Skip to main content
Erschienen in: Environmental Earth Sciences 11/2020

01.06.2020 | Original Article

Numerical simulation of temperature field and pressure field of the fracture system at Zhangzhou geothermal field

verfasst von: Yuchao Zeng, Bin He, Liansheng Tang, Nengyou Wu, Jing Song, Zhanlun Zhao

Erschienen in: Environmental Earth Sciences | Ausgabe 11/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Zhangzhou geothermal field is one of the highest temperature in southeastern coastal areas in China. Zhangzhou geothermal field is an uplift-fracture type geothermal resource, and there are several deep fractures in the geothermal field, controlling water flow and heat transfer. Presently there is no systematic study of the characteristics of the temperature field, pressure field and water density distribution in the geothermal field, and there is no systematic analysis of the main factors affecting the temperature field. In this work, geological features of the fracture system are considered, and a conceptual model of the fracture system is established. Based on these, the distribution of the temperature field, pressure field and water density field at Zhangzhou geothermal field are numerically studied, the controlling effect of the fracture system on the temperature field is analyzed, and the main factors affecting the temperature field, pressure field and water density field are discussed. The results indicate that the temperature field and water density field at Zhangzhou geothermal field are strongly controlled by the fracture system, and the zone of high-temperature and low-density is confined within the fracture system. Main factors affecting the temperature field and water density field include the permeability of the fracture zone, the thermal conductivity of rocks and the water recharge rate. Higher fracture zone permeability will reduce the temperature and increase the water density in the center of the fracture system. Higher water recharge rate will increase the temperature and reduce the water density in the center of the fracture system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Guillou-Frottier L, Carrė C, Bourgine B, Bouchot V, Genter A (2013) Structure of hydrothermal convection in the Upper Rhine Graben as inferred from corrected temperature data and basin-scale numerical models. J Volcanol Geoth Res 256:29–49CrossRef Guillou-Frottier L, Carrė C, Bourgine B, Bouchot V, Genter A (2013) Structure of hydrothermal convection in the Upper Rhine Graben as inferred from corrected temperature data and basin-scale numerical models. J Volcanol Geoth Res 256:29–49CrossRef
Zurück zum Zitat Han QZ, Zhuang QX (1988) Study on the source and pathway of hot water in Zhangzhou Basin, Fujian. Earth Sci J China Univ Geosci 13(3):271–277 (in Chinese) Han QZ, Zhuang QX (1988) Study on the source and pathway of hot water in Zhangzhou Basin, Fujian. Earth Sci J China Univ Geosci 13(3):271–277 (in Chinese)
Zurück zum Zitat Hayba D, Ingebritsen S (1997) Multiphase groundwater flow near cooling plutons. J Geophys Res 102(B6):12235–12252CrossRef Hayba D, Ingebritsen S (1997) Multiphase groundwater flow near cooling plutons. J Geophys Res 102(B6):12235–12252CrossRef
Zurück zum Zitat Hayba D, Ingebritsen S (1994) The computer model hydrotherm, a three-dimensional model to simulate ground-water flow and heat transport in the temperature range of 0 to 1200 C. U.S. geological survey. Water-Resour Invest Rep 94–4045. Hayba D, Ingebritsen S (1994) The computer model hydrotherm, a three-dimensional model to simulate ground-water flow and heat transport in the temperature range of 0 to 1200 C. U.S. geological survey. Water-Resour Invest Rep 94–4045.
Zurück zum Zitat Hu SB, Xiong LP (1990) Reservoir modeling of Zhangzhou low temperature fracture zone system, Fujian. China Geol Sci Technol Inf 9(4):65–71 Hu SB, Xiong LP (1990) Reservoir modeling of Zhangzhou low temperature fracture zone system, Fujian. China Geol Sci Technol Inf 9(4):65–71
Zurück zum Zitat Hu SB (1994) Distributed parameter model for the Zhangzhou geothermal field, China[C]. Geothermal training programme, Orkustofnun, Grensasvegur 9, IS-108 Reykjavik, Iceland, number 3, 1994. Hu SB (1994) Distributed parameter model for the Zhangzhou geothermal field, China[C]. Geothermal training programme, Orkustofnun, Grensasvegur 9, IS-108 Reykjavik, Iceland, number 3, 1994.
