Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 5-6/2020

16.07.2020 | ORIGINAL ARTICLE

Numerical investigation on the plastic forming of aluminum foam sandwich panel based on three-dimensional mesoscopic and macroscopic models

verfasst von: Xi Zhang, Zhong-Yi Cai, Xiao-Bo Liang, Jia-Xin Gao

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 5-6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper deals with the numerical study on the plastic forming of aluminum foam sandwich panel (AFSP). Three-dimensional (3D) tetrakaidecahedral (TKD) model and cubic-spherical (CS) AFSP model on the mesoscale as well as a 3D equivalent AFSP model on the macroscale were constructed first, and then, detailed finite element (FE) simulations on plastic forming processes of AFSP were carried out to gain further insight into the deformation characteristics and the forming defects. Plastic forming experiments of cylindrical AFSPs with different target radii were performed subsequently. It is found that mesoscopic TKD and CS AFSP models reflect more specific deformation characteristics and forming defects; however, the results obtained by the CS AFSP model are closer to the experimental results in terms of the forming defects, the shape errors, and the thickness variations. Furthermore, the CS AFSP FE model using 8-node linear brick with reduced integration and hourglass control elements saves the most calculation time among the three AFSP FE models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Davies JM (2001) Lightweight sandwich construction. John Wiley & Sons, OxfordCrossRef Davies JM (2001) Lightweight sandwich construction. John Wiley & Sons, OxfordCrossRef
2.
Zurück zum Zitat Liang XB, Cai ZY, Zhang X (2018) Forming characteristics analysis and springback prediction of bi-directional trapezoidal sandwich panels in the multi-point bend-forming. Int J Adv Manuf Technol 98(5-8):953–965 Liang XB, Cai ZY, Zhang X (2018) Forming characteristics analysis and springback prediction of bi-directional trapezoidal sandwich panels in the multi-point bend-forming. Int J Adv Manuf Technol 98(5-8):953–965
3.
Zurück zum Zitat Cai ZY, Liang XB, Chen QM, Zhang X (2018) Numerical and experimental investigations on the formability of three-dimensional aluminum alloy sandwich panels with egg-box-like cores. Int J Adv Manuf Technol 99(1-4):387–397CrossRef Cai ZY, Liang XB, Chen QM, Zhang X (2018) Numerical and experimental investigations on the formability of three-dimensional aluminum alloy sandwich panels with egg-box-like cores. Int J Adv Manuf Technol 99(1-4):387–397CrossRef
4.
Zurück zum Zitat Cai ZY, Zhang X, Liang XB (2018) Multi-point forming of sandwich panels with egg-box-like cores and failure behaviors in forming process: analytical models, numerical and experimental investigations. Mater Des 160:1029–1041CrossRef Cai ZY, Zhang X, Liang XB (2018) Multi-point forming of sandwich panels with egg-box-like cores and failure behaviors in forming process: analytical models, numerical and experimental investigations. Mater Des 160:1029–1041CrossRef
5.
Zurück zum Zitat Sun GY, Huo XT, Chen DD, Li Q (2017) Experimental and numerical study on honeycomb sandwich panels under bending and in-panel compression. Mater Des 133:154–168CrossRef Sun GY, Huo XT, Chen DD, Li Q (2017) Experimental and numerical study on honeycomb sandwich panels under bending and in-panel compression. Mater Des 133:154–168CrossRef
6.
Zurück zum Zitat Rejab MRM, Cantwell WJ (2013) The mechanical behaviour of corrugated-core sandwich panels. Compos Part B Eng 47:267–277CrossRef Rejab MRM, Cantwell WJ (2013) The mechanical behaviour of corrugated-core sandwich panels. Compos Part B Eng 47:267–277CrossRef
7.
Zurück zum Zitat Harte AM, Fleck NA, Ashby MF (2000) Sandwich panel design using aluminum alloy foam. Adv Eng Mater 2(4):219–222CrossRef Harte AM, Fleck NA, Ashby MF (2000) Sandwich panel design using aluminum alloy foam. Adv Eng Mater 2(4):219–222CrossRef
8.
