Skip to main content
Erschienen in: Water Resources Management 9/2020

01.07.2020

Numerical Simulation of the Water Surface Movement with Macroscopic Particles of Dam Break Flow for Various Obstacles

verfasst von: Alibek Issakhov, Medina Imanberdiyeva

Erschienen in: Water Resources Management | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the movement of the water surface with macroscopic particles during a dam break flow using the volume of fluid (VOF) methods and the DPM and MPM models were numerically simulated. The numerical simulation is based on the averaged Navier-Stokes equations, and was closed by the LES turbulent model, representing by the incompressible viscous fluid flow, equations for the phase and particle motion. The PISO numerical algorithm was chosen to solve this equation system numerically. The accuracy of the mathematical model and the selected numerical scheme were compared with experimental measurements on the destruction of the dam break problem. In test problem, the values were matched with measurement values and simulation data of other authors, as well as the improved model illustrated values close to the measured values. A matching was also made of the computational data with measured values using different turbulent models. One problem has been considered, the problem is water movement with macroscopic particles, through a heterogeneous terrain and a dam that has a hole. With the help of the problems, it was determined the flooding zones and the time of flooding evacuating people from dangerous areas.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agrawal M, Bakker A (2004) Macroscopic particle model – tracking big particles in CFD, AIChE 2004 annual meeting particle technology forum - paper 268b November 7–12. Texas, USA, Austin Agrawal M, Bakker A (2004) Macroscopic particle model – tracking big particles in CFD, AIChE 2004 annual meeting particle technology forum - paper 268b November 7–12. Texas, USA, Austin
Zurück zum Zitat Amicarelli A, Kocak B, Sibilla S, Grabe J (2017) A 3D smoothed particle hydrodynamics model for erosional dam-break floods. Int J Comput Fluid Dynamics 31(10):413–434 Amicarelli A, Kocak B, Sibilla S, Grabe J (2017) A 3D smoothed particle hydrodynamics model for erosional dam-break floods. Int J Comput Fluid Dynamics 31(10):413–434
Zurück zum Zitat Azimian M, Lichti M, Bart H-J (2014) Investigation of particulate flow in a channel by application of CFD, DEM and LDA/PDA. The Open Chem Eng J 8:1–11 Azimian M, Lichti M, Bart H-J (2014) Investigation of particulate flow in a channel by application of CFD, DEM and LDA/PDA. The Open Chem Eng J 8:1–11
Zurück zum Zitat Bhaganagar K, Pillalamarri NR (2017) Lock-exchange release density currents over three-dimensional regular roughness elements. J Fluid Mech 832:793–824 Bhaganagar K, Pillalamarri NR (2017) Lock-exchange release density currents over three-dimensional regular roughness elements. J Fluid Mech 832:793–824
Zurück zum Zitat Cao Z, Xia C, Pender G, Liu Q (2017) Shallow water hydro-sediment-Morphodynamic equations for fluvial processes. J Hydraul Eng 143(5):02517001 Cao Z, Xia C, Pender G, Liu Q (2017) Shallow water hydro-sediment-Morphodynamic equations for fluvial processes. J Hydraul Eng 143(5):02517001
Zurück zum Zitat Chara Z, Kysela B (2018) Application of macroscopic particle model to simulate motion of large particles. AIP Conf Proceedings 1978:030031 Chara Z, Kysela B (2018) Application of macroscopic particle model to simulate motion of large particles. AIP Conf Proceedings 1978:030031
