Skip to main content
Erschienen in: Journal of Materials Science 22/2018

26.07.2018 | Polymers

Novel method for preparation of continuously twisted nanofiber yarn based on a combination of stepped airflow electrospinning and friction twisting

verfasst von: Yuman Zhou, Hongbo Wang, Jianxin He, Kun Qi, Bin Ding, Shizhong Cui

Erschienen in: Journal of Materials Science | Ausgabe 22/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electrospinning nanofiber yarn with large surface area, excellent aligned degree, perfect anisotropy and secondary process-ability has shown good prospects in the application of functional textiles, flexible and wearable electronic devices, tissue engineering, and carbon nanofiber yarn formation. However, the current methods for preparing the electrospinning nanofiber yarn still have the problems of unstable spinning process and poor yarn properties caused by low nanofiber yield and improper twisting, which limits its functional application. In this paper, a novel electrospinning method controlled by stepped airflow field and negative pressure suction is designed to spin continuously twisted nanofiber yarn based on a combination of stepped airflow electrospinning and traditional friction spinning, improving the limitation of low nanofiber yield and poor yarn properties. Our designed method can perfectly match the collection and twisting of large-scale nanofibers with excellent alignment. Furthermore, we demonstrate that this method is suitable for many polymers to continuously spin yarn and that the prepared yarn shows perfect weave-ability. The successful fabrication of nanofiber yarn displays the importance for expanding the application of nanofiber materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Guo Y, Xu G, Yang X et al (2018) Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J Mater Chem C 6:3004–3015CrossRef Guo Y, Xu G, Yang X et al (2018) Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J Mater Chem C 6:3004–3015CrossRef
2.
Zurück zum Zitat Cheng FR, Su T, Cao J, Luo XL, Li L, Pu Y, He B (2018) Environment-stimulated nanocarriers enabling multi-active sites for high drug encapsulation as an “on demand” drug release system. J Mater Chem C 6:2258–2273CrossRef Cheng FR, Su T, Cao J, Luo XL, Li L, Pu Y, He B (2018) Environment-stimulated nanocarriers enabling multi-active sites for high drug encapsulation as an “on demand” drug release system. J Mater Chem C 6:2258–2273CrossRef
4.
Zurück zum Zitat Huang J, Cao Y, Shao Q, Peng X, Guo Z (2017) Magnetic nanocarbon adsorbents with enhanced hexavalent chromium removal: morphology dependence of fibrillar vs particulate structures. Ind Eng Chem Res 56:10689–10701CrossRef Huang J, Cao Y, Shao Q, Peng X, Guo Z (2017) Magnetic nanocarbon adsorbents with enhanced hexavalent chromium removal: morphology dependence of fibrillar vs particulate structures. Ind Eng Chem Res 56:10689–10701CrossRef
5.
Zurück zum Zitat Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang GL, Li C, Willis P (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15:1161–1165CrossRef Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang GL, Li C, Willis P (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15:1161–1165CrossRef
7.
Zurück zum Zitat Zhuang XP, Jia KF, Cheng BW, Feng X, Shi SJ, Zhang B (2014) Solution blowing of continuous carbon nanofiber yarn and its electrochemical performance for supercapacitors. Chem Eng J 237:308–311CrossRef Zhuang XP, Jia KF, Cheng BW, Feng X, Shi SJ, Zhang B (2014) Solution blowing of continuous carbon nanofiber yarn and its electrochemical performance for supercapacitors. Chem Eng J 237:308–311CrossRef
8.
Zurück zum Zitat Gu H, Zhang H, Lin J, Shao Q, Young DP, Sun L, Sheng TD, Guo Z (2018) Large negative giant magnetoresistance at room temperature and electrical transport in cobalt ferrite–polyaniline nanocomposites. Polymer 143:324–330CrossRef Gu H, Zhang H, Lin J, Shao Q, Young DP, Sun L, Sheng TD, Guo Z (2018) Large negative giant magnetoresistance at room temperature and electrical transport in cobalt ferrite–polyaniline nanocomposites. Polymer 143:324–330CrossRef
9.
Zurück zum Zitat Gu H, Cao D, Kong J et al (2018) Introducing engineered science. Eng Sci 1:1–3CrossRef Gu H, Cao D, Kong J et al (2018) Introducing engineered science. Eng Sci 1:1–3CrossRef
10.
