Skip to main content
Erschienen in: Experimental Mechanics 4/2019

09.01.2019

Numerical Investigation on the Necessity of a Constant Strain Rate Condition According to Material’s Dynamic Response Behavior in the SHPB Test

verfasst von: H.R. Zou, W.L. Yin, C.C. Cai, Z. Yang, Y.B. Li, X.D. He

Erschienen in: Experimental Mechanics | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The split Hopkinson pressure bar (SHPB) apparatus is frequently used to investigate the dynamic compression properties of various materials at strain rates from 102 to 104 s−1. Keeping the strain rate constant during loading is an important condition for obtaining accurate experimental results. However, we do not always need to take additional measures to control the constant strain rate loading conditions for materials with different dynamic response behaviors. To investigate the necessity of a constant strain rate condition in the SHPB test according to the different dynamic mechanical response behaviors of materials, a comprehensive numerical analysis scheme combined with the Cowper-Symonds plastic kinematic model was designed to perform the simulation tests. There are two factors primarily resulting in the errors in the calculated stress-strain response for the representative material model. One of them is the dynamic scale factor, which represents the strain rate sensitivity and controls the variation amplitude of flow stress with the change in strain rate. The other factor is the work-hardening rate, which affects the results by expanding the decrease in strain rate. This paper quantitatively describes the effects of strain rate sensitivity and the strain-hardening modulus on the accuracy of the reconstructed stress-strain behavior of a sample under a constant incident pulse. The conclusion presents several reference guides for the necessity of a constant strain rate condition for different dynamic response behaviors of materials based on the representative constitutive model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Morrow B, Lebensohn R, Trujillo C, Martinez D, Addessio F, Bronkhorst C, Lookman T, Cerreta E (2016) Characterization and modeling of mechanical behavior of single crystal titanium deformed by split-Hopkinson pressure bar. Int J Plast 82:225–240CrossRef Morrow B, Lebensohn R, Trujillo C, Martinez D, Addessio F, Bronkhorst C, Lookman T, Cerreta E (2016) Characterization and modeling of mechanical behavior of single crystal titanium deformed by split-Hopkinson pressure bar. Int J Plast 82:225–240CrossRef
2.
Zurück zum Zitat Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Lond Sect B 62(11):676CrossRef Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Lond Sect B 62(11):676CrossRef
3.
Zurück zum Zitat Dharan C, Hauser F (1970) Determination of stress-strain characteristics at very high strain rates. Exp Mech 10(9):370–376CrossRef Dharan C, Hauser F (1970) Determination of stress-strain characteristics at very high strain rates. Exp Mech 10(9):370–376CrossRef
5.
Zurück zum Zitat Field J, Walley S, Proud W, Goldrein H, Siviour C (2004) Review of experimental techniques for high rate deformation and shock studies. Int J Impact Eng 30(7):725–775CrossRef Field J, Walley S, Proud W, Goldrein H, Siviour C (2004) Review of experimental techniques for high rate deformation and shock studies. Int J Impact Eng 30(7):725–775CrossRef
6.
Zurück zum Zitat Hopkinson B (1914) A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Philos Trans R Soc Lond Ser A 213:437–456CrossRef Hopkinson B (1914) A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Philos Trans R Soc Lond Ser A 213:437–456CrossRef
7.
