Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2012

01.09.2012

Numerical Analysis of Joint Temperature Evolution During Friction Stir Welding Based on Sticking Contact

verfasst von: Wenya Li, Zhihan Zhang, Jinglong Li, Y. J. Chao

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A three-dimensional numerical model for friction stir welding was developed by using the ABAQUS software based on a fully sticking friction. The temperature measurement was performed to validate the reliability of the model. The simulated thermal histories are in good agreement with the experiments. Simulated results show that the rotation speed has no influence on the time to reach the peak temperature in the workpiece, while the welding speed has significant effect on the time to reach the peak temperature at points away from the plunging center. The value of this peak temperature also changes somewhat. Moreover, the peak temperature in the workpiece tends to reach a quasi-steady state at the beginning of the moving stage; but the temperature at some distance away from the weld does not reach the quasi-steady state during the welding.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Sato, H. Kokawa, and M. Enomoto, Microstructural Evolution of 6063 Aluminum during Friction Stir Welding, Metall. Mater. Trans. A, 2000, 30, p 2429–2437CrossRef Y. Sato, H. Kokawa, and M. Enomoto, Microstructural Evolution of 6063 Aluminum during Friction Stir Welding, Metall. Mater. Trans. A, 2000, 30, p 2429–2437CrossRef
2.
Zurück zum Zitat C.J. Dawes and W.M. Thomas, Friction Stir Process for Aluminum Alloys, Weld. J., 1996, 75, p 41–45 C.J. Dawes and W.M. Thomas, Friction Stir Process for Aluminum Alloys, Weld. J., 1996, 75, p 41–45
3.
Zurück zum Zitat H. Fujii, Y.F. Sun, and H. Kato, Microstructure and Mechanical Properties of Friction Stir Welded Pure Mo Joints, Scripta Mater., 2011, 64, p 657–660CrossRef H. Fujii, Y.F. Sun, and H. Kato, Microstructure and Mechanical Properties of Friction Stir Welded Pure Mo Joints, Scripta Mater., 2011, 64, p 657–660CrossRef
4.
Zurück zum Zitat L. Fratini, G. Buffa, and R. Shivpuri, Mechanical and Metallurgical Effects of in Process Cooling during Friction Stir Welding of AA7075-T6 Butt Joints, Acta Mater., 2010, 58, p 2056–2067CrossRef L. Fratini, G. Buffa, and R. Shivpuri, Mechanical and Metallurgical Effects of in Process Cooling during Friction Stir Welding of AA7075-T6 Butt Joints, Acta Mater., 2010, 58, p 2056–2067CrossRef
5.
Zurück zum Zitat H.J. Liu, H.J. Zhang, and L. Yu, Effect of Welding Speed on Microstructures and Mechanical Properties of Underwater Friction Stir Welded 2219 Aluminum Alloy, Mater. Des., 2219, 32, p 1548–1553CrossRef H.J. Liu, H.J. Zhang, and L. Yu, Effect of Welding Speed on Microstructures and Mechanical Properties of Underwater Friction Stir Welded 2219 Aluminum Alloy, Mater. Des., 2219, 32, p 1548–1553CrossRef
6.
Zurück zum Zitat M. Peel, A. Steuwer, M. Preuss, and P.J. Withers, Microstructure, Mechanical Properties and Residual Stresses as a Function of Welding Speed in Aluminium AA5083 Friction Stir Welds, Acta Mater., 2003, 51, p 4791–4801CrossRef M. Peel, A. Steuwer, M. Preuss, and P.J. Withers, Microstructure, Mechanical Properties and Residual Stresses as a Function of Welding Speed in Aluminium AA5083 Friction Stir Welds, Acta Mater., 2003, 51, p 4791–4801CrossRef
7.