Zurück zum Zitat Wang C, Mo B, He Z et al (2018) Hydroxide ions transportation in polynorbornene anion exchange membrane. Polymer 138:363–368CrossRef Wang C, Mo B, He Z et al (2018) Hydroxide ions transportation in polynorbornene anion exchange membrane. Polymer 138:363–368CrossRef
11.
Zurück zum Zitat Wang C, Mo B, He Z et al (2018) Crosslinked norbornene copolymer anion exchange membrane for fuel cells. J Membr Sci 556:118–125CrossRef Wang C, Mo B, He Z et al (2018) Crosslinked norbornene copolymer anion exchange membrane for fuel cells. J Membr Sci 556:118–125CrossRef
12.
Zurück zum Zitat Wu YB, Wang L, Guo BL, Ma PX (2017) Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy. ACS Nano 11:5646–5659CrossRef Wu YB, Wang L, Guo BL, Ma PX (2017) Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy. ACS Nano 11:5646–5659CrossRef
13.
Zurück zum Zitat Gu H, Xu X, Zhang H et al (2018) Chitosan-coated-magnetite with covalently grafted polystyrene based carbon nanocomposites for hexavalent chromium adsorption. Eng Sci 1:46–54CrossRef Gu H, Xu X, Zhang H et al (2018) Chitosan-coated-magnetite with covalently grafted polystyrene based carbon nanocomposites for hexavalent chromium adsorption. Eng Sci 1:46–54CrossRef
15.
Zurück zum Zitat Yan T, Wang Z, Wang YQ, Pan ZJ (2018) Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors. Mater Des 143:214–223CrossRef Yan T, Wang Z, Wang YQ, Pan ZJ (2018) Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors. Mater Des 143:214–223CrossRef
16.
Zurück zum Zitat Zhou YM, He JX, Wang HB, Qi K, Ding B, Cui SZ (2016) Carbon nanofiber yarns fabricated from co-electrospun nanofibers. Mater Des 95:591–598CrossRef Zhou YM, He JX, Wang HB, Qi K, Ding B, Cui SZ (2016) Carbon nanofiber yarns fabricated from co-electrospun nanofibers. Mater Des 95:591–598CrossRef
17.
Zurück zum Zitat Cui X, Zhu G, Pan Y, Shao Q, Zhao C, Dong M, Zhang Y, Guo Z (2018) Polydimethylsiloxane-titania nanocomposite coating: fabrication and corrosion resistance. Polymer 138:203–210CrossRef Cui X, Zhu G, Pan Y, Shao Q, Zhao C, Dong M, Zhang Y, Guo Z (2018) Polydimethylsiloxane-titania nanocomposite coating: fabrication and corrosion resistance. Polymer 138:203–210CrossRef
18.
Zurück zum Zitat Guan X, Zheng G, Dai K, Liu C, Yan X, Shen C, Guo Z (2016) Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Appl Mater Interfaces 8:14150–14159CrossRef Guan X, Zheng G, Dai K, Liu C, Yan X, Shen C, Guo Z (2016) Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Appl Mater Interfaces 8:14150–14159CrossRef
19.
Zurück zum Zitat Sun K, Xie P, Wang Z et al (2017) Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer 125:50–57CrossRef Sun K, Xie P, Wang Z et al (2017) Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer 125:50–57CrossRef
20.
Zurück zum Zitat Zhou YM, He JX, Wang HB, Nan N, Qi K, Cui SZ (2017) Fabrication of superhydrophobic nanofiber fabric with hierarchical nanofiber structure. e-Polymer 17:249–254CrossRef Zhou YM, He JX, Wang HB, Nan N, Qi K, Cui SZ (2017) Fabrication of superhydrophobic nanofiber fabric with hierarchical nanofiber structure. e-Polymer 17:249–254CrossRef
22.
Zurück zum Zitat Gao YF, Shao WL, Wang Q et al (2018) Biomineralized poly (l-lactic-co-glycolic acid)-tussah silk fibroin nanofiber fabric with hierarchical architecture as a scaffold for bone tissue engineering. Mater Sci Eng C 84:195–207CrossRef Gao YF, Shao WL, Wang Q et al (2018) Biomineralized poly (l-lactic-co-glycolic acid)-tussah silk fibroin nanofiber fabric with hierarchical architecture as a scaffold for bone tissue engineering. Mater Sci Eng C 84:195–207CrossRef
25.