Zurück zum Zitat McKenna JR, Blackwell DD (2004) Numerical modeling of transient Basin and range extensional geothermal systems. Geothermics 33(4):457–476CrossRef McKenna JR, Blackwell DD (2004) Numerical modeling of transient Basin and range extensional geothermal systems. Geothermics 33(4):457–476CrossRef
Zurück zum Zitat Moeck IS (2014) Catalog of geothermal play types based on geologic controls. Renew Sustain Energy Rev 37:867–882CrossRef Moeck IS (2014) Catalog of geothermal play types based on geologic controls. Renew Sustain Energy Rev 37:867–882CrossRef
Zurück zum Zitat Nian WZ (2008) Formation model of geothermal field and its relation with control structure in Zhangzhou. Safety Environ Eng 15(4):30–33 (in Chinese) Nian WZ (2008) Formation model of geothermal field and its relation with control structure in Zhangzhou. Safety Environ Eng 15(4):30–33 (in Chinese)
Zurück zum Zitat Pang ZH (1988) Basic features and genesis analysis of Zhangzhou geothermal field. Earth Sci Inf 3:62–63 (in Chinese) Pang ZH (1988) Basic features and genesis analysis of Zhangzhou geothermal field. Earth Sci Inf 3:62–63 (in Chinese)
Zurück zum Zitat Pang ZH, Wang JY, Fan ZC (1990) Reservoir temperature of Zhangzhou geothermal field calculated by SiO2 hybrid model. Chin Sci Bull 1:57–59 (in Chinese) CrossRef Pang ZH, Wang JY, Fan ZC (1990) Reservoir temperature of Zhangzhou geothermal field calculated by SiO2 hybrid model. Chin Sci Bull 1:57–59 (in Chinese) CrossRef
Zurück zum Zitat Pruess K, Oldenburg C, Moridis G (1999) TOUGH2 user’s guide, Version 2.0. Lawrence Berkeley National Laboratory, BerkeleyCrossRef Pruess K, Oldenburg C, Moridis G (1999) TOUGH2 user’s guide, Version 2.0. Lawrence Berkeley National Laboratory, BerkeleyCrossRef
Zurück zum Zitat Scott S, Driesner T, Weis P (2016) The thermal structure and temporal evolution of high-enthalpy geothermal systems. Geothermics 62:33–47CrossRef Scott S, Driesner T, Weis P (2016) The thermal structure and temporal evolution of high-enthalpy geothermal systems. Geothermics 62:33–47CrossRef
Zurück zum Zitat Tester JW, Livesay B, Anderson BJ, Moore MC, Bathchelor AS, Nichols K, et al (2006) The future of geothermal energy: impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st century. An assessment by an MIT-led interdisciplinary panel. Tester JW, Livesay B, Anderson BJ, Moore MC, Bathchelor AS, Nichols K, et al (2006) The future of geothermal energy: impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st century. An assessment by an MIT-led interdisciplinary panel.
Zurück zum Zitat Wagner W, Kretzschmar HJ (2007) International steam tables-properties of water and steam based on the industrial formulation IAPWS-IF97, 2nd edn. Springer, Berlin Wagner W, Kretzschmar HJ (2007) International steam tables-properties of water and steam based on the industrial formulation IAPWS-IF97, 2nd edn. Springer, Berlin
Zurück zum Zitat Wang CP (2006) Prognoses of possible land subsidence brought on by extraction of Geothermal resources in Zhangzhou city, Fujian Province. Geol Fujian 25(3):141–148 (in Chinese) Wang CP (2006) Prognoses of possible land subsidence brought on by extraction of Geothermal resources in Zhangzhou city, Fujian Province. Geol Fujian 25(3):141–148 (in Chinese)
Zurück zum Zitat Weis P, Driesner T, Coumou D, Geiger S (2014) Hydrothermal, multiphase convection of H2O-NaCl fluids from ambient to magmatic temperatures: a new numerical scheme and benchmarks for code comparison. Geofluids 14:347–371CrossRef Weis P, Driesner T, Coumou D, Geiger S (2014) Hydrothermal, multiphase convection of H2O-NaCl fluids from ambient to magmatic temperatures: a new numerical scheme and benchmarks for code comparison. Geofluids 14:347–371CrossRef
Zurück zum Zitat Wisian KW, Blackwell DD (2004) Numerical modeling of Basin and range geothermal systems. Geothermics 33(6):713–741CrossRef Wisian KW, Blackwell DD (2004) Numerical modeling of Basin and range geothermal systems. Geothermics 33(6):713–741CrossRef
Zurück zum Zitat Xiong SB, Jin DM, Sun KZ (1991) Some characteristics of deep structure of the Zhangzhou geothermal field and its neighborhood in the Fujian Province. Acta Geophysica Sinica 34(1):55–63 (in Chinese) Xiong SB, Jin DM, Sun KZ (1991) Some characteristics of deep structure of the Zhangzhou geothermal field and its neighborhood in the Fujian Province. Acta Geophysica Sinica 34(1):55–63 (in Chinese)
