Skip to main content
Erschienen in: Physics of Metals and Metallography 3/2021

01.03.2021 | ELECTRICAL AND MAGNETIC PROPERTIES

Numerical Simulation of the Influence of Inhomogeneities on the Properties of Magnetization Nanostructures

verfasst von: L. G. Korzunin, I. M. Izmozherov

Erschienen in: Physics of Metals and Metallography | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work provides a review of the existing micromagnetic models of the interaction of magnetization structures with inhomogeneities with different magnetic properties and geometries. Most attention is paid to models of the interaction of domain walls with defects in thin magnetic films. This work also gives a brief overview of studies of magnetic structures associated with inhomogeneities of systems that are currently being intensively studied, such as antidot arrays in permalloy, cobalt, and composite films, skyrmions and skyrmion lattices, and materials with a granular and porous structure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Hubert and R. Shäfer, Magnetic Domains: The Analysis of Magnetic Microstructures, Encyclopedia of Condensed Matter Physics, 3rd ed. (Springer, New York, 1998), p. 686. A. Hubert and R. Shäfer, Magnetic Domains: The Analysis of Magnetic Microstructures, Encyclopedia of Condensed Matter Physics, 3rd ed. (Springer, New York, 1998), p. 686.
2.
Zurück zum Zitat J. Zang and A. Hoffmann, Topology in Magnetism, Ed. by J. Zang, V. Cros, and A. Hoffmann (Springer, Berlin, 2018), p. 416.CrossRef J. Zang and A. Hoffmann, Topology in Magnetism, Ed. by J. Zang, V. Cros, and A. Hoffmann (Springer, Berlin, 2018), p. 416.CrossRef
3.
Zurück zum Zitat H. Barkhausen, “Zwei mit Hilfe der neuen Verstarker entdeckte Erscheinunften,” Phys. Z. 20, No. 17, 401–403 (1919). H. Barkhausen, “Zwei mit Hilfe der neuen Verstarker entdeckte Erscheinunften,” Phys. Z. 20, No. 17, 401–403 (1919).
4.
Zurück zum Zitat L. D. Landau and E. M. Lifshits, On the Theory of Dispersion of the Magnetic Permeability of Ferromagnetic Bodies, L.D. Landau Collected Works, Ed. by E.M. Lifshits (Nauka, Moscow, 1969), pp. 128–143 [in Russian]. L. D. Landau and E. M. Lifshits, On the Theory of Dispersion of the Magnetic Permeability of Ferromagnetic Bodies, L.D. Landau Collected Works, Ed. by E.M. Lifshits (Nauka, Moscow, 1969), pp. 128–143 [in Russian].
5.
Zurück zum Zitat A. A.Thiele, “Steady-state motion of magnetic domains,” Phys. Rev. Lett. 30, No. 6, 230–233 (1973).CrossRef A. A.Thiele, “Steady-state motion of magnetic domains,” Phys. Rev. Lett. 30, No. 6, 230–233 (1973).CrossRef
6.
Zurück zum Zitat W. Brown, Micromagnetics (Wiley, New York, 1963), p. 143. W. Brown, Micromagnetics (Wiley, New York, 1963), p. 143.
7.
Zurück zum Zitat L. Néel, Influence of Voids and Inclusions on the Coercive Force, Physics of Ferromagnetic Areas, Ed. by S. V. Vonsovskii (Izdatel’stvo Inostrannoi Literatury, Moscow, 1951), pp. 215–239 [in Russian]. L. Néel, Influence of Voids and Inclusions on the Coercive Force, Physics of Ferromagnetic Areas, Ed. by S. V. Vonsovskii (Izdatel’stvo Inostrannoi Literatury, Moscow, 1951), pp. 215–239 [in Russian].
8.
Zurück zum Zitat J. B. Goodenough, “A theory of domain creation and coercive force in polycrystalline ferromagnetics,” Phys. Rev. 95, No. 4, 917–932 (1954).CrossRef J. B. Goodenough, “A theory of domain creation and coercive force in polycrystalline ferromagnetics,” Phys. Rev. 95, No. 4, 917–932 (1954).CrossRef
9.
Zurück zum Zitat A. Aharoni, E. H. Frei, and S. Shtrikman, “Theoretical approach to the asymmetrical magnetization curve,” J. Appl. Phys. 30, No. 12, 1956–1961 (1959).CrossRef A. Aharoni, E. H. Frei, and S. Shtrikman, “Theoretical approach to the asymmetrical magnetization curve,” J. Appl. Phys. 30, No. 12, 1956–1961 (1959).CrossRef
10.
