Skip to main content

2021 | OriginalPaper | Buchkapitel

Numerical Analysis of Heat Transfer in Ferrofluid Under Constant External Magnetic Field

verfasst von : Jaswinder Singh Mehta, Rajesh Kumar, Harmesh Kumar, Harry Garg

Erschienen in: Advances in Metrology and Measurement of Engineering Surfaces

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper reports the numerical analysis of single-phase kerosene-based ferrofluid that passes through a circular-shaped closed loop. Permanent magnet has been employed to generate the magnetic field, and fluid flows as per thermo-magnetic convection principle. A two-dimensional, incompressible, and laminar flow has been considered while performing the time-dependent heat transfer study for the ferrofluid. The governing equations such as continuity, momentum, and energy equations are solved for steady-state incompressible flow using a partial differential equation based multiphysics finite element software, COMSOL Multiphysics 5.0. Simulation results indicate that magnitude of Kelvin body force rises with time as fluid flows with increased velocity resulting in successful dissipation of heat flux.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lomascolo, M., Colangelo, G., Milanese, M., & de Risi, A. (2015). Review of heat transfer in nanofluids: Conductive, convective and radiative experimental results. Renewable and Sustainable Energy Reviews, 43, 1182–1198. Lomascolo, M., Colangelo, G., Milanese, M., & de Risi, A. (2015). Review of heat transfer in nanofluids: Conductive, convective and radiative experimental results. Renewable and Sustainable Energy Reviews, 43, 1182–1198.
2.
Zurück zum Zitat Raja, M., Vijayan, R., Dinesh, K. P., & Venkatesan, M. (2016). Review on nanofluids characterization, heat transfer characteristics and applications. Renewable and Sustainable Energy Reviews, 64, 163–173.CrossRef Raja, M., Vijayan, R., Dinesh, K. P., & Venkatesan, M. (2016). Review on nanofluids characterization, heat transfer characteristics and applications. Renewable and Sustainable Energy Reviews, 64, 163–173.CrossRef
3.
Zurück zum Zitat Sheikholeslami, M., & Ganji, D. D. (2017). Nanofluid flow and heat transfer in the presence of constant magnetic field. Micro and nano technologies. In Applications of nanofluid for heat transfer enhancement (pp. 279–384). William Andrew Publishing. Sheikholeslami, M., & Ganji, D. D. (2017). Nanofluid flow and heat transfer in the presence of constant magnetic field. Micro and nano technologies. In Applications of nanofluid for heat transfer enhancement (pp. 279–384). William Andrew Publishing.
4.
Zurück zum Zitat Li, Q., Xuan, Y., & Wang, J. (2003). Investigation on convective heat transfer and flow features of nanofluids. Journal of Heat Transfer, 125, 151–155.CrossRef Li, Q., Xuan, Y., & Wang, J. (2003). Investigation on convective heat transfer and flow features of nanofluids. Journal of Heat Transfer, 125, 151–155.CrossRef
5.
Zurück zum Zitat Duangthongsuk, W., & Wongwises, S. (2009). Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger. International Journal of Heat and Mass Transfer, 52, 2059–2067.CrossRef Duangthongsuk, W., & Wongwises, S. (2009). Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger. International Journal of Heat and Mass Transfer, 52, 2059–2067.CrossRef
6.
Zurück zum Zitat Colangelo, G., Favale, E., Milanese, M., de Risi, A. Laforgia D. (2017). Cooling of electronic devices: Nanofluids contribution. Applied Thermal Enginering, 127, 421–435. Colangelo, G., Favale, E., Milanese, M., de Risi, A. Laforgia D. (2017). Cooling of electronic devices: Nanofluids contribution. Applied Thermal Enginering, 127, 421–435.
