Skip to main content
Erschienen in: Computational Mechanics 3/2015

01.09.2015 | Original Paper

Numerical modeling of shape memory alloy linear actuator

verfasst von: Jaronie Mohd Jani, Sunan Huang, Martin Leary, Aleksandar Subic

Erschienen in: Computational Mechanics | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The demand for shape memory alloy (SMA) actuators in high-technology applications is increasing; however, there exist technical challenges to the commercial application of SMA actuator technologies, especially associated with actuation duration. Excessive activation duration results in actuator damage due to overheating while excessive deactivation duration is not practical for high-frequency applications. Analytical and finite difference equation models were developed in this work to predict the activation and deactivation durations and associated SMA thermomechanical behavior under variable environmental and design conditions. Relevant factors, including latent heat effect, induced stress and material property variability are accommodated. An existing constitutive model was integrated into the proposed models to generate custom SMA stress–strain curves. Strong agreement was achieved between the proposed numerical models and experimental results; confirming their applicability for predicting the behavior of SMA actuators with variable thermomechanical conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Otsuka K, Wayman C (1998) Shape memory materials. Cambridge University Press, Cambridge Otsuka K, Wayman C (1998) Shape memory materials. Cambridge University Press, Cambridge
3.
Zurück zum Zitat Lagoudas DC (2010) Shape memory alloys: modeling and engineering applications, 1st edn. Springer, New York Lagoudas DC (2010) Shape memory alloys: modeling and engineering applications, 1st edn. Springer, New York
4.
Zurück zum Zitat Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng G 221:535–552CrossRef Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng G 221:535–552CrossRef
5.
Zurück zum Zitat Tadesse Y, Thayer N, Priya S (2010) Tailoring the response time of shape memory alloy wires through active cooling and pre-stress. J Intell Mater Syst Struct 21:19–40CrossRef Tadesse Y, Thayer N, Priya S (2010) Tailoring the response time of shape memory alloy wires through active cooling and pre-stress. J Intell Mater Syst Struct 21:19–40CrossRef
6.
Zurück zum Zitat Bhattacharyya A, Lagoudas DC, Wang Y, Kinra VK (1995) On the role of thermoelectric heat transfer in the design of SMA actuators: theoretical modeling and experiment. Smart Mater Struct 4:252CrossRef Bhattacharyya A, Lagoudas DC, Wang Y, Kinra VK (1995) On the role of thermoelectric heat transfer in the design of SMA actuators: theoretical modeling and experiment. Smart Mater Struct 4:252CrossRef
9.
Zurück zum Zitat Hunter IW, Hollerbach JM, Ballantyne J (1991) A comparative analysis of actuator technologies for robotics. Robot Rev 2:299–342 Hunter IW, Hollerbach JM, Ballantyne J (1991) A comparative analysis of actuator technologies for robotics. Robot Rev 2:299–342
10.
Zurück zum Zitat Liang C, Rogers C (1997) One-dimensional thermomechanical constitutive relations for shape memory materials. J Intell Mater Syst Struct 8:285–302CrossRef Liang C, Rogers C (1997) One-dimensional thermomechanical constitutive relations for shape memory materials. J Intell Mater Syst Struct 8:285–302CrossRef
11.
Zurück zum Zitat Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55:257–315CrossRef Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55:257–315CrossRef
16.
Zurück zum Zitat Çengel YA, Ghajar AJ (2011) Heat and mass transfer: fundamentals & applications. McGraw-Hill, New York Çengel YA, Ghajar AJ (2011) Heat and mass transfer: fundamentals & applications. McGraw-Hill, New York
17.