Zurück zum Zitat W. H. Meiklejohn and C. P. Bean, “New magnetic anisotropy,” Phys. Rev. 105, No. 3, 904–913 (1957).CrossRef W. H. Meiklejohn and C. P. Bean, “New magnetic anisotropy,” Phys. Rev. 105, No. 3, 904–913 (1957).CrossRef
11.
Zurück zum Zitat H. Kronmuller, “Micromagnetism in amorphous alloys,” IEEE Trans. Magn. 15, No. 5, 1218–1225 (1979).CrossRef H. Kronmuller, “Micromagnetism in amorphous alloys,” IEEE Trans. Magn. 15, No. 5, 1218–1225 (1979).CrossRef
12.
Zurück zum Zitat D. I. Paul, “General theory of the coercive force due to domain wall pinning,” J. Appl. Phys. 53, No. 3, 1649–1654 (1982).CrossRef D. I. Paul, “General theory of the coercive force due to domain wall pinning,” J. Appl. Phys. 53, No. 3, 1649–1654 (1982).CrossRef
13.
Zurück zum Zitat D. I. Paul, “Soliton theory and the dynamics of a ferromagnetic domain wall,” J. Phys. C: Solid State Phys. 12, 585–593 (1979).CrossRef D. I. Paul, “Soliton theory and the dynamics of a ferromagnetic domain wall,” J. Phys. C: Solid State Phys. 12, 585–593 (1979).CrossRef
14.
Zurück zum Zitat A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Adv. 4, No. 10, 107133 (2014).CrossRef A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Adv. 4, No. 10, 107133 (2014).CrossRef
15.
Zurück zum Zitat OOMMF Project at NIST. https:// math.nist.gov/oommf. Cited August 15, 2020. OOMMF Project at NIST. https:// math.nist.gov/oommf. Cited August 15, 2020.
16.
Zurück zum Zitat B. N. Filippov and M. N. Dubovik, “Influence of three-dimensional inhomogeneities of the magnetic parameters on the dynamics of vortex-like domain walls,” Phys. Solid State 56, No. 5, 967–974 (2014).CrossRef B. N. Filippov and M. N. Dubovik, “Influence of three-dimensional inhomogeneities of the magnetic parameters on the dynamics of vortex-like domain walls,” Phys. Solid State 56, No. 5, 967–974 (2014).CrossRef
17.
Zurück zum Zitat E. G. Ekomasov, R. R. Murtazin, and V. N. Nazarov, “One-dimensional dynamics of domain walls in a three-layer ferromagnetic structure with different parameters of magnetic anisotropy and exchange,” Fiz. Met. Metalloved. 115, No. 2, 125–131 (2013). E. G. Ekomasov, R. R. Murtazin, and V. N. Nazarov, “One-dimensional dynamics of domain walls in a three-layer ferromagnetic structure with different parameters of magnetic anisotropy and exchange,” Fiz. Met. Metalloved. 115, No. 2, 125–131 (2013).
18.
Zurück zum Zitat N. I. Noskova, V. V. Shulika, and A. P. Potapov, “On the nature of the hysteresis loop shift in amorphous soft magnetic alloys,” Mater. Trans. 42, No. 8, 1540–1542 (2001).CrossRef N. I. Noskova, V. V. Shulika, and A. P. Potapov, “On the nature of the hysteresis loop shift in amorphous soft magnetic alloys,” Mater. Trans. 42, No. 8, 1540–1542 (2001).CrossRef
19.
Zurück zum Zitat M. N. Dubovik, B. N. Filippov, and L. G. Korzunin, “Asymmetric pinning of vortex domain boundaries in thin films with in-plane anisotropy and inhomogeneity of saturation magnetization,” Fundamental’nye Problemy Sovremennogo Materialovedeniya 12, No. 4, 408–414 (2015). M. N. Dubovik, B. N. Filippov, and L. G. Korzunin, “Asymmetric pinning of vortex domain boundaries in thin films with in-plane anisotropy and inhomogeneity of saturation magnetization,” Fundamental’nye Problemy Sovremennogo Materialovedeniya 12, No. 4, 408–414 (2015).
20.
Zurück zum Zitat M. N. Dubovik, L. G. Korzunin, and B. N. Filippov, “Asymmetrical pinning of vortex domain walls in ferromagnetic films in areas with increased saturation magnetization,” Phys. Met. Metallogr. 116, No. 7, 656–662 (2015).CrossRef M. N. Dubovik, L. G. Korzunin, and B. N. Filippov, “Asymmetrical pinning of vortex domain walls in ferromagnetic films in areas with increased saturation magnetization,” Phys. Met. Metallogr. 116, No. 7, 656–662 (2015).CrossRef
21.
