Skip to main content
Erschienen in: Meccanica 6/2015

01.06.2015

Nonlocal effects on the longitudinal vibration of a complex multi-nanorod system subjected to the transverse magnetic field

verfasst von: Danilo Karličić, Milan Cajić, Tony Murmu, Predrag Kozić, Sondipon Adhikari

Erschienen in: Meccanica | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this communication we examine the free longitudinal vibration of a complex multi-nanorod system (CMNRS) using the nonlocal elasticity theory. Discussion is limited to the cases of two types of boundary conditions, namely, clamped–clamped (C–C) and clamped–free (C–F), where nanorods are coupled in the “Free-Chain” system by an elastic medium. Each nanorod in CMNRS is subjected to the influence of transversal magnetic field. The longitudinal vibration of the system are described by a set of m partial differential equations, derived by using D’Alembert’s principle and classical Maxwell’s relation, which includes Lorentz magnetic force. Analytical expressions for the nonlocal natural frequencies are obtained in closed-form by using the method of separations of variables and trigonometric method. Results for the nonlocal natural frequencies are compared for the special cases of a single and double-nanorod system with the existing results in the literature. Numerical examples are given in order to examine the effects of nonlocal parameter, stiffness coefficient and transversal magnetic field on nonlocal natural frequencies of axially vibrating CMNRS.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Payton OD, Picco L, Miles MJ, Homer ME, Champneys AR (2012) Modeling oscillatory flexure modes of an atomic force microscope cantilever in contact mode whilst imaging at high speed. Nanotechnology 23(265702):1–7 Payton OD, Picco L, Miles MJ, Homer ME, Champneys AR (2012) Modeling oscillatory flexure modes of an atomic force microscope cantilever in contact mode whilst imaging at high speed. Nanotechnology 23(265702):1–7
2.
Zurück zum Zitat Adhikari S, Chowdhury R (2012) Zeptogram sensing from gigahertz vibration: graphene based nanosensor. Physica E 44:1528–1534CrossRefADS Adhikari S, Chowdhury R (2012) Zeptogram sensing from gigahertz vibration: graphene based nanosensor. Physica E 44:1528–1534CrossRefADS
3.
Zurück zum Zitat Calleja M, Kosaka PM, San Paulo A, Tamayo J (2012) Challenges for nanomechanical sensors in biological detection. Nanoscale 4:4925–4938CrossRefADS Calleja M, Kosaka PM, San Paulo A, Tamayo J (2012) Challenges for nanomechanical sensors in biological detection. Nanoscale 4:4925–4938CrossRefADS
4.
Zurück zum Zitat Menicke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H (2004) Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45(3):739–748CrossRef Menicke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H (2004) Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45(3):739–748CrossRef
5.
Zurück zum Zitat Che JW, Cagin T, Goddard WA (2000) Thermal conductivity of carbon nanotubes. Nanotechnology 11:65–69CrossRefADS Che JW, Cagin T, Goddard WA (2000) Thermal conductivity of carbon nanotubes. Nanotechnology 11:65–69CrossRefADS
6.
Zurück zum Zitat Lin Q, Rosenberg J, Chang D, Camacho R, Eichenfield M, Vahala KJ, Painter O (2010) Coherent mixing of mechanical excitations in nano-optomechanical structures. Nat Photonics 4(4):236–242CrossRefADS Lin Q, Rosenberg J, Chang D, Camacho R, Eichenfield M, Vahala KJ, Painter O (2010) Coherent mixing of mechanical excitations in nano-optomechanical structures. Nat Photonics 4(4):236–242CrossRefADS
7.
Zurück zum Zitat Arash B, Wang Q (2012) A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput Mater Sci 51:303–313CrossRef Arash B, Wang Q (2012) A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput Mater Sci 51:303–313CrossRef
8.
Zurück zum Zitat Roque CMC, Fidalgo DS, Ferreira AJM, Reddy JN (2013) A study of a microstructure-dependent composite laminated Timoshenko beam using modified couple stress theory and a meshless method. Compos Struct 96:532–537CrossRef Roque CMC, Fidalgo DS, Ferreira AJM, Reddy JN (2013) A study of a microstructure-dependent composite laminated Timoshenko beam using modified couple stress theory and a meshless method. Compos Struct 96:532–537CrossRef
9.