Zurück zum Zitat Y. Chao and X. Qi, Thermal and Thermo-Mechanical Modeling of Friction Stir Welding of Aluminum Alloy 6001-T6, J. Mater. Process. Manuf. Sci., 1998, 7, p 215–233CrossRef Y. Chao and X. Qi, Thermal and Thermo-Mechanical Modeling of Friction Stir Welding of Aluminum Alloy 6001-T6, J. Mater. Process. Manuf. Sci., 1998, 7, p 215–233CrossRef
8.
Zurück zum Zitat M. Song and R. Kovacevic, Thermal Modeling of Friction Stir Welding in a Moving Coordinate and Its Validation, Int. J. Mach. Tool Manuf., 2003, 43, p 605–615CrossRef M. Song and R. Kovacevic, Thermal Modeling of Friction Stir Welding in a Moving Coordinate and Its Validation, Int. J. Mach. Tool Manuf., 2003, 43, p 605–615CrossRef
9.
Zurück zum Zitat H. Schmidt, J. Hattel, and J. Wert, An Analytical Model for the Heat Generation in Friction Stir Welding, Modell. Simul. Mater. Sci. Eng., 2004, 12, p 143–157CrossRef H. Schmidt, J. Hattel, and J. Wert, An Analytical Model for the Heat Generation in Friction Stir Welding, Modell. Simul. Mater. Sci. Eng., 2004, 12, p 143–157CrossRef
10.
Zurück zum Zitat H. Schmidt and J. Hattel, Thermal Modelling of Friction Stir Welding, Scripta Mater., 2008, 58, p 332–337CrossRef H. Schmidt and J. Hattel, Thermal Modelling of Friction Stir Welding, Scripta Mater., 2008, 58, p 332–337CrossRef
11.
Zurück zum Zitat M. Maalekian, E. Kozeschnik, H.P. Brantner, and H. Cerjak, Comparative Analysis of Heat Generation in Friction Welding of Steel Bars, Acta Mater., 2008, 56, p 2843–2855CrossRef M. Maalekian, E. Kozeschnik, H.P. Brantner, and H. Cerjak, Comparative Analysis of Heat Generation in Friction Welding of Steel Bars, Acta Mater., 2008, 56, p 2843–2855CrossRef
12.
Zurück zum Zitat P. Ulysse, Three-Dimensional Modeling of the Friction Stir-Welding Process, Int. J. Mach. Tool Manuf., 2002, 42, p 1549–1557CrossRef P. Ulysse, Three-Dimensional Modeling of the Friction Stir-Welding Process, Int. J. Mach. Tool Manuf., 2002, 42, p 1549–1557CrossRef
13.
Zurück zum Zitat P.F. Mendez, K.E. Tello, and T.J. Lienert, Scaling of Coupled Heat Transfer and Plastic Deformation around the Pin in Friction Stir Welding, Acta Mater., 2010, 58, p 6012–6026CrossRef P.F. Mendez, K.E. Tello, and T.J. Lienert, Scaling of Coupled Heat Transfer and Plastic Deformation around the Pin in Friction Stir Welding, Acta Mater., 2010, 58, p 6012–6026CrossRef
14.
Zurück zum Zitat M.Z.H. Khandkar and J.A. Khan, Thermal Modeling of Overlap Friction Stir Welding for Al-alloys, J. Mater. Process. Manuf. Sci., 2001, 10, p 91–105 M.Z.H. Khandkar and J.A. Khan, Thermal Modeling of Overlap Friction Stir Welding for Al-alloys, J. Mater. Process. Manuf. Sci., 2001, 10, p 91–105
15.
Zurück zum Zitat M.Z.H. Khandkar, J.A. Khan, and A.P. Reynolds, Prediction of Temperature Distribution and Thermal History during Friction Stir Welding: Input Torque Based Model, Sci. Technol. Weld. Join., 2003, 8, p 165–174CrossRef M.Z.H. Khandkar, J.A. Khan, and A.P. Reynolds, Prediction of Temperature Distribution and Thermal History during Friction Stir Welding: Input Torque Based Model, Sci. Technol. Weld. Join., 2003, 8, p 165–174CrossRef
16.