Zurück zum Zitat M. N. Dubovik, B. N. Filippov, and L. G. Korzunin, “Asymmetric pinning of vortex domain walls in magnetic films in regions with lowered saturation magnetization,” Phys. Met. Metallogr. 117, No. 4, 329–335 (2016).CrossRef M. N. Dubovik, B. N. Filippov, and L. G. Korzunin, “Asymmetric pinning of vortex domain walls in magnetic films in regions with lowered saturation magnetization,” Phys. Met. Metallogr. 117, No. 4, 329–335 (2016).CrossRef
22.
Zurück zum Zitat W. Zhu, J. Liao, Z. Zhang, B. Ma, Q. Y. Jin, Y. Liu, Z. Huang, X. Hu, A. Ding, J. Wu, and Y. Xu, “Depinning of vortex domain walls from an asymmetric notch in a permalloy nanowire,” Appl. Phys. Lett. 101, No. 8 (2012). W. Zhu, J. Liao, Z. Zhang, B. Ma, Q. Y. Jin, Y. Liu, Z. Huang, X. Hu, A. Ding, J. Wu, and Y. Xu, “Depinning of vortex domain walls from an asymmetric notch in a permalloy nanowire,” Appl. Phys. Lett. 101, No. 8 (2012).
23.
Zurück zum Zitat S. Moretti, M. Voto, and E. Martinez, “Dynamical depinning of chiral domain walls,” Phys. Rev. B 96, No. 5, 1–10 (2017).CrossRef S. Moretti, M. Voto, and E. Martinez, “Dynamical depinning of chiral domain walls,” Phys. Rev. B 96, No. 5, 1–10 (2017).CrossRef
24.
Zurück zum Zitat R. L. Novak, P. J. Metaxas, J. P. Jamet, R. Weil, J. Ferré, A. Mougin, S. Rohart, R. L. Stamps, P. J. Zermatten, G. Gaudin, V. Baltz, and B. Rodmacq, “Highly asymmetric magnetic domain wall propagation due to coupling to a periodic pinning potential,” J. Phys. D: Appl. Phys. 48, No. 23, 1–12 (2015).CrossRef R. L. Novak, P. J. Metaxas, J. P. Jamet, R. Weil, J. Ferré, A. Mougin, S. Rohart, R. L. Stamps, P. J. Zermatten, G. Gaudin, V. Baltz, and B. Rodmacq, “Highly asymmetric magnetic domain wall propagation due to coupling to a periodic pinning potential,” J. Phys. D: Appl. Phys. 48, No. 23, 1–12 (2015).CrossRef
25.
Zurück zum Zitat M. N. Dubovik and B. N. Filippov, “Influence of asymmetric pinning of vortex domain boundaries on the magnetization curve of films with plane anisotropy,” Fiz. Met. Metalloved. 118, No. 5, 464–468 (2017). M. N. Dubovik and B. N. Filippov, “Influence of asymmetric pinning of vortex domain boundaries on the magnetization curve of films with plane anisotropy,” Fiz. Met. Metalloved. 118, No. 5, 464–468 (2017).
26.
Zurück zum Zitat I. M. Izmozherov, E. Zh. Baikenov, M. N. Dubovik, and B. N. Filippov, “The influence of loop geometry on the asymmetric pinning of domain walls in films with uniaxial anisotropy,” Phys. Met. Metallogr. 119, No. 8, 713–719 (2018).CrossRef I. M. Izmozherov, E. Zh. Baikenov, M. N. Dubovik, and B. N. Filippov, “The influence of loop geometry on the asymmetric pinning of domain walls in films with uniaxial anisotropy,” Phys. Met. Metallogr. 119, No. 8, 713–719 (2018).CrossRef
27.
Zurück zum Zitat V. V. Zverev and B. N. Filippov, “Modeling of three-dimensional micromagnetic structures in magnetic-uniaxial films with in-plane anisotropy. Static structures,” Fiz. Met. Metalloved. 114, No. 2, 120–128 (2013). V. V. Zverev and B. N. Filippov, “Modeling of three-dimensional micromagnetic structures in magnetic-uniaxial films with in-plane anisotropy. Static structures,” Fiz. Met. Metalloved. 114, No. 2, 120–128 (2013).
28.
Zurück zum Zitat V. V. Zverev and B. N. Filippov, “Modeling of three-dimensional micromagnetic structures in magnetic-uniaxial films with in-plane anisotropy. Dynamics and structural rearrangements,” Phys. Met. Metallogr. 114, No. 2, 129–135 (2013). V. V. Zverev and B. N. Filippov, “Modeling of three-dimensional micromagnetic structures in magnetic-uniaxial films with in-plane anisotropy. Dynamics and structural rearrangements,” Phys. Met. Metallogr. 114, No. 2, 129–135 (2013).