7.
Zurück zum Zitat Agromayor, R., Cabaleiro, D., Pardinas, A. A., Vallejo, J. P., Fernandez-Seara, J., & Lugo, L. (2016). Heat transfer performance of functionalized graphene nanoplatelet aqueous nanofluids. Materials, 9, 455.CrossRef Agromayor, R., Cabaleiro, D., Pardinas, A. A., Vallejo, J. P., Fernandez-Seara, J., & Lugo, L. (2016). Heat transfer performance of functionalized graphene nanoplatelet aqueous nanofluids. Materials, 9, 455.CrossRef
8.
Zurück zum Zitat Zhang, H., Shao, S., Xu, H., & Tian, C. (2013). Heat transfer and flow features of Al2O3-water nanofluids flowing through a circular microchannel-experimental results and correlations. Applied Thermal Engineering, 61, 86–92.CrossRef Zhang, H., Shao, S., Xu, H., & Tian, C. (2013). Heat transfer and flow features of Al2O3-water nanofluids flowing through a circular microchannel-experimental results and correlations. Applied Thermal Engineering, 61, 86–92.CrossRef
9.
Zurück zum Zitat Heris, S. Z., Etemad, S. G., & Esfahan, M. N. (2006). Experimental investigation of oxide nanofluids in laminar flow convective heat transfer. International Communications in Heat and Mass Transfer, 33, 529–535.CrossRef Heris, S. Z., Etemad, S. G., & Esfahan, M. N. (2006). Experimental investigation of oxide nanofluids in laminar flow convective heat transfer. International Communications in Heat and Mass Transfer, 33, 529–535.CrossRef
10.
Zurück zum Zitat Rosensweig, R. E. (1997). Ferrohydrodynamics (2nd ed.). New York, NY: Dover Pub. Inc. Rosensweig, R. E. (1997). Ferrohydrodynamics (2nd ed.). New York, NY: Dover Pub. Inc.
11.
Zurück zum Zitat Goharkhah, M., Ashjaee, M., & Shahabadi, M. (2016). Experimental investigation on convective heat transfer and hydrodynamic characteristics of magnetite nanofluid under the influence of an alternating magnetic field. International Journal of Thermal Sciences, 99, 113–124.CrossRef Goharkhah, M., Ashjaee, M., & Shahabadi, M. (2016). Experimental investigation on convective heat transfer and hydrodynamic characteristics of magnetite nanofluid under the influence of an alternating magnetic field. International Journal of Thermal Sciences, 99, 113–124.CrossRef
12.
Zurück zum Zitat Asfer, M., Mehta, B., Kumar, A., Khandekar, S., & Panigrahi, P. K. (2016). Effect of magnetic field on laminar convective heat transfer characteristics of ferrofluid flowing through a circular stainless steel tube. International Journal of Heat and Fluid Flow, 59, 74–86.CrossRef Asfer, M., Mehta, B., Kumar, A., Khandekar, S., & Panigrahi, P. K. (2016). Effect of magnetic field on laminar convective heat transfer characteristics of ferrofluid flowing through a circular stainless steel tube. International Journal of Heat and Fluid Flow, 59, 74–86.CrossRef
13.
Zurück zum Zitat Aursand, E., Gjennestad, M. A., Lervåg, K. Y., & Lund, H. (2016). Potential of enhancing a natural convection loop with a thermomagnetically pumped ferrofluid. Journal of Magnetism and Magnetic Materials, 417, 148–159. Aursand, E., Gjennestad, M. A., Lervåg, K. Y., & Lund, H. (2016). Potential of enhancing a natural convection loop with a thermomagnetically pumped ferrofluid. Journal of Magnetism and Magnetic Materials, 417, 148–159.
14.