Zurück zum Zitat R. Nandan, G.G. Roy, and T. DebRoy, Numerical Simulation of Three-dimensional Heat Transfer and Plastic Flow during Friction Stir Welding, Metall. Mater. Trans. A, 2006, 37, p 1247–1259CrossRef R. Nandan, G.G. Roy, and T. DebRoy, Numerical Simulation of Three-dimensional Heat Transfer and Plastic Flow during Friction Stir Welding, Metall. Mater. Trans. A, 2006, 37, p 1247–1259CrossRef
17.
Zurück zum Zitat R. Nandan, G.G. Roy, T.J. Lienert, and T. DebRoy, Numerical Modelling of 3D Plastic Flow and Heat Transfer during Friction Stir Welding of Stainless Steel, Sci. Technol. Weld. Join., 2006, 11, p 526–537CrossRef R. Nandan, G.G. Roy, T.J. Lienert, and T. DebRoy, Numerical Modelling of 3D Plastic Flow and Heat Transfer during Friction Stir Welding of Stainless Steel, Sci. Technol. Weld. Join., 2006, 11, p 526–537CrossRef
18.
Zurück zum Zitat R. Nandan, G.G. Roy, T.J. Lienert, and T. DebRoy, Three-dimensional Heat and Material Flow during Friction Stir Welding of Mild Steel, Acta Mater., 2007, 55, p 883–895CrossRef R. Nandan, G.G. Roy, T.J. Lienert, and T. DebRoy, Three-dimensional Heat and Material Flow during Friction Stir Welding of Mild Steel, Acta Mater., 2007, 55, p 883–895CrossRef
19.
Zurück zum Zitat S. Xu, X. Deng, A.P. Reynolds, and T.U. Seidel, Finite Element Simulation of Material Flow in Friction Stir Welding, Sci. Technol. Weld. Join., 2001, 6(3), p 191–193CrossRef S. Xu, X. Deng, A.P. Reynolds, and T.U. Seidel, Finite Element Simulation of Material Flow in Friction Stir Welding, Sci. Technol. Weld. Join., 2001, 6(3), p 191–193CrossRef
20.
Zurück zum Zitat V. Soundararajan, S. Zekovic, and R. Kovacevic, Thermo-Mechanical Model with Adaptive Boundary Conditions for Friction Stir Welding of Al 6061, Int. J. Mach. Tool Manuf., 2005, 45, p 1577–1587CrossRef V. Soundararajan, S. Zekovic, and R. Kovacevic, Thermo-Mechanical Model with Adaptive Boundary Conditions for Friction Stir Welding of Al 6061, Int. J. Mach. Tool Manuf., 2005, 45, p 1577–1587CrossRef
21.
Zurück zum Zitat D. Kim, H. Badarinarayan, J.H. Kim, C. Kim, K. Okamoto, R.H. Wagoner, and K. Chung, Numerical Simulation of Friction Stir Butt Welding Process for AA5083-H18 Sheets, Eur. J. Mech. A-Solid, 2010, 29, p 204–215CrossRef D. Kim, H. Badarinarayan, J.H. Kim, C. Kim, K. Okamoto, R.H. Wagoner, and K. Chung, Numerical Simulation of Friction Stir Butt Welding Process for AA5083-H18 Sheets, Eur. J. Mech. A-Solid, 2010, 29, p 204–215CrossRef
22.
Zurück zum Zitat F. Gemme, Y. Verreman, L. Dubourg, and M. Jahazi, Numerical Analysis of the Dwell Phase in Friction Stir Welding and Comparison with Experimental Data, Mater. Sci. Eng. A, 2010, 527, p 4152–4160CrossRef F. Gemme, Y. Verreman, L. Dubourg, and M. Jahazi, Numerical Analysis of the Dwell Phase in Friction Stir Welding and Comparison with Experimental Data, Mater. Sci. Eng. A, 2010, 527, p 4152–4160CrossRef
23.