Zurück zum Zitat Brizard D, Ronel S, Jacquelin E (2017) Estimating measurement uncertainty on stress-strain curves from SHPB. Exp Mech 57(5):735–742CrossRef Brizard D, Ronel S, Jacquelin E (2017) Estimating measurement uncertainty on stress-strain curves from SHPB. Exp Mech 57(5):735–742CrossRef
8.
Zurück zum Zitat Li P, Siviour C, Petrinic N (2009) The effect of strain rate, specimen geometry and lubrication on responses of aluminium AA2024 in uniaxial compression experiments. Exp Mech 49(4):587–593CrossRef Li P, Siviour C, Petrinic N (2009) The effect of strain rate, specimen geometry and lubrication on responses of aluminium AA2024 in uniaxial compression experiments. Exp Mech 49(4):587–593CrossRef
9.
Zurück zum Zitat Bertholf L, Karnes C (1975) Two-dimensional analysis of the split Hopkinson pressure bar system. J Mech Phys Solids 23(1):1–19CrossRef Bertholf L, Karnes C (1975) Two-dimensional analysis of the split Hopkinson pressure bar system. J Mech Phys Solids 23(1):1–19CrossRef
10.
Zurück zum Zitat Wang T-T, Shang B (2014) Three-wave mutual-checking method for data processing of SHPB experiments of concrete. J Mech 30(5):N5–N10CrossRef Wang T-T, Shang B (2014) Three-wave mutual-checking method for data processing of SHPB experiments of concrete. J Mech 30(5):N5–N10CrossRef
11.
Zurück zum Zitat Ellwood S, Griffiths L, Parry D (1982) Materials testing at high constant strain rates. J Phys E Sci Instrum 15(3):280CrossRef Ellwood S, Griffiths L, Parry D (1982) Materials testing at high constant strain rates. J Phys E Sci Instrum 15(3):280CrossRef
13.
Zurück zum Zitat Lee OS, You SS, Chong JH, Kang HS (1998) Dynamic deformation under a modified split Hopkinson pressure bar experiment. KSME International Journal 12(6):1143–1149CrossRef Lee OS, You SS, Chong JH, Kang HS (1998) Dynamic deformation under a modified split Hopkinson pressure bar experiment. KSME International Journal 12(6):1143–1149CrossRef
14.
Zurück zum Zitat Chen W, Zhang B, Forrestal M (1999) A split Hopkinson bar technique for low-impedance materials. Exp Mech 39(2):81–85CrossRef Chen W, Zhang B, Forrestal M (1999) A split Hopkinson bar technique for low-impedance materials. Exp Mech 39(2):81–85CrossRef
18.
Zurück zum Zitat Frew D, Forrestal MJ, Chen W (2002) Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech 42(1):93–106CrossRef Frew D, Forrestal MJ, Chen W (2002) Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech 42(1):93–106CrossRef
21.
Zurück zum Zitat Frantz C, Follansbee P, Wright W (1984) New experimental techniques with the split Hopkinson pressure bar. In: 8th International Conference on High Energy Rate Fabrication. San Antonio, TX, June, pp 17–21 Frantz C, Follansbee P, Wright W (1984) New experimental techniques with the split Hopkinson pressure bar. In: 8th International Conference on High Energy Rate Fabrication. San Antonio, TX, June, pp 17–21
22.
Zurück zum Zitat Meng H, Li Q (2003) Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments. Int J Impact Eng 28(5):537–555CrossRef Meng H, Li Q (2003) Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments. Int J Impact Eng 28(5):537–555CrossRef
25.
Zurück zum Zitat Parry D, Walker A, Dixon P (1995) Hopkinson bar pulse smoothing. Meas Sci Technol 6(5):443CrossRef Parry D, Walker A, Dixon P (1995) Hopkinson bar pulse smoothing. Meas Sci Technol 6(5):443CrossRef
28.
Zurück zum Zitat Li X, Lok T, Zhao J, Zhao P (2000) Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress–strain curves for rocks. Int J Rock Mech Min Sci 37(7):1055–1060CrossRef Li X, Lok T, Zhao J, Zhao P (2000) Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress–strain curves for rocks. Int J Rock Mech Min Sci 37(7):1055–1060CrossRef
29.
Zurück zum Zitat Chen WW, Wu Q, Kang JH, Winfree NA (2001) Compressive superelastic behavior of a NiTi shape memory alloy at strain rates of 0.001–750 s− 1. Int J Solids Struct 38(50):8989–8998CrossRef Chen WW, Wu Q, Kang JH, Winfree NA (2001) Compressive superelastic behavior of a NiTi shape memory alloy at strain rates of 0.001–750 s− 1. Int J Solids Struct 38(50):8989–8998CrossRef