Zurück zum Zitat Ahmadloo E, Gharehaghaji AA, Latifi M, Mohammadi N, Saghafi H (2017) How fracture toughness of epoxy-based nanocomposite is affected by PA66 electrospun nanofiber yarn. Eng Fract Mech 182:62–73CrossRef Ahmadloo E, Gharehaghaji AA, Latifi M, Mohammadi N, Saghafi H (2017) How fracture toughness of epoxy-based nanocomposite is affected by PA66 electrospun nanofiber yarn. Eng Fract Mech 182:62–73CrossRef
26.
Zurück zum Zitat Shuakat MN, Lin T (2014) Recent developments in electrospinning of nanofiber yarns. J Nanosci Nanotechnol 14:1389–1408CrossRef Shuakat MN, Lin T (2014) Recent developments in electrospinning of nanofiber yarns. J Nanosci Nanotechnol 14:1389–1408CrossRef
27.
Zurück zum Zitat Wu S, Wang B, Zheng G, Liu S, Dai K, Liu C, Shen C (2014) Preparation and characterization of macroscopically electrospun polyamide 66 nanofiber bundles. Mater Lett 124:77–80CrossRef Wu S, Wang B, Zheng G, Liu S, Dai K, Liu C, Shen C (2014) Preparation and characterization of macroscopically electrospun polyamide 66 nanofiber bundles. Mater Lett 124:77–80CrossRef
28.
Zurück zum Zitat Wu S, Zheng G, Guan X et al (2016) Mechanically strengthened polyamide 66 nanofibers bundles via compositing with polyvinyl alcohol. Macromol Mater Eng 301:212–219CrossRef Wu S, Zheng G, Guan X et al (2016) Mechanically strengthened polyamide 66 nanofibers bundles via compositing with polyvinyl alcohol. Macromol Mater Eng 301:212–219CrossRef
29.
Zurück zum Zitat Teo WE, Gopal R, Ramaseshan R, Fujihara K, Ramakrishna S (2007) A dynamic liquid support system for continuous electrospun yarn fabrication. Polymer 48:3400–3405CrossRef Teo WE, Gopal R, Ramaseshan R, Fujihara K, Ramakrishna S (2007) A dynamic liquid support system for continuous electrospun yarn fabrication. Polymer 48:3400–3405CrossRef
30.
Zurück zum Zitat Jin S, Xin B, Zheng Y, Liu S (2018) Effect of electric field on the directly electrospun nanofiber yarns: simulation and experimental study. Fibers Polym 19:116–124CrossRef Jin S, Xin B, Zheng Y, Liu S (2018) Effect of electric field on the directly electrospun nanofiber yarns: simulation and experimental study. Fibers Polym 19:116–124CrossRef
31.
Zurück zum Zitat Shuakat MN, Lin T (2016) Direct electrospinning of nanofibre yarns using a rotating ring collector. J Text Inst 107:791–799CrossRef Shuakat MN, Lin T (2016) Direct electrospinning of nanofibre yarns using a rotating ring collector. J Text Inst 107:791–799CrossRef
33.
Zurück zum Zitat He JX, Qi K, Wang LD, Zhou YM, Liu RT, Cui SZ (2015) Combined application of multi-nozzle air-jet electrospinning and airflow twisting for the efficient preparation of continuous twisted nanofiber yarn. Fibers Polym 16:1319–1326CrossRef He JX, Qi K, Wang LD, Zhou YM, Liu RT, Cui SZ (2015) Combined application of multi-nozzle air-jet electrospinning and airflow twisting for the efficient preparation of continuous twisted nanofiber yarn. Fibers Polym 16:1319–1326CrossRef
34.
Zurück zum Zitat He JX, Zhou YM, Wu YC, Liu RT (2014) Nanofiber coated hybrid yarn fabricated by novel electrospinning-airflow twisting method. Surf Coat Technol 258:398–404CrossRef He JX, Zhou YM, Wu YC, Liu RT (2014) Nanofiber coated hybrid yarn fabricated by novel electrospinning-airflow twisting method. Surf Coat Technol 258:398–404CrossRef
35.