Zurück zum Zitat Aifantis EC (2011) On the gradient approach–relation to Eringen’s nonlocal theory. Int J Eng Sci 49:1367–1377CrossRefMathSciNet Aifantis EC (2011) On the gradient approach–relation to Eringen’s nonlocal theory. Int J Eng Sci 49:1367–1377CrossRefMathSciNet
10.
Zurück zum Zitat Reddy JN (2010) Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int J Eng Sci 48:1507–1518CrossRefMATH Reddy JN (2010) Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int J Eng Sci 48:1507–1518CrossRefMATH
12.
Zurück zum Zitat Pradhan SC, Phadikar JK (2009) Nonlocal elasticity theory for vibration of nanoplates. J Sound Vib 325:206–223CrossRefADS Pradhan SC, Phadikar JK (2009) Nonlocal elasticity theory for vibration of nanoplates. J Sound Vib 325:206–223CrossRefADS
13.
Zurück zum Zitat Lei Y, Adhikari S, Frishwell MI (2013) Vibration of nonlocal Kelvin–Voigt viscoelastic damped Timoshenko beams. Int J Eng Sci 66–67:1–13CrossRef Lei Y, Adhikari S, Frishwell MI (2013) Vibration of nonlocal Kelvin–Voigt viscoelastic damped Timoshenko beams. Int J Eng Sci 66–67:1–13CrossRef
14.
Zurück zum Zitat Narendar S, Gopalakrishnan S (2012) Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory. Acta Mech 223:395–413CrossRefMATHMathSciNet Narendar S, Gopalakrishnan S (2012) Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory. Acta Mech 223:395–413CrossRefMATHMathSciNet
15.
Zurück zum Zitat Hosseini-Hashemi S, Nahas I, Fakher M, Nazemnezhad R (2014) Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity. Acta Mech 225(6):1555–1564 Hosseini-Hashemi S, Nahas I, Fakher M, Nazemnezhad R (2014) Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity. Acta Mech 225(6):1555–1564
16.
Zurück zum Zitat Kozić P, Pavlović R, Karličić D (2014) The flexural vibration and buckling of the elastically connected parallel-beams with a Kerr-type layer in between. Mech Res Commun 56:83–89CrossRef Kozić P, Pavlović R, Karličić D (2014) The flexural vibration and buckling of the elastically connected parallel-beams with a Kerr-type layer in between. Mech Res Commun 56:83–89CrossRef
17.
Zurück zum Zitat Ansari R, Rajabiehfard R, Arash B (2010) Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets. Comput Mater Sci 49(4):831–838CrossRef Ansari R, Rajabiehfard R, Arash B (2010) Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets. Comput Mater Sci 49(4):831–838CrossRef
18.
Zurück zum Zitat Manevich A, Kolakowski Z (2011) Free and forced oscillations of Timoshenko beam made of viscoelastic material. J Theor Appl Mech 49:3–16 Manevich A, Kolakowski Z (2011) Free and forced oscillations of Timoshenko beam made of viscoelastic material. J Theor Appl Mech 49:3–16
19.
Zurück zum Zitat Oniszczuk Z (2011) Free transverse vibrations of an elastically connected complex beam-string system. J Theor Appl Mech 49:3–16 Oniszczuk Z (2011) Free transverse vibrations of an elastically connected complex beam-string system. J Theor Appl Mech 49:3–16
20.
Zurück zum Zitat Oniszczuk Z (2003) Forced transverse vibrations of an elastically connected complex double-beam system. J Sound Vib 264:273–286CrossRefADS Oniszczuk Z (2003) Forced transverse vibrations of an elastically connected complex double-beam system. J Sound Vib 264:273–286CrossRefADS
21.