29.
Zurück zum Zitat C. C. Wang, A. O. Adeyeye, and N. Singh, “Magnetic antidot nanostructures: Effect of lattice geometry,” Nanotechnology 17, No. 6, 1629–1636 (2006).CrossRef C. C. Wang, A. O. Adeyeye, and N. Singh, “Magnetic antidot nanostructures: Effect of lattice geometry,” Nanotechnology 17, No. 6, 1629–1636 (2006).CrossRef
30.
Zurück zum Zitat N. G. Deshpande, M. S. Seo, X. R. Jin, S. J. Lee, Y. P. Lee, J. Y. Rhee, and K. W. Kim, “Tailoring of magnetic properties of patterned cobalt antidots by simple manipulation of lattice symmetry,” Appl. Phys. Lett. 96, No. 12, 17–20 (2010).CrossRef N. G. Deshpande, M. S. Seo, X. R. Jin, S. J. Lee, Y. P. Lee, J. Y. Rhee, and K. W. Kim, “Tailoring of magnetic properties of patterned cobalt antidots by simple manipulation of lattice symmetry,” Appl. Phys. Lett. 96, No. 12, 17–20 (2010).CrossRef
31.
Zurück zum Zitat C. C. Ho, T. W. Hsieh, H. H. Kung, W. T. Juan, K. H. Lin, and W. L. Lee, “Reduced saturation magnetization in cobalt antidot thin films prepared by polyethylene oxide-assisted self-assembly of polystyrene nanospheres,” Appl. Phys. Lett. 96, No. 12, 1–3 (2010).CrossRef C. C. Ho, T. W. Hsieh, H. H. Kung, W. T. Juan, K. H. Lin, and W. L. Lee, “Reduced saturation magnetization in cobalt antidot thin films prepared by polyethylene oxide-assisted self-assembly of polystyrene nanospheres,” Appl. Phys. Lett. 96, No. 12, 1–3 (2010).CrossRef
32.
Zurück zum Zitat F. Fettar, L. Cagnon, and N. Rougemaille, “Three-dimensional magnetization profile and multiaxes exchange bias in Co antidot arrays,” Appl. Phys. Lett. 97, No. 19, 1–3 (2010).CrossRef F. Fettar, L. Cagnon, and N. Rougemaille, “Three-dimensional magnetization profile and multiaxes exchange bias in Co antidot arrays,” Appl. Phys. Lett. 97, No. 19, 1–3 (2010).CrossRef
33.
Zurück zum Zitat C. T. Yu, H. Jiang, L. Shen, P. J. Flanders, and G. J. Mankey, “The magnetic anisotropy and domain structure of permalloy antidot arrays,” J. Appl. Phys. 87, No. 9, 6322–6324 (2000).CrossRef C. T. Yu, H. Jiang, L. Shen, P. J. Flanders, and G. J. Mankey, “The magnetic anisotropy and domain structure of permalloy antidot arrays,” J. Appl. Phys. 87, No. 9, 6322–6324 (2000).CrossRef
34.
Zurück zum Zitat C. Yu, M. J. Pechan, and G. J. Mankey, “Dipolar induced, spatially localized resonance in magnetic antidot arrays,” Appl. Phys. Lett. 83, No. 19, 3948–3950 (2003).CrossRef C. Yu, M. J. Pechan, and G. J. Mankey, “Dipolar induced, spatially localized resonance in magnetic antidot arrays,” Appl. Phys. Lett. 83, No. 19, 3948–3950 (2003).CrossRef
35.
Zurück zum Zitat D. Tripathy, P. Vavassori, J. M. Porro, A. O. Adeyeye, and N. Singh, “Magnetization reversal and anisotropic magnetoresistance behavior in bicomponent antidot nanostructures,” Appl. Phys. Lett. 97, No. 4, 95–98 (2010).CrossRef D. Tripathy, P. Vavassori, J. M. Porro, A. O. Adeyeye, and N. Singh, “Magnetization reversal and anisotropic magnetoresistance behavior in bicomponent antidot nanostructures,” Appl. Phys. Lett. 97, No. 4, 95–98 (2010).CrossRef
36.
Zurück zum Zitat S. Tacchi, B. Botters, M. Madami, J. W. Klos, M. L. Sokolovskyy, M. Krawczyk, G. Gubbiotti, G. Carlotti, A. O. Adeyeye, S. Neusser, and D. Grundler, “Mode conversion from quantized to propagating spin waves in a rhombic antidot lattice supporting spin wave nanochannels,” Phys. Rev. B 86, No. 1, 1–12 (2012).CrossRef S. Tacchi, B. Botters, M. Madami, J. W. Klos, M. L. Sokolovskyy, M. Krawczyk, G. Gubbiotti, G. Carlotti, A. O. Adeyeye, S. Neusser, and D. Grundler, “Mode conversion from quantized to propagating spin waves in a rhombic antidot lattice supporting spin wave nanochannels,” Phys. Rev. B 86, No. 1, 1–12 (2012).CrossRef
37.