Zurück zum Zitat Majumdar P (2005) Computational methods for heat and mass transfer, 1st edn. Taylor and Francis, New York Majumdar P (2005) Computational methods for heat and mass transfer, 1st edn. Taylor and Francis, New York
20.
Zurück zum Zitat Neugebauer R, Bucht A, Pagel K, Jung J (2010) Numerical simulation of the activation behavior of thermal shape memory alloys. 76450J–76450J-12 Neugebauer R, Bucht A, Pagel K, Jung J (2010) Numerical simulation of the activation behavior of thermal shape memory alloys. 76450J–76450J-12
21.
Zurück zum Zitat Brinson LC (1993) One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J Intell Mater Syst Struct 4:229–242. doi:10.1177/1045389x9300400213 CrossRef Brinson LC (1993) One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J Intell Mater Syst Struct 4:229–242. doi:10.​1177/​1045389x93004002​13 CrossRef
23.
Zurück zum Zitat Kohl M (2010) Shape memory microactuators (microtechnology and MEMS), 1st edn. Springer, Berlin Kohl M (2010) Shape memory microactuators (microtechnology and MEMS), 1st edn. Springer, Berlin
24.
Zurück zum Zitat Otsuka K, Wayman C (1999) Shape memory materials. Cambridge University Press, Cambridge Otsuka K, Wayman C (1999) Shape memory materials. Cambridge University Press, Cambridge
25.
Zurück zum Zitat Walker J (2008) Fundamental of physics, 8th edn. Wiley, New York Walker J (2008) Fundamental of physics, 8th edn. Wiley, New York
26.
Zurück zum Zitat Novák V, Šittner P, Dayananda GN, Braz-Fernandes FM, Mahesh KK (2008) Electric resistance variation of NiTi shape memory alloy wires in thermomechanical tests: experiments and simulation. Mater Sci Eng A 481–482:127–133. doi:10.1016/j.msea.2007.02.162 CrossRef Novák V, Šittner P, Dayananda GN, Braz-Fernandes FM, Mahesh KK (2008) Electric resistance variation of NiTi shape memory alloy wires in thermomechanical tests: experiments and simulation. Mater Sci Eng A 481–482:127–133. doi:10.​1016/​j.​msea.​2007.​02.​162 CrossRef
30.
Zurück zum Zitat Tanaka K (1986) A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior. Res Mech 18:251–263 Tanaka K (1986) A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior. Res Mech 18:251–263
33.
Zurück zum Zitat Bergman TL, Lavine AS, Incropera FP, DeWitt DP (2011) Fundamentals of heat and mass transfer, 7th edn. Wiley Bergman TL, Lavine AS, Incropera FP, DeWitt DP (2011) Fundamentals of heat and mass transfer, 7th edn. Wiley
34.
Zurück zum Zitat Carslaw H, Jaeger JJC (1959) Conduction of heat in solids. Oxford University Press, London Carslaw H, Jaeger JJC (1959) Conduction of heat in solids. Oxford University Press, London
35.
Zurück zum Zitat Eisakhani A, Ma W, Gao J, Culham JR, Gorbet R (2011) Natural convection heat transfer modelling of shape memory alloy wire. In: Smart materials, structures and NDT in aerospace. CANSMART CINDE IZFP, Montreal Eisakhani A, Ma W, Gao J, Culham JR, Gorbet R (2011) Natural convection heat transfer modelling of shape memory alloy wire. In: Smart materials, structures and NDT in aerospace. CANSMART CINDE IZFP, Montreal
37.
Zurück zum Zitat Churchill SW, Bernstein M (1977) A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow. J Heat Transf 99:300–306. doi:10.1115/1.3450685 CrossRef Churchill SW, Bernstein M (1977) A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow. J Heat Transf 99:300–306. doi:10.​1115/​1.​3450685 CrossRef
38.
Zurück zum Zitat Van Der Hegge Zijnen BG (1956) Modified correlation formulae for the heat transfers by natural and by forced convection from horizontal cylinders. Appl Sci Res 6:129–140. doi:10.1007/BF03185032 Van Der Hegge Zijnen BG (1956) Modified correlation formulae for the heat transfers by natural and by forced convection from horizontal cylinders. Appl Sci Res 6:129–140. doi:10.​1007/​BF03185032
39.
Zurück zum Zitat Ozisik MN (1987) Basic heat transfer. R.E. Krieger Publishing Company, Malabar Ozisik MN (1987) Basic heat transfer. R.E. Krieger Publishing Company, Malabar
