Skip to main content
Erschienen in: Programming and Computer Software 8/2023

01.12.2023

Numerical Simulation of Particulate Matter Transport in the Atmospheric Urban Boundary Layer Using the Lagrangian Approach: Physical Problems and Parallel Implementation

verfasst von: A. I. Varentsov, O. A. Imeev, A. V. Glazunov, E. V. Mortikov, V. M. Stepanenko

Erschienen in: Programming and Computer Software | Ausgabe 8/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents results of development of a numerical model of Lagrangian particle transport, as well as results of application of parallel computation methods to improve the efficiency of the software implementation of this model. The model is a software package that allows the transport and deposition of aerosol particles to be calculated taking into account properties of particles and the input data that describe atmospheric conditions and underlying surface geometry. The dynamic core, physical parameterizations, numerical implementation, and algorithm of the model are described. Results of successful verification of the model on analytical solutions are presented. Initially, the model was used for less computationally intensive problems. In this paper, given the need to use the model in more computationally intensive problems, we optimize the sequential software implementation of the model, as well as develop its software implementations that use parallel computing technologies (OpenMP, MPI, and CUDA). The results of testing different implementations of the model show that the optimization of the most computationally complex blocks in its sequential version can reduce the execution time by 27%. At the same time, the use of parallel computing technologies allows us to achieve acceleration by several orders of magnitude. The use of OpenMP in the dynamic block of the model provides almost 4-fold acceleration of this block; the use of MPI, almost 8-fold acceleration; and the use of CUDA, almost 16-fold acceleration (all other conditions being equal). We also give some recommendations on the choice of a parallel computing technology depending on the properties of a computing system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Thomson, D.J. and Wilson, J.D., History of Lagrangian stochastic models for turbulent dispersion, Geophysical Monograph Series, Lin, J., Brunner, D., Gerbig, C., Stohl, A., Luhar, A., and Webley, P., Washington: American Geophysical Union, 2013, pp. 19–36. https://doi.org/10.1029/2012GM001238CrossRef Thomson, D.J. and Wilson, J.D., History of Lagrangian stochastic models for turbulent dispersion, Geophysical Monograph Series, Lin, J., Brunner, D., Gerbig, C., Stohl, A., Luhar, A., and Webley, P., Washington: American Geophysical Union, 2013, pp. 19–36. https://​doi.​org/​10.​1029/​2012GM001238CrossRef
2.
Zurück zum Zitat Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F., Kanani-Sühring, F., Keck, M., Ketelsen, K., Letzel, M.O., Sühring, M., and Raasch, S., The parallelized large-eddy simulation model (PALM) version 4.0 for atmospheric and oceanic flows: Model formulation, recent developments, and future perspectives, Geosci. Model Dev., 2015, vol. 8, no. 8, pp. 2515–2551. https://doi.org/10.5194/gmd-8-2515-2015CrossRef Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F., Kanani-Sühring, F., Keck, M., Ketelsen, K., Letzel, M.O., Sühring, M., and Raasch, S., The parallelized large-eddy simulation model (PALM) version 4.0 for atmospheric and oceanic flows: Model formulation, recent developments, and future perspectives, Geosci. Model Dev., 2015, vol. 8, no. 8, pp. 2515–2551. https://​doi.​org/​10.​5194/​gmd-8-2515-2015CrossRef
3.
Zurück zum Zitat Huttner, S., Further development and application of the 3D microclimate simulation ENVI-met, 2012. Huttner, S., Further development and application of the 3D microclimate simulation ENVI-met, 2012.
4.
Zurück zum Zitat Sofiev, M., Vira, J., Kouznetsov, R., Prank, M., Soares, J., and Genikhovich, E., Construction of the SILAM Eulerian atmospheric dispersion model based on the advection algorithm of Michael Galperin, Geosci. Model Dev., 2015, vol. 8, no. 11, pp. 3497–3522. https://doi.org/10.5194/gmd-8-3497-2015CrossRef Sofiev, M., Vira, J., Kouznetsov, R., Prank, M., Soares, J., and Genikhovich, E., Construction of the SILAM Eulerian atmospheric dispersion model based on the advection algorithm of Michael Galperin, Geosci. Model Dev., 2015, vol. 8, no. 11, pp. 3497–3522. https://​doi.​org/​10.​5194/​gmd-8-3497-2015CrossRef
5.