Zurück zum Zitat J. Ding, D. Tripathy, and A. O. Adeyeye, “Effect of antidot diameter on the dynamic response of nanoscale antidot arrays,” J. Appl. Phys. 109, No. 7, 1–4 (2011).CrossRef J. Ding, D. Tripathy, and A. O. Adeyeye, “Effect of antidot diameter on the dynamic response of nanoscale antidot arrays,” J. Appl. Phys. 109, No. 7, 1–4 (2011).CrossRef
38.
Zurück zum Zitat A. Toporov, R. M. Langford, and A. K. Petford-Long, “Lorentz transmission electron microscopy of focused ion beam patterned magnetic antidot arrays,” Appl. Phys. Lett. 77, No. 19, 3063–3065 (2000).CrossRef A. Toporov, R. M. Langford, and A. K. Petford-Long, “Lorentz transmission electron microscopy of focused ion beam patterned magnetic antidot arrays,” Appl. Phys. Lett. 77, No. 19, 3063–3065 (2000).CrossRef
39.
Zurück zum Zitat L. Torres, L. Lopez-Diaz, and J. Iñiguez, “Micromagnetic tailoring of periodic antidot permalloy arrays for high density storage,” Appl. Phys. Lett. 73, No. 25, 3766–3768 (1998).CrossRef L. Torres, L. Lopez-Diaz, and J. Iñiguez, “Micromagnetic tailoring of periodic antidot permalloy arrays for high density storage,” Appl. Phys. Lett. 73, No. 25, 3766–3768 (1998).CrossRef
40.
Zurück zum Zitat R. P. Cowburn, A. O. Adeyeye, and J. A. C. Bland, “Magnetic domain formation in lithographically defined antidot Permalloy arrays,” Appl. Phys. Lett. 70, No. 17, 2309–2311 (1997).CrossRef R. P. Cowburn, A. O. Adeyeye, and J. A. C. Bland, “Magnetic domain formation in lithographically defined antidot Permalloy arrays,” Appl. Phys. Lett. 70, No. 17, 2309–2311 (1997).CrossRef
41.
Zurück zum Zitat Z. L. Xiao, C. Y. Han, U. Welp, H. H. Wang, V. K. Vlasko-Vlasov, W. K. Kwok, D. J. Miller, J. M. Hiller, R. E. Cook, G. A. Willing, and G. W. Crabtree, “Nickel antidot arrays on anodic alumina substrates,” Appl. Phys. Lett. 81, No. 15, 2869–2871 (2002).CrossRef Z. L. Xiao, C. Y. Han, U. Welp, H. H. Wang, V. K. Vlasko-Vlasov, W. K. Kwok, D. J. Miller, J. M. Hiller, R. E. Cook, G. A. Willing, and G. W. Crabtree, “Nickel antidot arrays on anodic alumina substrates,” Appl. Phys. Lett. 81, No. 15, 2869–2871 (2002).CrossRef
42.
Zurück zum Zitat D. Navas, M. Hernández-V́lez, M. Vázquez, W. Lee, and K. Nielsch, “Ordered Ni nanohole arrays with engineered geometrical aspects and magnetic anisotropy,” Appl. Phys. Lett. 90, No. 19, 1–4 (2007).CrossRef D. Navas, M. Hernández-V́lez, M. Vázquez, W. Lee, and K. Nielsch, “Ordered Ni nanohole arrays with engineered geometrical aspects and magnetic anisotropy,” Appl. Phys. Lett. 90, No. 19, 1–4 (2007).CrossRef
43.
Zurück zum Zitat R. Mandal, S. Saha, D. Kumar, S. Barman, S. Pal, K. Das, A. K. Raychaudhuri, Y. Fukuma, Y. Otani, and A. Barman, “Optically induced tunable magnetization dynamics in nanoscale Co antidot lattices,” ACS Nano 6, No. 4, 3397–3403 (2012).CrossRef R. Mandal, S. Saha, D. Kumar, S. Barman, S. Pal, K. Das, A. K. Raychaudhuri, Y. Fukuma, Y. Otani, and A. Barman, “Optically induced tunable magnetization dynamics in nanoscale Co antidot lattices,” ACS Nano 6, No. 4, 3397–3403 (2012).CrossRef
44.