Zurück zum Zitat Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191(2):448–475 Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191(2):448–475
Zurück zum Zitat Crespo AJ, Gуmez-Gesteira M, Dalrymple RA (2008) Modeling dam break behavior over a wet bed by a SPH technique. J Waterw Port Coast Ocean Eng 134(6):313–320 Crespo AJ, Gуmez-Gesteira M, Dalrymple RA (2008) Modeling dam break behavior over a wet bed by a SPH technique. J Waterw Port Coast Ocean Eng 134(6):313–320
Zurück zum Zitat Crespo AJC, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, Garcia-Feal O (2015) DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput Phys Commun 187:204–216 Crespo AJC, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, Garcia-Feal O (2015) DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput Phys Commun 187:204–216
Zurück zum Zitat Deardorff J (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J Fluid Mech 41(2):453–480 Deardorff J (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J Fluid Mech 41(2):453–480
Zurück zum Zitat Ferrari A, Fraccarollo L, Dumbser M, Toro EF, Armanini A (2010) Three-dimensional flow evolution after a dam break. J Fluid Mech 663:456–477 Ferrari A, Fraccarollo L, Dumbser M, Toro EF, Armanini A (2010) Three-dimensional flow evolution after a dam break. J Fluid Mech 663:456–477
Zurück zum Zitat Fondelli T, Andreini A, Facchini B (2015) Numerical simulation of dam-break problem using an adaptive meshing approach. Energy Procedia 82:309–315 Fondelli T, Andreini A, Facchini B (2015) Numerical simulation of dam-break problem using an adaptive meshing approach. Energy Procedia 82:309–315
Zurück zum Zitat Fraccarollo L, Toro EF (1995) Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems. J Hydraul Res 33(6):843–864 Fraccarollo L, Toro EF (1995) Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems. J Hydraul Res 33(6):843–864
Zurück zum Zitat Haltas I, Elci S, Tayfur G (2016) Numerical simulation of flood wave propagation in two-dimensions in densely populated urban areas due to dam break. Water Resour Manag 30(15):5699–5721 Haltas I, Elci S, Tayfur G (2016) Numerical simulation of flood wave propagation in two-dimensions in densely populated urban areas due to dam break. Water Resour Manag 30(15):5699–5721
Zurück zum Zitat Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8(12):2182–2189 Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8(12):2182–2189
Zurück zum Zitat Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225 Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225
Zurück zum Zitat Huang Y, Dai ZL, Zhang WJ, Huang MS (2013) SPH-based numerical simulations of flow slides in municipal solid waste landfills. Waste Manag Res 31(3):256–264 Huang Y, Dai ZL, Zhang WJ, Huang MS (2013) SPH-based numerical simulations of flow slides in municipal solid waste landfills. Waste Manag Res 31(3):256–264
Zurück zum Zitat Issa RI (1986) Solution of the implicitly discretized fluid flow equations by operator splitting. J Comput Phys 62(1):40–65 Issa RI (1986) Solution of the implicitly discretized fluid flow equations by operator splitting. J Comput Phys 62(1):40–65
Zurück zum Zitat Issakhov A, Imanberdiyeva M (2019) Numerical simulation of the movement of water surface of dam break flow by VOF methods for various obstacles. Int J Heat Mass Transf 136:1030–1051 Issakhov A, Imanberdiyeva M (2019) Numerical simulation of the movement of water surface of dam break flow by VOF methods for various obstacles. Int J Heat Mass Transf 136:1030–1051