Zurück zum Zitat Banhart J, Seeliger HW (2008) Aluminium foam sandwich panels: manufacture, metallurgy and applications. Adv Eng Mater 10(9):793–802CrossRef Banhart J, Seeliger HW (2008) Aluminium foam sandwich panels: manufacture, metallurgy and applications. Adv Eng Mater 10(9):793–802CrossRef
9.
Zurück zum Zitat Schwingel D, Seeliger HW, Vecchionacci C, Alwes D, Dittrich J (2007) Aluminium foam sandwich structures for space applications. Acta Astro 61(1-6):326–330CrossRef Schwingel D, Seeliger HW, Vecchionacci C, Alwes D, Dittrich J (2007) Aluminium foam sandwich structures for space applications. Acta Astro 61(1-6):326–330CrossRef
10.
Zurück zum Zitat Banhart J, Seeliger HW (2012) Recent trends in aluminum foam sandwich technology. Adv Eng Mater 14(12):1082–1087CrossRef Banhart J, Seeliger HW (2012) Recent trends in aluminum foam sandwich technology. Adv Eng Mater 14(12):1082–1087CrossRef
11.
Zurück zum Zitat Weiss M, Abeyrathna B, Pereira M (2018) Roll formability of aluminium foam sandwich panels. Int J Adv Manuf Technol 97(1-4):953–965CrossRef Weiss M, Abeyrathna B, Pereira M (2018) Roll formability of aluminium foam sandwich panels. Int J Adv Manuf Technol 97(1-4):953–965CrossRef
12.
Zurück zum Zitat Seung OB, Jae UC (2015) A study on the compression property of sandwich composite with porous core. Int J Precis Eng Manuf 16(6):1117–1122CrossRef Seung OB, Jae UC (2015) A study on the compression property of sandwich composite with porous core. Int J Precis Eng Manuf 16(6):1117–1122CrossRef
13.
Zurück zum Zitat D’Urso G, Maccarini G (2012) The formability of aluminum foam sandwich panels. Int J Mater Form 5(3):243–257CrossRef D’Urso G, Maccarini G (2012) The formability of aluminum foam sandwich panels. Int J Mater Form 5(3):243–257CrossRef
14.
Zurück zum Zitat Liu H, Cao ZK, Yao GC, Luo HJ, Zu GY (2013) Performance of aluminum foam–steel panel sandwich composites subjected to blast loading. Mater Des 47:483–488CrossRef Liu H, Cao ZK, Yao GC, Luo HJ, Zu GY (2013) Performance of aluminum foam–steel panel sandwich composites subjected to blast loading. Mater Des 47:483–488CrossRef
15.
Zurück zum Zitat Contorno D, Filice L, Fratini L, Micari F (2006) Forming of aluminum foam sandwich panels: numerical simulations and experimental tests. J Mater Process Technol 177(1-3):364–367CrossRef Contorno D, Filice L, Fratini L, Micari F (2006) Forming of aluminum foam sandwich panels: numerical simulations and experimental tests. J Mater Process Technol 177(1-3):364–367CrossRef
16.
Zurück zum Zitat Nassar H, Albakri M, Pan H, Khraisheh M (2012) On the gas pressure forming of aluminium foam sandwich panels: experiments and numerical simulations. CIRP Ann Manuf Technol 61(1):243–246CrossRef Nassar H, Albakri M, Pan H, Khraisheh M (2012) On the gas pressure forming of aluminium foam sandwich panels: experiments and numerical simulations. CIRP Ann Manuf Technol 61(1):243–246CrossRef
17.
Zurück zum Zitat Mata H, Santos AD, Parente MPL, Valente RAF, Fernandes AA, Jorge RN (2014) Study on the forming of sandwich shells with closed-cell foam cores. Int J Mater Form 7(4):413–424CrossRef Mata H, Santos AD, Parente MPL, Valente RAF, Fernandes AA, Jorge RN (2014) Study on the forming of sandwich shells with closed-cell foam cores. Int J Mater Form 7(4):413–424CrossRef
18.
Zurück zum Zitat Bucher T, Cardenas S, Verma R, Li W, Yao Y. L (2018) Laser forming of sandwich panels with metal foam cores. J Manuf Sci Eng 140(11) Bucher T, Cardenas S, Verma R, Li W, Yao Y. L (2018) Laser forming of sandwich panels with metal foam cores. J Manuf Sci Eng 140(11)
19.
Zurück zum Zitat Cai ZY, Wang SH, Li MZ (2008) Numerical investigation of multi-point forming process for sheet metal: wrinkling, dimpling and springback. Int J Adv Manuf Technol 37(9-10):927–936CrossRef Cai ZY, Wang SH, Li MZ (2008) Numerical investigation of multi-point forming process for sheet metal: wrinkling, dimpling and springback. Int J Adv Manuf Technol 37(9-10):927–936CrossRef
20.