Zurück zum Zitat W. Tang, X. Guo, J.C. McClure, L.E. Murr, and A. Nunes, Heat Input and Temperature Distribution in Friction Stir Welding, J. Mater. Process. Manuf. Sci., 1998, 7(2), p 163–172CrossRef W. Tang, X. Guo, J.C. McClure, L.E. Murr, and A. Nunes, Heat Input and Temperature Distribution in Friction Stir Welding, J. Mater. Process. Manuf. Sci., 1998, 7(2), p 163–172CrossRef
24.
Zurück zum Zitat G. Buffa, J. Hua, R. Shivpuri, and L. Fratini, A Continuum Based Fem Model for Friction Stir Welding—Model Development, Mater. Sci. Eng. A, 2006, 419, p 389–396CrossRef G. Buffa, J. Hua, R. Shivpuri, and L. Fratini, A Continuum Based Fem Model for Friction Stir Welding—Model Development, Mater. Sci. Eng. A, 2006, 419, p 389–396CrossRef
25.
Zurück zum Zitat C.M. Chen and R. Kovacevic, Finite Element Modeling of Friction Stir Welding—Thermal and Thermomechanical Analysis, Int. J. Mach. Tool Manuf., 2003, 43(13), p 1319–1326CrossRef C.M. Chen and R. Kovacevic, Finite Element Modeling of Friction Stir Welding—Thermal and Thermomechanical Analysis, Int. J. Mach. Tool Manuf., 2003, 43(13), p 1319–1326CrossRef
26.
Zurück zum Zitat S. Cui, Z.W. Chen, and J.D. Robson, A Model Relating Tool Torque and Its Associated Power and Specific Energy to Rotation and Forward Speeds during Friction Stir Welding/Processing, Int. J. Mach. Tool Manuf., 2010, 50, p 1023–1030CrossRef S. Cui, Z.W. Chen, and J.D. Robson, A Model Relating Tool Torque and Its Associated Power and Specific Energy to Rotation and Forward Speeds during Friction Stir Welding/Processing, Int. J. Mach. Tool Manuf., 2010, 50, p 1023–1030CrossRef
27.
Zurück zum Zitat H. Schmidt, J. Hattel, and J. Wert, A Local Model for the Thermo-Mechanical Conditions in Friction Stir Welding, Modell. Simul. Mater. Sci. Eng., 2005, 13, p 77–93CrossRef H. Schmidt, J. Hattel, and J. Wert, A Local Model for the Thermo-Mechanical Conditions in Friction Stir Welding, Modell. Simul. Mater. Sci. Eng., 2005, 13, p 77–93CrossRef
28.
Zurück zum Zitat H.K. Li, Q.Y. Shi, T. Li, and W. Wang, Auto-adaptive Heat Source Model for Numerical Analysis of Friction Stir Welding, Mater. Sci. Forum, 2008, 580-582, p 267–270CrossRef H.K. Li, Q.Y. Shi, T. Li, and W. Wang, Auto-adaptive Heat Source Model for Numerical Analysis of Friction Stir Welding, Mater. Sci. Forum, 2008, 580-582, p 267–270CrossRef
29.
Zurück zum Zitat O.T. Midling and Ø. Grong, A Process Model for Friction Welding of Al-Mg-Si Alloys and Al-SiC Metal Matrix Composites-I. Haz Temperature and Strain Rate Distribution, Acta Metall. Mater., 1994, 42(5), p 1595–1609CrossRef O.T. Midling and Ø. Grong, A Process Model for Friction Welding of Al-Mg-Si Alloys and Al-SiC Metal Matrix Composites-I. Haz Temperature and Strain Rate Distribution, Acta Metall. Mater., 1994, 42(5), p 1595–1609CrossRef
Metadaten
Titel
Numerical Analysis of Joint Temperature Evolution During Friction Stir Welding Based on Sticking Contact
verfasst von
Wenya Li
Zhihan Zhang
Jinglong Li
Y. J. Chao
Publikationsdatum
01.09.2012
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2012
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-011-0092-0

Weitere Artikel der Ausgabe 9/2012

Journal of Materials Engineering and Performance 9/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.