Zurück zum Zitat Issakhov A, Mashenkova A (2019) Numerical study for the assessment of pollutant dispersion from a thermal power plant under the different temperature regimes. Int J Environ Sci Technol 16(10):6089–6112 Issakhov A, Mashenkova A (2019) Numerical study for the assessment of pollutant dispersion from a thermal power plant under the different temperature regimes. Int J Environ Sci Technol 16(10):6089–6112
Zurück zum Zitat Issakhov A, Zhandaulet Y, Nogaeva A (2018) Numerical simulation of dam break flow for various forms of the obstacle by VOF method. Int J Multiphase Flow 109:191–206 Issakhov A, Zhandaulet Y, Nogaeva A (2018) Numerical simulation of dam break flow for various forms of the obstacle by VOF method. Int J Multiphase Flow 109:191–206
Zurück zum Zitat Issakhov A, Zhandaulet Y (2020a) Numerical study of dam break waves on movable beds for complex terrain by volume of fluid method. Water Resour Manag 34(2):463–480 Issakhov A, Zhandaulet Y (2020a) Numerical study of dam break waves on movable beds for complex terrain by volume of fluid method. Water Resour Manag 34(2):463–480
Zurück zum Zitat Issakhov A, Zhandaulet Y (2020b) Numerical study of dam break waves on movable beds for various forms of the obstacle by VOF method. Ocean Eng 209:107459 Issakhov A, Zhandaulet Y (2020b) Numerical study of dam break waves on movable beds for various forms of the obstacle by VOF method. Ocean Eng 209:107459
Zurück zum Zitat Issakhov A, Zhandaulet Y, Abylkassymova A (2020) Numerical simulation of the water surface movement with macroscopic particles on movable beds. Water Resour Manag 34(8):2291–2311 Issakhov A, Zhandaulet Y, Abylkassymova A (2020) Numerical simulation of the water surface movement with macroscopic particles on movable beds. Water Resour Manag 34(8):2291–2311
Zurück zum Zitat Kalita HM (2016) A new Total variation diminishing predictor corrector approach for two-dimensional shallow water flow. Water Resour Manag 30(4):1481–1497 Kalita HM (2016) A new Total variation diminishing predictor corrector approach for two-dimensional shallow water flow. Water Resour Manag 30(4):1481–1497
Zurück zum Zitat Kerst K, Roloff C, Medeiros de Souza LG, Bartz A, Seidel-Morgenstern A, Thévenin D, Janiga G (2017) CFD-DEM simulations of a fluidized bed crystallizer. Chem Eng Sci 165:1–13 Kerst K, Roloff C, Medeiros de Souza LG, Bartz A, Seidel-Morgenstern A, Thévenin D, Janiga G (2017) CFD-DEM simulations of a fluidized bed crystallizer. Chem Eng Sci 165:1–13
Zurück zum Zitat Kleefsman KMT, Fekken G, Veldman AEP, Iwanowski B, Buchner B (2005) A volume-of-fluid based simulation method for wave impact problems. J Comput Phys 206(1):363–393 Kleefsman KMT, Fekken G, Veldman AEP, Iwanowski B, Buchner B (2005) A volume-of-fluid based simulation method for wave impact problems. J Comput Phys 206(1):363–393
Zurück zum Zitat Kocaman S (2007) Experimental and theoretical investigation of dam-break problem. University of Cukurova: Adana, Ph.D. dissertation Kocaman S (2007) Experimental and theoretical investigation of dam-break problem. University of Cukurova: Adana, Ph.D. dissertation
Zurück zum Zitat Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123(3):421–434 Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123(3):421–434
Zurück zum Zitat Kuipers JAM, Van Duin KJ, Van Beckum FPH, Van Swaaij WPM (1992) A numerical model of gas-fluidized beds. Chem Eng Sci 47(8):1913–1924 Kuipers JAM, Van Duin KJ, Van Beckum FPH, Van Swaaij WPM (1992) A numerical model of gas-fluidized beds. Chem Eng Sci 47(8):1913–1924