Zurück zum Zitat Kelly SG, Srinivas S (2009) Free vibrations of elastically connected stretched beams. J Sound Vib 326:883–893CrossRefADS Kelly SG, Srinivas S (2009) Free vibrations of elastically connected stretched beams. J Sound Vib 326:883–893CrossRefADS
24.
Zurück zum Zitat Stojanović V, Kozić P, Janevski G (2013) Exact closed-form solutions for the natural frequencies and stability of elastically connected multiple beam system using Timoshenko and high-order shear deformation theory. J Sound Vib 332:563–576CrossRefADS Stojanović V, Kozić P, Janevski G (2013) Exact closed-form solutions for the natural frequencies and stability of elastically connected multiple beam system using Timoshenko and high-order shear deformation theory. J Sound Vib 332:563–576CrossRefADS
25.
Zurück zum Zitat Karličić D, Kozić P, Pavlović R (2014) Free transverse vibration of nonlocal viscoelastic orthotropic multi-nanoplate system (MNPS) embedded in a viscoelastic medium. Compos Struct 115:89–99CrossRef Karličić D, Kozić P, Pavlović R (2014) Free transverse vibration of nonlocal viscoelastic orthotropic multi-nanoplate system (MNPS) embedded in a viscoelastic medium. Compos Struct 115:89–99CrossRef
26.
Zurück zum Zitat Karličić D, Adhikari S, Murmu T, Cajić M (2014) Exact closed-form solution for non-local vibration and biaxial buckling of bonded multi-nanoplate system. Compos B Eng 66:328–339CrossRef Karličić D, Adhikari S, Murmu T, Cajić M (2014) Exact closed-form solution for non-local vibration and biaxial buckling of bonded multi-nanoplate system. Compos B Eng 66:328–339CrossRef
27.
Zurück zum Zitat Rossikhin YA, Shitikova MV (2010) Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl Mech Rev 63(010801):1–52 Rossikhin YA, Shitikova MV (2010) Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl Mech Rev 63(010801):1–52
28.
Zurück zum Zitat Lao JY, Wen JG, Ren ZF (2012) Hierarchical ZnO nanostructures. Nano Lett 2(11):1287–1291CrossRefADS Lao JY, Wen JG, Ren ZF (2012) Hierarchical ZnO nanostructures. Nano Lett 2(11):1287–1291CrossRefADS
29.
Zurück zum Zitat Xing YJ, Xi ZH, Xue ZQ, Zhang XD, Song JH, Wang RM, Xu J, Song Y, Zhang SL, Yu DP (2003) Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl Phys Lett 83(9):1689–1691CrossRefADS Xing YJ, Xi ZH, Xue ZQ, Zhang XD, Song JH, Wang RM, Xu J, Song Y, Zhang SL, Yu DP (2003) Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl Phys Lett 83(9):1689–1691CrossRefADS
30.
Zurück zum Zitat Liu B, Zeng HC (2003) Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J Am Chem Soc 125:4430–4431CrossRef Liu B, Zeng HC (2003) Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J Am Chem Soc 125:4430–4431CrossRef
31.
Zurück zum Zitat Park WI, Kim DH, Jung S-W, Yi G-C (2002) Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl Phys Lett 80:4232–4234CrossRefADS Park WI, Kim DH, Jung S-W, Yi G-C (2002) Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl Phys Lett 80:4232–4234CrossRefADS
32.
Zurück zum Zitat Duan WH, Wang CM, Zhang YY (2007) Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J Appl Phys 101(024305):1–7 Duan WH, Wang CM, Zhang YY (2007) Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J Appl Phys 101(024305):1–7
33.
Zurück zum Zitat Arash B, Ansari R (2010) Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain. Physica E 42:2058–2064CrossRefADS Arash B, Ansari R (2010) Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain. Physica E 42:2058–2064CrossRefADS
34.
Zurück zum Zitat Danesh M, Farajpour A, Mohammadi M (2012) Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method. Mech Res Commun 39:23–27CrossRefMATH Danesh M, Farajpour A, Mohammadi M (2012) Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method. Mech Res Commun 39:23–27CrossRefMATH
35.
Zurück zum Zitat Aydogdu M (2012) Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity. Mech Res Commun 43:34–40CrossRef Aydogdu M (2012) Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity. Mech Res Commun 43:34–40CrossRef
36.