Zurück zum Zitat Li N, Hui Q, Xue H, Xiong J (2012) Electrospun polyacrylonitrile nanofiber yarn prepared by funnel-shape collector. Mater Lett 79:245–247CrossRef Li N, Hui Q, Xue H, Xiong J (2012) Electrospun polyacrylonitrile nanofiber yarn prepared by funnel-shape collector. Mater Lett 79:245–247CrossRef
37.
Zurück zum Zitat Jiang G, Zhang J, Ji D, Qin X, Ge Y, Xie S (2017) A novel approach for fabricating antibacterial nanofiber/cotton hybrid yarns. Fibers Polym 18:987–992CrossRef Jiang G, Zhang J, Ji D, Qin X, Ge Y, Xie S (2017) A novel approach for fabricating antibacterial nanofiber/cotton hybrid yarns. Fibers Polym 18:987–992CrossRef
38.
Zurück zum Zitat Shuakat MN, Lin T (2015) Highly-twisted, continuous nanofibre yarns prepared by a hybrid needle-needleless electrospinning technique. RSC Adv 5:33930–33937CrossRef Shuakat MN, Lin T (2015) Highly-twisted, continuous nanofibre yarns prepared by a hybrid needle-needleless electrospinning technique. RSC Adv 5:33930–33937CrossRef
39.
Zurück zum Zitat Ma XL, Zhang LY, Tan J, Qin YX, Chen HB, He WL, Yang WM, Li HY (2017) Continuous manufacturing of nanofiber yarn with the assistance of suction wind and rotating collection via needleless melt electrospinning. J Appl Polym Sci 134:44820. https://doi.org/10.1002/app.44820 Ma XL, Zhang LY, Tan J, Qin YX, Chen HB, He WL, Yang WM, Li HY (2017) Continuous manufacturing of nanofiber yarn with the assistance of suction wind and rotating collection via needleless melt electrospinning. J Appl Polym Sci 134:44820. https://​doi.​org/​10.​1002/​app.​44820
40.
Zurück zum Zitat Tumen-Ulzii G, Lim JH, Huh Y (2017) Manufacturing nanofibrous bundles and the roller drafting effects on the bundle properties. J Text Inst 108:1556–1562CrossRef Tumen-Ulzii G, Lim JH, Huh Y (2017) Manufacturing nanofibrous bundles and the roller drafting effects on the bundle properties. J Text Inst 108:1556–1562CrossRef
41.
Zurück zum Zitat Lord PR, Joo CW, Ashizaki T (1987) The mechanics of friction-spinning. J Text Inst 78:234–254CrossRef Lord PR, Joo CW, Ashizaki T (1987) The mechanics of friction-spinning. J Text Inst 78:234–254CrossRef
42.
Zurück zum Zitat Zhu RY, Oxenham W, Leaf GAV (1993) Fibre behaviour in the twisting zone of a friction-spinning process. J Text Inst 84:57–67CrossRef Zhu RY, Oxenham W, Leaf GAV (1993) Fibre behaviour in the twisting zone of a friction-spinning process. J Text Inst 84:57–67CrossRef
43.
Zurück zum Zitat Lord PR, Rust JP (1991) Fiber assembly in friction spinning. J Text Inst 82:465–478CrossRef Lord PR, Rust JP (1991) Fiber assembly in friction spinning. J Text Inst 82:465–478CrossRef
44.
Zurück zum Zitat Merati AA, Konda F, Okamura M, Marui E (1997) Analysis of yarn tension in the yarn-forming zone in friction spinning. J Text Inst 67:643–653 Merati AA, Konda F, Okamura M, Marui E (1997) Analysis of yarn tension in the yarn-forming zone in friction spinning. J Text Inst 67:643–653
45.
Zurück zum Zitat Li D, Wang YL, Xia YN (2003) Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 3:1167–1171CrossRef Li D, Wang YL, Xia YN (2003) Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 3:1167–1171CrossRef
46.