Zurück zum Zitat La Rocca M, Montessori A, Prestininzi P, Elango L (2018) A discrete Boltzmann equation model for two-phase shallow granular flows. Comput Math Appl 75(8):2814–2824 La Rocca M, Montessori A, Prestininzi P, Elango L (2018) A discrete Boltzmann equation model for two-phase shallow granular flows. Comput Math Appl 75(8):2814–2824
Zurück zum Zitat Li Q (2016) Numerical simulation of melt filling process in complex mold cavity with insets using IB-CLSVOF method. Comput. Fluids 132:94–105 Li Q (2016) Numerical simulation of melt filling process in complex mold cavity with insets using IB-CLSVOF method. Comput. Fluids 132:94–105
Zurück zum Zitat Li X, Zhao J (2018) Dam-break of mixtures consisting of non-Newtonian liquids and granular particles. Powder Technol 338:493–505 Li X, Zhao J (2018) Dam-break of mixtures consisting of non-Newtonian liquids and granular particles. Powder Technol 338:493–505
Zurück zum Zitat Lobovský L, Botia-Vera E, Castellana F, Mas-Soler J, Souto-Iglesias A (2014) Experimental investigation of dynamic pressure loads during dam break. J Fluid Struct 48:407–434 Lobovský L, Botia-Vera E, Castellana F, Mas-Soler J, Souto-Iglesias A (2014) Experimental investigation of dynamic pressure loads during dam break. J Fluid Struct 48:407–434
Zurück zum Zitat Marsooli R, Wu W (2014) 3-D finite-volume model of dam-break flow over uneven beds based on VOF method. Adv Water Resour 70:104–117 Marsooli R, Wu W (2014) 3-D finite-volume model of dam-break flow over uneven beds based on VOF method. Adv Water Resour 70:104–117
Zurück zum Zitat Molteni D, Colagrossi A (2009) A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput Phys Commun 180:861–872 Molteni D, Colagrossi A (2009) A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput Phys Commun 180:861–872
Zurück zum Zitat Monaghan JJ, Rafiee A (2013) A simple SPH algorithm for multi-fluid flow with high density ratio. Int J Numer Methods Fluids 71(5):537–561 Monaghan JJ, Rafiee A (2013) A simple SPH algorithm for multi-fluid flow with high density ratio. Int J Numer Methods Fluids 71(5):537–561
Zurück zum Zitat Nabian MA, Farhadi L (2016) Multiphase mesh-free particle method for simulating granular flows and sediment transport. J Hydraul Eng 143(4):04016102 Nabian MA, Farhadi L (2016) Multiphase mesh-free particle method for simulating granular flows and sediment transport. J Hydraul Eng 143(4):04016102
Zurück zum Zitat Nayamatullah M, Narasimha Rao P, Kiran B (2018) Large-eddy-simulation approach in understanding flow structures of 2D turbulent density currents over sloping surfaces. Fluid Dynamics Res 50(2):025506 Nayamatullah M, Narasimha Rao P, Kiran B (2018) Large-eddy-simulation approach in understanding flow structures of 2D turbulent density currents over sloping surfaces. Fluid Dynamics Res 50(2):025506
Zurück zum Zitat Ng KC, Hwang YH, Sheu TWH (2014) On the accuracy assessment of Laplacian models in MPS. Comput Phys Commun 185:2412–2426 Ng KC, Hwang YH, Sheu TWH (2014) On the accuracy assessment of Laplacian models in MPS. Comput Phys Commun 185:2412–2426
Zurück zum Zitat Ng KC, Hwang YH, Sheu TWH, Yu CH (2015) Moving particle level-set (MPLS) method for incompressible multiphase flow computation. Comput Phys Commun 196:317–334 Ng KC, Hwang YH, Sheu TWH, Yu CH (2015) Moving particle level-set (MPLS) method for incompressible multiphase flow computation. Comput Phys Commun 196:317–334
Zurück zum Zitat Nsom B, Debiane K, Piau JM (2000) Bed slope effect on the dam break problem. J Hydraul Res 38(6):459–64 Nsom B, Debiane K, Piau JM (2000) Bed slope effect on the dam break problem. J Hydraul Res 38(6):459–64