Zurück zum Zitat Narendar S, Gopalakrishnan S (2011) Axial wave propagation in coupled nanorod system with nonlocal small scale effects. Mech Res Commun Compos Part B Eng 42:2013–2023CrossRef Narendar S, Gopalakrishnan S (2011) Axial wave propagation in coupled nanorod system with nonlocal small scale effects. Mech Res Commun Compos Part B Eng 42:2013–2023CrossRef
37.
Zurück zum Zitat Hsu J-C, Lee H-L, Chang W-J (2011) Longitudinal vibration of cracked nanobeams using nonlocal elasticity theory. Curr Appl Phys 11:1384–1388CrossRefADS Hsu J-C, Lee H-L, Chang W-J (2011) Longitudinal vibration of cracked nanobeams using nonlocal elasticity theory. Curr Appl Phys 11:1384–1388CrossRefADS
38.
Zurück zum Zitat Kiani K (2013) Longitudinal, transverse, and torsional vibrations and stabilities of axially moving single-walled carbon nanotubes. Curr Appl Phys 13:1651–1660CrossRefADS Kiani K (2013) Longitudinal, transverse, and torsional vibrations and stabilities of axially moving single-walled carbon nanotubes. Curr Appl Phys 13:1651–1660CrossRefADS
39.
Zurück zum Zitat Şimşek M (2012) Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods. Comput Mater Sci 61:257–265CrossRef Şimşek M (2012) Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods. Comput Mater Sci 61:257–265CrossRef
40.
Zurück zum Zitat Huang Z (2012) Nonlocal effects of longitudinal vibration in nanorod with internal long-range interactions. Int J Solids Struct 49:2150–2154CrossRef Huang Z (2012) Nonlocal effects of longitudinal vibration in nanorod with internal long-range interactions. Int J Solids Struct 49:2150–2154CrossRef
41.
Zurück zum Zitat Chang T-P (2012) Small scale effect on axial vibration of non-uniform and non-homogeneous nanorods. Comput Mater Sci 54:23–27CrossRef Chang T-P (2012) Small scale effect on axial vibration of non-uniform and non-homogeneous nanorods. Comput Mater Sci 54:23–27CrossRef
42.
Zurück zum Zitat Filiz S, Aydogdu M (2010) Axial vibration of carbon nanotube heterojunctions using nonlocal elasticity. Comput Mater Sci 49:619–627CrossRef Filiz S, Aydogdu M (2010) Axial vibration of carbon nanotube heterojunctions using nonlocal elasticity. Comput Mater Sci 49:619–627CrossRef
44.
Zurück zum Zitat Murmu T, Adhikari S (2010) Nonlocal effects in the longitudinal vibration of double-nanorod systems. Physica E 43:415–422CrossRefADS Murmu T, Adhikari S (2010) Nonlocal effects in the longitudinal vibration of double-nanorod systems. Physica E 43:415–422CrossRefADS
45.
Zurück zum Zitat Murmu T, McCarthy MA, Adhikari S (2013) In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach. Compos Struct 96:57–63CrossRef Murmu T, McCarthy MA, Adhikari S (2013) In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach. Compos Struct 96:57–63CrossRef
46.
Zurück zum Zitat Kiani K (2014) Vibration and instability of a single-walled carbon nanotube in a three-dimensional magnetic field. J Phys Chem Solids 75(1):15–22CrossRefMathSciNet Kiani K (2014) Vibration and instability of a single-walled carbon nanotube in a three-dimensional magnetic field. J Phys Chem Solids 75(1):15–22CrossRefMathSciNet
47.
Zurück zum Zitat Murmu T, McCarthy MA, Adhikari S (2012) Nonlocal elasticity based magnetic field affected vibration response of double single-walled carbon nanotube systems. J Appl Phys 111(113511):1–7 Murmu T, McCarthy MA, Adhikari S (2012) Nonlocal elasticity based magnetic field affected vibration response of double single-walled carbon nanotube systems. J Appl Phys 111(113511):1–7
48.