40.
Zurück zum Zitat Elahinia MH, Ahmadian M (2005) An enhanced SMA phenomenological model: II. The experimental study. Smart Mater Struct 14:1309CrossRef Elahinia MH, Ahmadian M (2005) An enhanced SMA phenomenological model: II. The experimental study. Smart Mater Struct 14:1309CrossRef
41.
Zurück zum Zitat Hoffman JD, Frankel S (2001) Numerical methods for engineers and scientists. CRC Press, Boca RatonMATH Hoffman JD, Frankel S (2001) Numerical methods for engineers and scientists. CRC Press, Boca RatonMATH
42.
Zurück zum Zitat Iserles A (1996) A first course in the numerical analysis of differential equations. Cambridge University Press, Cambridge Iserles A (1996) A first course in the numerical analysis of differential equations. Cambridge University Press, Cambridge
43.
Zurück zum Zitat Ozisik N (1994) Finite difference methods in heat transfer, 1st edn. CRC Press, Boca Raton Ozisik N (1994) Finite difference methods in heat transfer, 1st edn. CRC Press, Boca Raton
44.
Zurück zum Zitat Smith GD (1985) Numerical solution of partial differential equations: finite difference methods. Oxford University Press, OxfordMATH Smith GD (1985) Numerical solution of partial differential equations: finite difference methods. Oxford University Press, OxfordMATH
46.
Zurück zum Zitat Velázquez R, Pissaloux E (2012) Modelling and temperature control of shape memory alloys with fast electrical heating. Int J Mech Control 13:1–8 Velázquez R, Pissaloux E (2012) Modelling and temperature control of shape memory alloys with fast electrical heating. Int J Mech Control 13:1–8
47.
Zurück zum Zitat Incropera F, DeWitt D (1985) Introduction to heat transfer. Wiley, New York Incropera F, DeWitt D (1985) Introduction to heat transfer. Wiley, New York
48.
Zurück zum Zitat Shahin AR, Meckl PH, Jones JD, Thrasher MA (1994) Enhanced cooling of shape memory alloy wires using semiconductor ‘heat pump’ modules. J Intell Mater Syst Struct 5:95–104CrossRef Shahin AR, Meckl PH, Jones JD, Thrasher MA (1994) Enhanced cooling of shape memory alloy wires using semiconductor ‘heat pump’ modules. J Intell Mater Syst Struct 5:95–104CrossRef
50.
Zurück zum Zitat Wang B, Han J, Sun Y (2012) A finite element/finite difference scheme for the non-classical heat conduction and associated thermal stresses. Finite Elem Anal Des 50:201–206MathSciNetCrossRef Wang B, Han J, Sun Y (2012) A finite element/finite difference scheme for the non-classical heat conduction and associated thermal stresses. Finite Elem Anal Des 50:201–206MathSciNetCrossRef
53.
Zurück zum Zitat Leary M, Mac J, Mazur M, Schiavone F, Subic A (2010) Enhanced shape memory alloy actuators. In: Sustainable automotive technologies 2010. Springer, Berlin, pp 183–190 Leary M, Mac J, Mazur M, Schiavone F, Subic A (2010) Enhanced shape memory alloy actuators. In: Sustainable automotive technologies 2010. Springer, Berlin, pp 183–190
54.
Zurück zum Zitat Charney JG, Fjörtoft R, Von Neumann J (1950) Numerical integration of the barotropic vorticity equation. Tellus A 2:237–254MathSciNetCrossRef Charney JG, Fjörtoft R, Von Neumann J (1950) Numerical integration of the barotropic vorticity equation. Tellus A 2:237–254MathSciNetCrossRef
56.
Zurück zum Zitat Dynalloy, Inc. (2007) In: Dynalloy, Inc. (ed) Technical characteristics of Flexinol actuator wires. Dynalloy, Inc., Costa Mesa Dynalloy, Inc. (2007) In: Dynalloy, Inc. (ed) Technical characteristics of Flexinol actuator wires. Dynalloy, Inc., Costa Mesa
Metadaten
Titel
Numerical modeling of shape memory alloy linear actuator
verfasst von
Jaronie Mohd Jani
Sunan Huang
Martin Leary
Aleksandar Subic
Publikationsdatum
01.09.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2015
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-015-1180-z

Weitere Artikel der Ausgabe 3/2015

Computational Mechanics 3/2015 Zur Ausgabe

Neuer Inhalt