Zurück zum Zitat C. Castán-Guerrero, J. Herrero-Albillos, J. Bartolomé, F. Bartolomé, L. A. Rodríguez, C. Magén, F. Kronast, P. Gawronski, O. Chubykalo-Fesenko, K. J. Merazzo, P. Vavassori, P. Strichovanec, J. Sesé, and L. M. García, “Magnetic antidot to dot crossover in Co and Py nanopatterned thin films,” Phys. Rev. B 89, No. 14, 1–10 (2014).CrossRef C. Castán-Guerrero, J. Herrero-Albillos, J. Bartolomé, F. Bartolomé, L. A. Rodríguez, C. Magén, F. Kronast, P. Gawronski, O. Chubykalo-Fesenko, K. J. Merazzo, P. Vavassori, P. Strichovanec, J. Sesé, and L. M. García, “Magnetic antidot to dot crossover in Co and Py nanopatterned thin films,” Phys. Rev. B 89, No. 14, 1–10 (2014).CrossRef
45.
Zurück zum Zitat S. Michea, J. L. Palma, R. Lavin, J. Briones, J. Escrig, J. C. Denardin, and R. L. Rodríguez-Suárez, “Tailoring the magnetic properties of cobalt antidot arrays by varying the pore size and degree of disorder,” J. Phys. D: Appl. Phys. 47, No. 33, 1–8 (2014).CrossRef S. Michea, J. L. Palma, R. Lavin, J. Briones, J. Escrig, J. C. Denardin, and R. L. Rodríguez-Suárez, “Tailoring the magnetic properties of cobalt antidot arrays by varying the pore size and degree of disorder,” J. Phys. D: Appl. Phys. 47, No. 33, 1–8 (2014).CrossRef
46.
Zurück zum Zitat A. Barman, “Control of magnonic spectra in cobalt nanohole arrays: The effects of density, symmetry and defects,” J. Phys. D: Appl. Phys. 43, No. 19, 1–7 (2010).CrossRef A. Barman, “Control of magnonic spectra in cobalt nanohole arrays: The effects of density, symmetry and defects,” J. Phys. D: Appl. Phys. 43, No. 19, 1–7 (2010).CrossRef
47.
Zurück zum Zitat C. C. Wang, A. O. Adeyeye, and N. Singh, “Magnetic and transport properties of multilayer nanoscale antidot arrays,” Appl. Phys. Lett. 88, No. 22, 1–4 (2006). C. C. Wang, A. O. Adeyeye, and N. Singh, “Magnetic and transport properties of multilayer nanoscale antidot arrays,” Appl. Phys. Lett. 88, No. 22, 1–4 (2006).
48.
Zurück zum Zitat F. J. Castaño, K. Nielsch, C. A. Ross, J. W. A. Robinson, and R. Krishnan, “Anisotropy and magnetotransport in ordered magnetic antidot arrays,” Appl. Phys. Lett. 85, No. 14, 2872–2874 (2004).CrossRef F. J. Castaño, K. Nielsch, C. A. Ross, J. W. A. Robinson, and R. Krishnan, “Anisotropy and magnetotransport in ordered magnetic antidot arrays,” Appl. Phys. Lett. 85, No. 14, 2872–2874 (2004).CrossRef
49.
Zurück zum Zitat A. O. Adeyeye, M. T. Win, T. A. Tan, G. S. Chong, V. Ng, and T. S. Low, “Planar Hall effect and magnetoresistance in Co/Cu multilayer films,” Sens. Actuators, A 116, No. 1, 95–102 (2004).CrossRef A. O. Adeyeye, M. T. Win, T. A. Tan, G. S. Chong, V. Ng, and T. S. Low, “Planar Hall effect and magnetoresistance in Co/Cu multilayer films,” Sens. Actuators, A 116, No. 1, 95–102 (2004).CrossRef
50.
Zurück zum Zitat X. K. Hu, S. Sievers, A. Muller, V. Janke, and H. W. Schumacher, “Classification of super domains and super domain walls in permalloy antidot lattices,” Phys. Rev. B 84, No. 2, 2–7 (2011).CrossRef X. K. Hu, S. Sievers, A. Muller, V. Janke, and H. W. Schumacher, “Classification of super domains and super domain walls in permalloy antidot lattices,” Phys. Rev. B 84, No. 2, 2–7 (2011).CrossRef
51.
Zurück zum Zitat X. K. Hu, S. Sievers, A. Muller, and H. W. Schumacher, “The influence of individual lattice defects on the domain structure in magnetic antidot lattices,” J. Appl. Phys. 113, No. 10, 1–6 (2013).CrossRef X. K. Hu, S. Sievers, A. Muller, and H. W. Schumacher, “The influence of individual lattice defects on the domain structure in magnetic antidot lattices,” J. Appl. Phys. 113, No. 10, 1–6 (2013).CrossRef
52.