Zurück zum Zitat Xiong LP, Wang JY, Pang ZH (1990a) Temperature pattern of Zhangzhou geothermal filed, Fujian Province, SE China. Scientia Geologica Sinica 1:70–80 (in Chinese) Xiong LP, Wang JY, Pang ZH (1990a) Temperature pattern of Zhangzhou geothermal filed, Fujian Province, SE China. Scientia Geologica Sinica 1:70–80 (in Chinese)
Zurück zum Zitat Xiong LP, Wang JY, Pang ZH (1990b) Convective and conductive heat flows in Zhangzhou geothermal field, Fujian Province, China. Chin J Geophys 33(6):702–711 (in Chinese) Xiong LP, Wang JY, Pang ZH (1990b) Convective and conductive heat flows in Zhangzhou geothermal field, Fujian Province, China. Chin J Geophys 33(6):702–711 (in Chinese)
Zurück zum Zitat Xu SG, Guo YS (2009) Geothermal energy foundation. Science Press, Beijing (In Chinese) Xu SG, Guo YS (2009) Geothermal energy foundation. Science Press, Beijing (In Chinese)
Zurück zum Zitat Yang ZK, Hu SB, Hochstein MP (1990) Conceptual model of the Zhangzhou low temperature system and its surrounding catchment (Fujian Province, China). Proceedings in Fifteenth Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford Yang ZK, Hu SB, Hochstein MP (1990) Conceptual model of the Zhangzhou low temperature system and its surrounding catchment (Fujian Province, China). Proceedings in Fifteenth Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford
Zurück zum Zitat Zeng Y, Su Z, Wu N (2013a) Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field. Energy 56(92):107 Zeng Y, Su Z, Wu N (2013a) Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field. Energy 56(92):107
Zurück zum Zitat Zeng Y, Tang L, Wu N (2017) Analysis of influencing factors of production performance of enhanced geothermal system: a case study at Yangbajing geothermal field. Energy 127:218–235CrossRef Zeng Y, Tang L, Wu N (2017) Analysis of influencing factors of production performance of enhanced geothermal system: a case study at Yangbajing geothermal field. Energy 127:218–235CrossRef
Zurück zum Zitat Zeng Y, Wu N, Su Z (2013b) Numerical simulation of heat production potential from hot dry rock by water circulating through a novel single vertical fracture at Desert Peak geothermal field. Energy 63:268–282CrossRef Zeng Y, Wu N, Su Z (2013b) Numerical simulation of heat production potential from hot dry rock by water circulating through a novel single vertical fracture at Desert Peak geothermal field. Energy 63:268–282CrossRef
Zurück zum Zitat Zeng Y, Zhan J, Wu N (2016a) Numerical simulation of electricity generation potential from fractured granite reservoir through vertical wells at Yangbajing geothermal field. Energy 103:290–304CrossRef Zeng Y, Zhan J, Wu N (2016a) Numerical simulation of electricity generation potential from fractured granite reservoir through vertical wells at Yangbajing geothermal field. Energy 103:290–304CrossRef
Zurück zum Zitat Zeng Y, Zhan J, Wu N (2016b) Numerical investigation of electricity generation potential from fractured granite reservoir by water circulating through three horizontal wells at Yangbajing geothermal field. Appl Therm Eng 104:1–15CrossRef Zeng Y, Zhan J, Wu N (2016b) Numerical investigation of electricity generation potential from fractured granite reservoir by water circulating through three horizontal wells at Yangbajing geothermal field. Appl Therm Eng 104:1–15CrossRef
Zurück zum Zitat Zhang QX (1988) Discussion on thermogenetic model of Zhangzhou geothermal field. Earth Sci 13(3):335–339 (in Chinese) Zhang QX (1988) Discussion on thermogenetic model of Zhangzhou geothermal field. Earth Sci 13(3):335–339 (in Chinese)
Zurück zum Zitat Zhong SJ, Xu WY (1988) Numerical simulation of Zhangzhou geothermal field and its formation mechanism [C]. The past forty years of Institute of Geophysics, Chinese Academy of Science (1950–1990). Chinese Society for Rock Mechanics and Engineering, Beijing (in Chinese) Zhong SJ, Xu WY (1988) Numerical simulation of Zhangzhou geothermal field and its formation mechanism [C]. The past forty years of Institute of Geophysics, Chinese Academy of Science (1950–1990). Chinese Society for Rock Mechanics and Engineering, Beijing (in Chinese)
Metadaten
Titel
Numerical simulation of temperature field and pressure field of the fracture system at Zhangzhou geothermal field
verfasst von
Yuchao Zeng
Bin He
Liansheng Tang
Nengyou Wu
Jing Song
Zhanlun Zhao
Publikationsdatum
01.06.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 11/2020
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-020-09018-y

Weitere Artikel der Ausgabe 11/2020

Environmental Earth Sciences 11/2020 Zur Ausgabe