Zurück zum Zitat Ozmen-Cagatay H, Kocaman S (2011) Dam-break flow in the presence of obstacle: experiment and CFD simulation. Eng Appl Comp Fluid Mech 5(4):541–552 Ozmen-Cagatay H, Kocaman S (2011) Dam-break flow in the presence of obstacle: experiment and CFD simulation. Eng Appl Comp Fluid Mech 5(4):541–552
Zurück zum Zitat Pahar G, Dhar A (2017) Coupled incompressible smoothed particle hydrodynamics model for continuum-based Modelling of sediment transport. Adv Water Resour S0309-1708(16):30425 Pahar G, Dhar A (2017) Coupled incompressible smoothed particle hydrodynamics model for continuum-based Modelling of sediment transport. Adv Water Resour S0309-1708(16):30425
Zurück zum Zitat Papa MN, Sarno L, Vitiello FS, Medina V (2018) Application of the 2D depth-averaged model, FLATModel, to Pumiceous debris flows in the Amalfi coast. Water 10(9):1159 Papa MN, Sarno L, Vitiello FS, Medina V (2018) Application of the 2D depth-averaged model, FLATModel, to Pumiceous debris flows in the Amalfi coast. Water 10(9):1159
Zurück zum Zitat Park IR, Kim KS, Kim J, Van SH (2012) Numerical investigation of the effects of turbulence intensity on dam-break flows. Ocean Eng 42:176–187 Park IR, Kim KS, Kim J, Van SH (2012) Numerical investigation of the effects of turbulence intensity on dam-break flows. Ocean Eng 42:176–187
Zurück zum Zitat Pelanti M, Bouchut F, Mangeney A (2011) A Riemann solver for single-phase and two-phase shallow flow models based on relaxation. Relations with roe and VFRoe solvers. J Comput Phys 230(3):515–550 Pelanti M, Bouchut F, Mangeney A (2011) A Riemann solver for single-phase and two-phase shallow flow models based on relaxation. Relations with roe and VFRoe solvers. J Comput Phys 230(3):515–550
Zurück zum Zitat Pitman EB, Le L (2005) A two-fluid model for avalanche and debris flows. Phil Trans R Soc A 363(1832):1573–1601 Pitman EB, Le L (2005) A two-fluid model for avalanche and debris flows. Phil Trans R Soc A 363(1832):1573–1601
Zurück zum Zitat San-Yih L, Yi-Cheng C (2013) A pressure correction-volume of fluid method for simulations of fluid–particle interaction and impact problems. Int J Multiphase Flow, 48 49:31 San-Yih L, Yi-Cheng C (2013) A pressure correction-volume of fluid method for simulations of fluid–particle interaction and impact problems. Int J Multiphase Flow, 48 49:31
Zurück zum Zitat Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial flow. Annu Rev Fluid Mech 31:567–603 Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial flow. Annu Rev Fluid Mech 31:567–603
Zurück zum Zitat Shao S, Lo EY (2003) Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv Water Resour 26(7):787–800 Shao S, Lo EY (2003) Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv Water Resour 26(7):787–800
Zurück zum Zitat Shigematsu T, Liu PLF, Oda K (2004) Numerical modeling of the initial stages of dam-break waves. J Hydraul Res 42(2):183–195 Shigematsu T, Liu PLF, Oda K (2004) Numerical modeling of the initial stages of dam-break waves. J Hydraul Res 42(2):183–195
Zurück zum Zitat Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91(3):99–164 Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91(3):99–164
Zurück zum Zitat Soares-Frazao S, Zech Y (2011) HLLC scheme with novel wave-speed estimators appropriate for two-dimensional shallow-water Flowon erodible bed. Int J Numer Methods Fluids 66:1019–1036 Soares-Frazao S, Zech Y (2011) HLLC scheme with novel wave-speed estimators appropriate for two-dimensional shallow-water Flowon erodible bed. Int J Numer Methods Fluids 66:1019–1036