Zurück zum Zitat Ghafari E, Jiang X, Lu N (2018) Surface morphology and beta-phase formation of single polyvinylidene fluoride (PVDF) composite nanofibers. Adv Compos Hybrid Mater 1:332–340CrossRef Ghafari E, Jiang X, Lu N (2018) Surface morphology and beta-phase formation of single polyvinylidene fluoride (PVDF) composite nanofibers. Adv Compos Hybrid Mater 1:332–340CrossRef
47.
Zurück zum Zitat Aqeel SM, Huang Z, Walton J, Baker C, Falkner D’L, Liu Z, Wang Z (2018) Polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN)/carbon nanotube nanocomposites for energy storage and conversion. Adv Compos Hybrid Mater 1:185–192CrossRef Aqeel SM, Huang Z, Walton J, Baker C, Falkner D’L, Liu Z, Wang Z (2018) Polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN)/carbon nanotube nanocomposites for energy storage and conversion. Adv Compos Hybrid Mater 1:185–192CrossRef
48.
Zurück zum Zitat Wang C, Wu Y, Li Y et al (2018) Flame-retardant rigid polyurethane foam with a phosphorus–nitrogen single intumescent flame retardant. Polym Adv Technol 29:668–676CrossRef Wang C, Wu Y, Li Y et al (2018) Flame-retardant rigid polyurethane foam with a phosphorus–nitrogen single intumescent flame retardant. Polym Adv Technol 29:668–676CrossRef
49.
Zurück zum Zitat Li Y, Zhou B, Zheng G et al (2018) Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. J Mater Chem C 6:2258–2269CrossRef Li Y, Zhou B, Zheng G et al (2018) Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. J Mater Chem C 6:2258–2269CrossRef
50.
Zurück zum Zitat Yan T, Tian L, Pan ZJ (2016) Structures and mechanical properties of plied and twisted polyacrylonitrile nanofiber yarns fabricated by a multi-needle electrospinning device. Fiber Polym 17:1627–1633CrossRef Yan T, Tian L, Pan ZJ (2016) Structures and mechanical properties of plied and twisted polyacrylonitrile nanofiber yarns fabricated by a multi-needle electrospinning device. Fiber Polym 17:1627–1633CrossRef
51.
Zurück zum Zitat Dabirian F, Hosseini Ravandi SA, Hashemi Sanatgar R, Hinestroza JP (2011) Manufacturing of twisted continuous PAN nanofiber yarn by electrospinning process. Fiber Polym 12:610–615CrossRef Dabirian F, Hosseini Ravandi SA, Hashemi Sanatgar R, Hinestroza JP (2011) Manufacturing of twisted continuous PAN nanofiber yarn by electrospinning process. Fiber Polym 12:610–615CrossRef
52.
Zurück zum Zitat Ali U, Zhou Y, Wang X, Lin T (2012) Direct electrospinning of highly twisted, continuous nanofiber yarns. J Text Inst 103:80–88CrossRef Ali U, Zhou Y, Wang X, Lin T (2012) Direct electrospinning of highly twisted, continuous nanofiber yarns. J Text Inst 103:80–88CrossRef
53.
Zurück zum Zitat Yan H, Liu L, Zhang Z (2011) Continually fabricating staple yarns with aligned electrospun polyacrylonitrile nanofibers. Mater Lett 65:2419–2421CrossRef Yan H, Liu L, Zhang Z (2011) Continually fabricating staple yarns with aligned electrospun polyacrylonitrile nanofibers. Mater Lett 65:2419–2421CrossRef
54.
Zurück zum Zitat Huh Y, Kim YR, Oxenham W (2002) Analyzing structural and physical properties of ring, rotor, and friction spun yarns. Text Res J 72:156–163CrossRef Huh Y, Kim YR, Oxenham W (2002) Analyzing structural and physical properties of ring, rotor, and friction spun yarns. Text Res J 72:156–163CrossRef
Metadaten
Titel
Novel method for preparation of continuously twisted nanofiber yarn based on a combination of stepped airflow electrospinning and friction twisting
verfasst von
Yuman Zhou
Hongbo Wang
Jianxin He
Kun Qi
Bin Ding
Shizhong Cui
Publikationsdatum
26.07.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 22/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2725-2

Weitere Artikel der Ausgabe 22/2018

Journal of Materials Science 22/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.