Zurück zum Zitat S. Mallick, S. S. Mishra, and S. Bedanta, “Relaxation dynamics in magnetic antidot lattice arrays of Co/Pt with perpendicular anisotropy,” Sci. Rep. 8, No. 1, 1–8 (2018).CrossRef S. Mallick, S. S. Mishra, and S. Bedanta, “Relaxation dynamics in magnetic antidot lattice arrays of Co/Pt with perpendicular anisotropy,” Sci. Rep. 8, No. 1, 1–8 (2018).CrossRef
53.
Zurück zum Zitat L. J. Heyderman, F. Nolting, D. Backes, S. Czekaj, L. Lopez-Diaz, M. Klaui, U. Rudiger, C. A. F. Vaz, J. A. C. Bland, R. J. Matelon, U. G. Volkmann, and P. Fischer, “Magnetization reversal in cobalt antidot arrays,” Phys. Rev. B 73, No. 21, 1–12 (2006).CrossRef L. J. Heyderman, F. Nolting, D. Backes, S. Czekaj, L. Lopez-Diaz, M. Klaui, U. Rudiger, C. A. F. Vaz, J. A. C. Bland, R. J. Matelon, U. G. Volkmann, and P. Fischer, “Magnetization reversal in cobalt antidot arrays,” Phys. Rev. B 73, No. 21, 1–12 (2006).CrossRef
54.
Zurück zum Zitat N. Tahir, M. Zelent, R. Gieniusz, M. Krawczyk, A. Maziewski, T. Wojciechowski, J. Ding, and A. O. Adeyeye, “Magnetization reversal mechanism in patterned (square to wave-like) Py antidot lattices, J. Phys. D: Appl. Phys.” 50, No. 2, 025004 (2017).CrossRef N. Tahir, M. Zelent, R. Gieniusz, M. Krawczyk, A. Maziewski, T. Wojciechowski, J. Ding, and A. O. Adeyeye, “Magnetization reversal mechanism in patterned (square to wave-like) Py antidot lattices, J. Phys. D: Appl. Phys.” 50, No. 2, 025004 (2017).CrossRef
55.
Zurück zum Zitat Y. Liu and A. Du, “Arrangement effects of triangular defects on magnetization reversal process in a permalloy dot,” J. Met., Mater. Miner. 323, 461–464 (2011). Y. Liu and A. Du, “Arrangement effects of triangular defects on magnetization reversal process in a permalloy dot,” J. Met., Mater. Miner. 323, 461–464 (2011).
56.
Zurück zum Zitat Y. H. Liu and Y. Q. Li, “A mechanism to pin skyrmions in chiral magnets,” J. Phys.: Condens. Matter. 25, No. 7, 1–8 (2013). Y. H. Liu and Y. Q. Li, “A mechanism to pin skyrmions in chiral magnets,” J. Phys.: Condens. Matter. 25, No. 7, 1–8 (2013).
57.
Zurück zum Zitat U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, “Spontaneous skyrmion ground states in magnetic metals,” Nature 442, No. 7104, 797–801 (2006).CrossRef U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, “Spontaneous skyrmion ground states in magnetic metals,” Nature 442, No. 7104, 797–801 (2006).CrossRef
58.
Zurück zum Zitat S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet,” Science 323, No. 5916, 915–919 (2009).CrossRef S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet,” Science 323, No. 5916, 915–919 (2009).CrossRef
59.
Zurück zum Zitat A. Fert, V. Cros, and J. Sampaio, “Skyrmions on the track,” Nat. Nanotechnol. 8, No. 3, 152–156 (2013).CrossRef A. Fert, V. Cros, and J. Sampaio, “Skyrmions on the track,” Nat. Nanotechnol. 8, No. 3, 152–156 (2013).CrossRef
60.
Zurück zum Zitat X. Zhang, M. Ezawa, and Y. Zhou, “Magnetic skyrmion logic gates: Conversion, duplication and merging of skyrmions,” Sci. Rep. 5, 1–8 (2015). X. Zhang, M. Ezawa, and Y. Zhou, “Magnetic skyrmion logic gates: Conversion, duplication and merging of skyrmions,” Sci. Rep. 5, 1–8 (2015).
61.
Zurück zum Zitat M. Sapozhnikov, “Skyrmion lattice in a magnetic film with spatially modulated material parameters,” J. Met., Mater. Miner. 396, 338–344 (2015). M. Sapozhnikov, “Skyrmion lattice in a magnetic film with spatially modulated material parameters,” J. Met., Mater. Miner. 396, 338–344 (2015).