Zurück zum Zitat Murmu T, McCarthy MA, Adhikari S (2012) Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: a nonlocal elasticity approach. J Sound Vib 331(23):5069–5086CrossRefADS Murmu T, McCarthy MA, Adhikari S (2012) Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: a nonlocal elasticity approach. J Sound Vib 331(23):5069–5086CrossRefADS
49.
Zurück zum Zitat Arani AG, Maboudi MJ, Arani AG, Amir S (2013) 2D-magnetic field and biaxiall in-plane pre-load effects on the vibration of double bonded orthotropic graphene sheets. J Solid Mech 5(2):193–205 Arani AG, Maboudi MJ, Arani AG, Amir S (2013) 2D-magnetic field and biaxiall in-plane pre-load effects on the vibration of double bonded orthotropic graphene sheets. J Solid Mech 5(2):193–205
50.
Zurück zum Zitat Narendar S, Gupta SS, Gopalakrishnan S (2012) Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler–Bernoulli beam theory. Appl Math Model 36(9):4529–4538CrossRefMATHMathSciNet Narendar S, Gupta SS, Gopalakrishnan S (2012) Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler–Bernoulli beam theory. Appl Math Model 36(9):4529–4538CrossRefMATHMathSciNet
52.
Zurück zum Zitat Kiani K (2014) Magnetically affected single-walled carbon nanotubes as nanosensors. Mech Res Commun 60:33–39CrossRefADS Kiani K (2014) Magnetically affected single-walled carbon nanotubes as nanosensors. Mech Res Commun 60:33–39CrossRefADS
53.
Zurück zum Zitat Kiani K (2014) Longitudinally varying magnetic field influenced transverse vibration of embedded double-walled carbon nanotubes. Int J Mech Sci 87:179–199CrossRef Kiani K (2014) Longitudinally varying magnetic field influenced transverse vibration of embedded double-walled carbon nanotubes. Int J Mech Sci 87:179–199CrossRef
54.
Zurück zum Zitat Murmu T, Adhikari S, McCarthy MA (2014) Axial vibration of embedded nanorods under transverse magnetic field effects via nonlocal elastic continuum theory. J Comput Theor Nanosci 11(5):1230–1236CrossRef Murmu T, Adhikari S, McCarthy MA (2014) Axial vibration of embedded nanorods under transverse magnetic field effects via nonlocal elastic continuum theory. J Comput Theor Nanosci 11(5):1230–1236CrossRef
55.
Zurück zum Zitat Eringen CA (1972) Nonlocal polar elastic continua. Int J Eng Sci 10:11–16 Eringen CA (1972) Nonlocal polar elastic continua. Int J Eng Sci 10:11–16
56.
Zurück zum Zitat Eringen CA (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710CrossRefADS Eringen CA (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710CrossRefADS
57.
Zurück zum Zitat Murmu T, Adhikari S (2011) Nonlocal vibration of carbon nanotubes with attached buckyballs at tip. Mech Res Commun 38(1):62–67CrossRefMATH Murmu T, Adhikari S (2011) Nonlocal vibration of carbon nanotubes with attached buckyballs at tip. Mech Res Commun 38(1):62–67CrossRefMATH
58.
Zurück zum Zitat Cao G, Chen X, Kysar JW (2006) Thermal vibration and apparent thermal contraction of single-walled carbon nanotubes. J Mech Phys Solids 54:1206–1236CrossRefADSMATH Cao G, Chen X, Kysar JW (2006) Thermal vibration and apparent thermal contraction of single-walled carbon nanotubes. J Mech Phys Solids 54:1206–1236CrossRefADSMATH
Metadaten
Titel
Nonlocal effects on the longitudinal vibration of a complex multi-nanorod system subjected to the transverse magnetic field
verfasst von
Danilo Karličić
Milan Cajić
Tony Murmu
Predrag Kozić
Sondipon Adhikari
Publikationsdatum
01.06.2015
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 6/2015
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-015-0111-6

Weitere Artikel der Ausgabe 6/2015

Meccanica 6/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.