30.
Zurück zum Zitat Ninan L, Tsai J, Sun C (2001) Use of split Hopkinson pressure bar for testing off-axis composites. Int J Impact Eng 25(3):291–313CrossRef Ninan L, Tsai J, Sun C (2001) Use of split Hopkinson pressure bar for testing off-axis composites. Int J Impact Eng 25(3):291–313CrossRef
31.
Zurück zum Zitat Feng B, Fang X, Wang H-X, Dong W, Li Y-C (2016) The effect of crystallinity on compressive properties of Al-PTFE. Polymers 8(10):356CrossRef Feng B, Fang X, Wang H-X, Dong W, Li Y-C (2016) The effect of crystallinity on compressive properties of Al-PTFE. Polymers 8(10):356CrossRef
32.
Zurück zum Zitat Zhang B, Lin Y, Li S, Zhai D, Wu G (2016) Quasi-static and high strain rates compressive behavior of aluminum matrix syntactic foams. Compos Part B 98:288–296CrossRef Zhang B, Lin Y, Li S, Zhai D, Wu G (2016) Quasi-static and high strain rates compressive behavior of aluminum matrix syntactic foams. Compos Part B 98:288–296CrossRef
33.
Zurück zum Zitat Zhang Q, Lin Y, Chi H, Chang J, Wu G (2018) Quasi-static and dynamic compression behavior of glass cenospheres/5A03 syntactic foam and its sandwich structure. Compos Struct 183:499–509CrossRef Zhang Q, Lin Y, Chi H, Chang J, Wu G (2018) Quasi-static and dynamic compression behavior of glass cenospheres/5A03 syntactic foam and its sandwich structure. Compos Struct 183:499–509CrossRef
34.
Zurück zum Zitat Hu Q, Zhao F, Fu H, Li K, Liu F (2017) Dislocation density and mechanical threshold stress in OFHC copper subjected to SHPB loading and plate impact. Mater Sci Eng A 695:230–238CrossRef Hu Q, Zhao F, Fu H, Li K, Liu F (2017) Dislocation density and mechanical threshold stress in OFHC copper subjected to SHPB loading and plate impact. Mater Sci Eng A 695:230–238CrossRef
35.
Zurück zum Zitat Lee W-S, Lin C-R (2016) Deformation behavior and microstructural evolution of 7075-T6 aluminum alloy at cryogenic temperatures. Cryogenics 79:26–34CrossRef Lee W-S, Lin C-R (2016) Deformation behavior and microstructural evolution of 7075-T6 aluminum alloy at cryogenic temperatures. Cryogenics 79:26–34CrossRef
36.
Zurück zum Zitat Kapoor R, Pangeni L, Bandaru AK, Ahmad S, Bhatnagar N (2016) High strain rate compression response of woven Kevlar reinforced polypropylene composites. Compos Part B 89:374–382CrossRef Kapoor R, Pangeni L, Bandaru AK, Ahmad S, Bhatnagar N (2016) High strain rate compression response of woven Kevlar reinforced polypropylene composites. Compos Part B 89:374–382CrossRef
37.
Zurück zum Zitat Resnyansky A, Gray G III (2002) Numerical simulations of the influence of loading pulse shape on SHPB measurements. In: AIP conference proceedings, vol 1. AIP, pp 315–318 Resnyansky A, Gray G III (2002) Numerical simulations of the influence of loading pulse shape on SHPB measurements. In: AIP conference proceedings, vol 1. AIP, pp 315–318
39.
Zurück zum Zitat Hallquist JO (2006) LS-DYNA theory manual, vol 19. Livermore software Technology corporation, Livermore, pp 19.15–19.18 Hallquist JO (2006) LS-DYNA theory manual, vol 19. Livermore software Technology corporation, Livermore, pp 19.15–19.18
Metadaten
Titel
Numerical Investigation on the Necessity of a Constant Strain Rate Condition According to Material’s Dynamic Response Behavior in the SHPB Test
verfasst von
H.R. Zou
W.L. Yin
C.C. Cai
Z. Yang
Y.B. Li
X.D. He
Publikationsdatum
09.01.2019
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 4/2019
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-018-00468-x

Weitere Artikel der Ausgabe 4/2019

Experimental Mechanics 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.