Zurück zum Zitat Spinewine B (2005) Two-Layer Flow Behavior and the Effects of Granular Dilatancy in Dam-Break Induced Sheet-Flow. Faculte des sciences appliquees, Universite catholique de Louvain Spinewine B (2005) Two-Layer Flow Behavior and the Effects of Granular Dilatancy in Dam-Break Induced Sheet-Flow. Faculte des sciences appliquees, Universite catholique de Louvain
Zurück zum Zitat Sussman M, Fatemi E, Smereka P, Osher S (1998) An improved level set method for incompressible two-phase flows. Comput Fluids 27(5):663–680 Sussman M, Fatemi E, Smereka P, Osher S (1998) An improved level set method for incompressible two-phase flows. Comput Fluids 27(5):663–680
Zurück zum Zitat Toro EF (2001) Shock-capturing methods for free-surface shallow flows. Wiley, Chichester, U.K Toro EF (2001) Shock-capturing methods for free-surface shallow flows. Wiley, Chichester, U.K
Zurück zum Zitat Wadnerkar D, Agrawal M, Tade MO, Pareek V (2016) Hydrodynamics of macroscopic particles in slurry suspensions. Asia-Pac J Chem Eng 11(3):467–479 Wadnerkar D, Agrawal M, Tade MO, Pareek V (2016) Hydrodynamics of macroscopic particles in slurry suspensions. Asia-Pac J Chem Eng 11(3):467–479
Zurück zum Zitat Wang C, Wang Y, Peng C, Meng X (2016) Smoothed particle hydrodynamics simulation of water-soil mixture flows. J Hydraul Eng 142(10):04016032 Wang C, Wang Y, Peng C, Meng X (2016) Smoothed particle hydrodynamics simulation of water-soil mixture flows. J Hydraul Eng 142(10):04016032
Zurück zum Zitat Yang J, Stern FJ (2009) Sharp interface immersed-boundary/level-set method for wave–body interactions. Comput Phys 228(17):6590–6616 Yang J, Stern FJ (2009) Sharp interface immersed-boundary/level-set method for wave–body interactions. Comput Phys 228(17):6590–6616
Zurück zum Zitat Zhai J, Liu W, Yuan L (2016) Solving two-phase shallow granular flow equations with a well-balanced NOC scheme on multiple GPUs. Comput Fluids 134:90–110 Zhai J, Liu W, Yuan L (2016) Solving two-phase shallow granular flow equations with a well-balanced NOC scheme on multiple GPUs. Comput Fluids 134:90–110
Zurück zum Zitat Zhang Y, Zou Q, Greaves D, Reeve D, Hunt-Raby A, Graham D, James P, Lv X (2010) A level set immersed boundary method for water entry and exit. Commun Comput Phys 8(2):265–288 Zhang Y, Zou Q, Greaves D, Reeve D, Hunt-Raby A, Graham D, James P, Lv X (2010) A level set immersed boundary method for water entry and exit. Commun Comput Phys 8(2):265–288
Zurück zum Zitat Zhang C, Lin N, Tang Y, Zhao C (2014) A sharp interface immersed boundary/VOF model coupled with wave generating and absorbing options for wave-structure interaction. Comput Fluids 89:214–231 Zhang C, Lin N, Tang Y, Zhao C (2014) A sharp interface immersed boundary/VOF model coupled with wave generating and absorbing options for wave-structure interaction. Comput Fluids 89:214–231
Zurück zum Zitat Zhao Y, Chen H-C (2017) A new coupled level set and volume-of-fluid method to capture free surface on an overset grid system. Int J Multiphase Flow 90:144–155 Zhao Y, Chen H-C (2017) A new coupled level set and volume-of-fluid method to capture free surface on an overset grid system. Int J Multiphase Flow 90:144–155
Metadaten
Titel
Numerical Simulation of the Water Surface Movement with Macroscopic Particles of Dam Break Flow for Various Obstacles
verfasst von
Alibek Issakhov
Medina Imanberdiyeva
Publikationsdatum
01.07.2020
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 9/2020
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-019-02382-w

Weitere Artikel der Ausgabe 9/2020

Water Resources Management 9/2020 Zur Ausgabe