Zurück zum Zitat Glazunov, A. and Rannik, Ü., Stepanenko, V., Lykosov, V., Auvinen, M., Vesala, T., and Mammarella, I., Large-eddy simulation and stochastic modeling of Lagrangian particles for footprint determination in the stable boundary layer, Geosci. Model Dev., 2016, vol. 9, no. 9, pp. 2925–2949. https://doi.org/10.5194/gmd-9-2925-2016CrossRef Glazunov, A. and Rannik, Ü., Stepanenko, V., Lykosov, V., Auvinen, M., Vesala, T., and Mammarella, I., Large-eddy simulation and stochastic modeling of Lagrangian particles for footprint determination in the stable boundary layer, Geosci. Model Dev., 2016, vol. 9, no. 9, pp. 2925–2949. https://​doi.​org/​10.​5194/​gmd-9-2925-2016CrossRef
6.
Zurück zum Zitat Auvinen, M., Järvi, L., Hellsten, A., Rannik, Ü., and Vesala, T., Numerical framework for the computation of urban flux footprints employing large-eddy simulation and Lagrangian stochastic modeling, Geosci. Model Dev., 2017, vol. 10, no. 11, pp. 4187–4205. https://doi.org/10.5194/gmd-10-4187-2017CrossRef Auvinen, M., Järvi, L., Hellsten, A., Rannik, Ü., and Vesala, T., Numerical framework for the computation of urban flux footprints employing large-eddy simulation and Lagrangian stochastic modeling, Geosci. Model Dev., 2017, vol. 10, no. 11, pp. 4187–4205. https://​doi.​org/​10.​5194/​gmd-10-4187-2017CrossRef
7.
Zurück zum Zitat Simon, H., Heusinger, J., Sinsel, T., Weber, S., and Bruse, M., Implementation of a Lagrangian stochastic particle trajectory model (LaStTraM) to simulate concentration and flux footprints using the microclimate model ENVI-met, Atmosphere, 2021, vol. 12, no. 8, p. 977. https://doi.org/10.3390/atmos12080977CrossRef Simon, H., Heusinger, J., Sinsel, T., Weber, S., and Bruse, M., Implementation of a Lagrangian stochastic particle trajectory model (LaStTraM) to simulate concentration and flux footprints using the microclimate model ENVI-met, Atmosphere, 2021, vol. 12, no. 8, p. 977. https://​doi.​org/​10.​3390/​atmos12080977CrossRef
9.
Zurück zum Zitat Ansys Fluent, Theory guide 12.0. https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/main_pre.htm. Accessed May 1, 2023. Ansys Fluent, Theory guide 12.0. https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/main_pre.htm. Accessed May 1, 2023.
13.
Zurück zum Zitat Wamser, C. and Lykossov, V.N., On the friction velocity during blowing snow, Beitr. Phys. Atmos., 1995, vol. 68, no. 1, pp. 85–94. https://epic.awi.de/id/eprint/3270 Wamser, C. and Lykossov, V.N., On the friction velocity during blowing snow, Beitr. Phys. Atmos., 1995, vol. 68, no. 1, pp. 85–94. https://​epic.​awi.​de/​id/​eprint/​3270
15.
Zurück zum Zitat Durbin, P.A., Stochastic differential equations and turbulent dispersion, NASA, 1983. https://ntrs.nasa.gov/citations/19830014275 Durbin, P.A., Stochastic differential equations and turbulent dispersion, NASA, 1983. https://ntrs.nasa.gov/citations/19830014275
19.
Zurück zum Zitat ENVI-met, https://www.envi-met.com. Accessed May 1, 2023. ENVI-met, https://​www.​envi-met.​com.​ Accessed May 1, 2023.
22.
Zurück zum Zitat Varentsov, A.I., Stepanenko, V.M., Mortikov, E.V., and Konstantinov, P.I., Numerical simulation of particle transport in the urban boundary layer with implications for SARS-CoV-2 virion distribution, IOP Conf. Ser. Earth Environ. Sci., 2020, vol. 611, no. 1, p. 012017. https://doi.org/10.1088/1755-1315/611/1/012017 Varentsov, A.I., Stepanenko, V.M., Mortikov, E.V., and Konstantinov, P.I., Numerical simulation of particle transport in the urban boundary layer with implications for SARS-CoV-2 virion distribution, IOP Conf. Ser. Earth Environ. Sci., 2020, vol. 611, no. 1, p. 012017. https://​doi.​org/​10.​1088/​1755-1315/​611/​1/​012017
24.
26.
Zurück zum Zitat Voevodin, V., Antonov, A., Nikitenko, D., Shvets, P., Sobolev, S., Sidorov, I., Stefanov, K., Voevodin, V., and Zhumatiy, S., Supercomputer Lomonosov-2: Large scale, deep monitoring, and fine analytics for the user community, Supercomput. Front. Innov., 2019, vol. 6, no. 2, pp. 4–11. https://doi.org/10.14529/jsfi190201CrossRef Voevodin, V., Antonov, A., Nikitenko, D., Shvets, P., Sobolev, S., Sidorov, I., Stefanov, K., Voevodin, V., and Zhumatiy, S., Supercomputer Lomonosov-2: Large scale, deep monitoring, and fine analytics for the user community, Supercomput. Front. Innov., 2019, vol. 6, no. 2, pp. 4–11. https://​doi.​org/​10.​14529/​jsfi190201CrossRef
Metadaten
Titel
Numerical Simulation of Particulate Matter Transport in the Atmospheric Urban Boundary Layer Using the Lagrangian Approach: Physical Problems and Parallel Implementation
verfasst von
A. I. Varentsov
O. A. Imeev
A. V. Glazunov
E. V. Mortikov
V. M. Stepanenko
Publikationsdatum
01.12.2023
Verlag
Pleiades Publishing
Erschienen in
Programming and Computer Software / Ausgabe 8/2023
Print ISSN: 0361-7688
Elektronische ISSN: 1608-3261
DOI
https://doi.org/10.1134/S0361768823080248

Weitere Artikel der Ausgabe 8/2023

Programming and Computer Software 8/2023 Zur Ausgabe

Premium Partner