62.
Zurück zum Zitat R. M. Vakhitov, A. A. Akhmetova, and R. V. Solonetskii, “Vortex-like structures at the defects of uniaxial films,” Phys. Solid State 61, No. 3, 319–325 (2019).CrossRef R. M. Vakhitov, A. A. Akhmetova, and R. V. Solonetskii, “Vortex-like structures at the defects of uniaxial films,” Phys. Solid State 61, No. 3, 319–325 (2019).CrossRef
63.
Zurück zum Zitat C. Song, C. Jin, H. Xia, Y. Ma, J. Wang, J. Wang, and Q. Liu, “Interaction between defect and skyrmion in nanodisk,” http://arxiv.org/abs/2005.03385. C. Song, C. Jin, H. Xia, Y. Ma, J. Wang, J. Wang, and Q. Liu, “Interaction between defect and skyrmion in nanodisk,” http://​arxiv.​org/​abs/​2005.​03385.​
64.
Zurück zum Zitat J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Universal current-velocity relation of skyrmion motion in chiral magnets,” Nat. Commun. 4, 1–8 (2013).CrossRef J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Universal current-velocity relation of skyrmion motion in chiral magnets,” Nat. Commun. 4, 1–8 (2013).CrossRef
65.
Zurück zum Zitat C. Deger, I. Yavuz, and F. Yildiz, “Current-driven coherent skyrmion generation,” Sci. Rep. 9, No. 1, 1–8 (2019).CrossRef C. Deger, I. Yavuz, and F. Yildiz, “Current-driven coherent skyrmion generation,” Sci. Rep. 9, No. 1, 1–8 (2019).CrossRef
66.
Zurück zum Zitat A. Michels, S. Erokhin, D. Berkov, and N. Gorn, “Micromagnetic simulation of magnetic small-angle neutron scattering from two-phase nanocomposites,” J. Met., Mater. Miner. 350, 55–68 (2014). A. Michels, S. Erokhin, D. Berkov, and N. Gorn, “Micromagnetic simulation of magnetic small-angle neutron scattering from two-phase nanocomposites,” J. Met., Mater. Miner. 350, 55–68 (2014).
67.
Zurück zum Zitat S. Erokhin and D. Berkov, “Optimization of nanocomposite materials for permanent magnets: micromagnetic simulations of the effects of intergrain exchange and the shapes of hard grains,” Phys. Rev. Appl. 7, No. 1, 1–15 (2017).CrossRef S. Erokhin and D. Berkov, “Optimization of nanocomposite materials for permanent magnets: micromagnetic simulations of the effects of intergrain exchange and the shapes of hard grains,” Phys. Rev. Appl. 7, No. 1, 1–15 (2017).CrossRef
68.
Zurück zum Zitat P. N. Solovev, A. V. Izotov, and B. A. Belyaev, “Micromagnetic simulation of magnetization reversal processes in thin obliquely deposited films,” J. Sib. Fed. Univ., Math. Phys. 9, No. 4, 524–527 (2016). P. N. Solovev, A. V. Izotov, and B. A. Belyaev, “Micromagnetic simulation of magnetization reversal processes in thin obliquely deposited films,” J. Sib. Fed. Univ., Math. Phys. 9, No. 4, 524–527 (2016).
69.
Zurück zum Zitat M. Menarini, M. V. Lubarda, R. Chang, S. Li, S. Fu, B. Livshitz, and V. Lomakin, “Micromagnetic simulator for complex granular systems based on Voronoi tessellation,” J. Met., Mater. Miner. 482, 350–357 (2019). M. Menarini, M. V. Lubarda, R. Chang, S. Li, S. Fu, B. Livshitz, and V. Lomakin, “Micromagnetic simulator for complex granular systems based on Voronoi tessellation,” J. Met., Mater. Miner. 482, 350–357 (2019).
70.
Zurück zum Zitat N. A. Balakirev and V. A. Zhikharev, “Computer simulation of growth and magnetic properties of quasi 2D magnetic cluster,” Magn. Reson. Solids 17, No. 2, 1–6 (2015). N. A. Balakirev and V. A. Zhikharev, “Computer simulation of growth and magnetic properties of quasi 2D magnetic cluster,” Magn. Reson. Solids 17, No. 2, 1–6 (2015).
Metadaten
Titel
Numerical Simulation of the Influence of Inhomogeneities on the Properties of Magnetization Nanostructures
verfasst von
L. G. Korzunin
I. M. Izmozherov
Publikationsdatum
01.03.2021
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 3/2021
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21030091

Weitere Artikel der Ausgabe 3/2021

Physics of Metals and Metallography 3/2021 Zur Ausgabe