. 68–229
77.
Zurück zum Zitat V. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190–194 (1968)CrossRef V. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190–194 (1968)CrossRef
78.
Zurück zum Zitat V.E. Zakharov, Inverse and direct cascade in a wind-driven surface wave turbulence and wave-breaking, in IUTAM Symposium, Sydney, ed. by M.L. Banner, R.H.J. Grimshaw (Springer, Berlin, 1992), pp. 69–91 V.E. Zakharov, Inverse and direct cascade in a wind-driven surface wave turbulence and wave-breaking, in IUTAM Symposium, Sydney, ed. by M.L. Banner, R.H.J. Grimshaw (Springer, Berlin, 1992), pp. 69–91
79.
Zurück zum Zitat V.E. Zakharov, V.S. L’vov, G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, Berlin, 1992)MATHCrossRef V.E. Zakharov, V.S. L’vov, G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, Berlin, 1992)MATHCrossRef
80.
Zurück zum Zitat M. Zijlema, G. Stelling, P.B. Smit, SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coast. Eng. 58, 992–1012 (2012)CrossRef M. Zijlema, G. Stelling, P.B. Smit, SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coast. Eng. 58, 992–1012 (2012)CrossRef
Metadaten
Titel
Nonlinear Wave Interaction in Coastal and Open Seas: Deterministic and Stochastic Theory
verfasst von
Raphael Stuhlmeier
Teodor Vrecica
Yaron Toledo
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-33536-6_10

Premium Partner