Zurück zum Zitat Cai ZY, Wang SH, Xu XD, Li MZ (2009) Numerical simulation for the multi-point stretch forming process of sheet metal. J Mater Process Technol 209(1):396–407CrossRef Cai ZY, Wang SH, Xu XD, Li MZ (2009) Numerical simulation for the multi-point stretch forming process of sheet metal. J Mater Process Technol 209(1):396–407CrossRef
21.
Zurück zum Zitat Li MZ, Cai ZY, Sui Z, Yan QG (2002) Multi-point forming technology for sheet metal. J Mater Process Technol 129:333–338CrossRef Li MZ, Cai ZY, Sui Z, Yan QG (2002) Multi-point forming technology for sheet metal. J Mater Process Technol 129:333–338CrossRef
22.
Zurück zum Zitat Nayyeri MJ, Fatmehsari DH (2017) Numerical evaluation of the stacking effect of spheres on the mechanics of tailor-made aluminum foams. Compos Struct 159:316–326CrossRef Nayyeri MJ, Fatmehsari DH (2017) Numerical evaluation of the stacking effect of spheres on the mechanics of tailor-made aluminum foams. Compos Struct 159:316–326CrossRef
23.
Zurück zum Zitat Roohi AH, Naeini HM, Gollo MH, Soltanpour M, Abbaszadeh M (2015) On the random-based closed-cell metal foam modeling and its behavior in laser forming process. Opt Laser Technol 72:53–64CrossRef Roohi AH, Naeini HM, Gollo MH, Soltanpour M, Abbaszadeh M (2015) On the random-based closed-cell metal foam modeling and its behavior in laser forming process. Opt Laser Technol 72:53–64CrossRef
24.
Zurück zum Zitat Li L, Xue P, Chen Y, Butt HSU (2015) Insight into cell size effects on quasi-static and dynamic compressive properties of 3D foams. Mater Sci Eng:A 636:60–69CrossRef Li L, Xue P, Chen Y, Butt HSU (2015) Insight into cell size effects on quasi-static and dynamic compressive properties of 3D foams. Mater Sci Eng:A 636:60–69CrossRef
25.
Zurück zum Zitat Jeon I, Asahina T, Kang KJ, Im S, Lu TJ (2010) Finite element simulation of the plastic collapse of closed-cell aluminum foams with x-ray computed tomography. Mech Mater 42(3):227–236CrossRef Jeon I, Asahina T, Kang KJ, Im S, Lu TJ (2010) Finite element simulation of the plastic collapse of closed-cell aluminum foams with x-ray computed tomography. Mech Mater 42(3):227–236CrossRef
26.
Zurück zum Zitat Simone AE, Gibson LJ (1998) Effects of solid distribution on the stiffness and strength of metallic foams. Acta Mater 46(6):2139–2150CrossRef Simone AE, Gibson LJ (1998) Effects of solid distribution on the stiffness and strength of metallic foams. Acta Mater 46(6):2139–2150CrossRef
27.
Zurück zum Zitat Meguid SA, Cheon SS, El-Abbasi N (2002) FE modelling of deformation localization in metallic foams. Finite Elem Anal Design 38(7):631–643CrossRef Meguid SA, Cheon SS, El-Abbasi N (2002) FE modelling of deformation localization in metallic foams. Finite Elem Anal Design 38(7):631–643CrossRef
28.
Zurück zum Zitat Zhang M, Chen CJ, Huang Y, Zou T (2018) Bending processing and mechanism of laser forming pure aluminum metal foam. Int J Adv Manuf Technol 94(5-8):1849–1856CrossRef Zhang M, Chen CJ, Huang Y, Zou T (2018) Bending processing and mechanism of laser forming pure aluminum metal foam. Int J Adv Manuf Technol 94(5-8):1849–1856CrossRef
29.
Zurück zum Zitat Deshpande VS, Fleck NA (2000) Isotropic constitutive models for metallic foams. J Mech Phys Solids 48(6-7):1253–1283CrossRef Deshpande VS, Fleck NA (2000) Isotropic constitutive models for metallic foams. J Mech Phys Solids 48(6-7):1253–1283CrossRef
30.
Zurück zum Zitat Zhang L, Zhang J, Zhao GP (2015) Plastic Poisson’s ratio of closed-cell aluminum foams. Chin J Solid Mech 36(3):244–250 (in Chinese) Zhang L, Zhang J, Zhao GP (2015) Plastic Poisson’s ratio of closed-cell aluminum foams. Chin J Solid Mech 36(3):244–250 (in Chinese)
Metadaten
Titel
Numerical investigation on the plastic forming of aluminum foam sandwich panel based on three-dimensional mesoscopic and macroscopic models
verfasst von
Xi Zhang
Zhong-Yi Cai
Xiao-Bo Liang
Jia-Xin Gao
Publikationsdatum
16.07.2020
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 5-6/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05730-y

Weitere Artikel der Ausgabe 5-6/2020

The International Journal of Advanced Manufacturing Technology 5-6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.