Zurück zum Zitat Sheikholeslami, M., & Rashidi, M. M. (2015). Effect of space dependent magnetic field on free convection of Fe3O4–water nanofluids. Journal of the Taiwan Institute of Chemical Engineers, 1–10. Sheikholeslami, M., & Rashidi, M. M. (2015). Effect of space dependent magnetic field on free convection of Fe3O4–water nanofluids. Journal of the Taiwan Institute of Chemical Engineers, 1–10.
15.
Zurück zum Zitat Goshayeshi, H. R., Goodarzi, M., & Dahari, M. (2015). Effect of magnetic field on the heat transfer rate of kerosene/Fe2O3 nanofluid in a copper oscillating heat pipe. Experimental Thermal and Fluid Science, 68, 663–668.CrossRef Goshayeshi, H. R., Goodarzi, M., & Dahari, M. (2015). Effect of magnetic field on the heat transfer rate of kerosene/Fe2O3 nanofluid in a copper oscillating heat pipe. Experimental Thermal and Fluid Science, 68, 663–668.CrossRef
16.
Zurück zum Zitat Ghorbani, B., Ebrahimi, S., & Vijayaraghavan, K. (2018). CFD modeling and sensitivity analysis of heat transfer enhancement of a ferrofluid flow in the presence of a magnetic field. International Journal of Heat and Mass Transfer, 127, 544–552.CrossRef Ghorbani, B., Ebrahimi, S., & Vijayaraghavan, K. (2018). CFD modeling and sensitivity analysis of heat transfer enhancement of a ferrofluid flow in the presence of a magnetic field. International Journal of Heat and Mass Transfer, 127, 544–552.CrossRef
17.
Zurück zum Zitat Sha, L., Ju, Y., Zhang, H., & Wang, J. (2017). Experimental investigation on the convective heat transfer of Fe3O4/water nanofluids under constant magnetic field. Applied Thermal Engineering, 113, 566–574.CrossRef Sha, L., Ju, Y., Zhang, H., & Wang, J. (2017). Experimental investigation on the convective heat transfer of Fe3O4/water nanofluids under constant magnetic field. Applied Thermal Engineering, 113, 566–574.CrossRef
18.
Zurück zum Zitat Mohammad, G., Armia, S., Mehdi, A., & Mahmoud, S. (2015). Convective heat transfer characteristics of magnetite nanofluid under the influence of constant and alternating magnetic field. Power Technology, 274, 258–267.CrossRef Mohammad, G., Armia, S., Mehdi, A., & Mahmoud, S. (2015). Convective heat transfer characteristics of magnetite nanofluid under the influence of constant and alternating magnetic field. Power Technology, 274, 258–267.CrossRef
19.
Zurück zum Zitat Lian, W., Xuan, Y., & Li, Q. (2009). Characterization of miniature automatic energy transport devices based on the thermomagnetic effect. Energy Conversion and Management, 50(1), 35–42. Lian, W., Xuan, Y., & Li, Q. (2009). Characterization of miniature automatic energy transport devices based on the thermomagnetic effect. Energy Conversion and Management, 50(1), 35–42.
20.
Zurück zum Zitat Cherief, W., Avenas, Y., Ferrouillat, S., Kedous-Lebouc, A., Jossic, L., & Petit, M. (2017). Parameters affecting forced convection enhancement in ferrofluid cooling systems. Applied Thermal Engineering, 123, 156–166.CrossRef Cherief, W., Avenas, Y., Ferrouillat, S., Kedous-Lebouc, A., Jossic, L., & Petit, M. (2017). Parameters affecting forced convection enhancement in ferrofluid cooling systems. Applied Thermal Engineering, 123, 156–166.CrossRef
21.
Zurück zum Zitat Neuringer, J. L., & Rosensweig, R. E. (1964). Ferrohydrodynamics. Physics of Fluids, 7, 1927 (1964). Neuringer, J. L., & Rosensweig, R. E. (1964). Ferrohydrodynamics. Physics of Fluids, 7, 1927 (1964).
Metadaten
Titel
Numerical Analysis of Heat Transfer in Ferrofluid Under Constant External Magnetic Field
verfasst von
Jaswinder Singh Mehta
Rajesh Kumar
Harmesh Kumar
Harry Garg
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-5151-2_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.