Skip to main content
Erschienen in: Thermal Engineering 4/2019

01.04.2019 | NUCLEAR POWER PLANTS

Numerical Simulation of Thermal–Hydraulic Processes in Liquid-Metal Cooled Fuel Assemblies in the Anisotropic Porous Body Approximation

verfasst von: A. S. Korsun, I. G. Merinov, V. S. Kharitonov, M. V. Bayaskhalanov, V. V. Chudanov, A. E. Aksenova, V. A. Pervichko

Erschienen in: Thermal Engineering | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The article presents an anisotropic porous body model in which the transfer anisotropy is taken into account through determining—by means of tensor analysis techniques—the drag force, effective viscosity, and thermal conductivity. The model is intended for describing heat-and-mass transfer in fuel assemblies and tube bundles. For closing the system of anisotropic porous body equations, the integral turbulence model developed by the authors is used. To verify how correctly the hydrodynamics and heat transfer are described, a few hydrodynamic and thermal–hydraulic processes in water- and liquid-metal-cooled fuel rod assemblies are simulated in the anisotropic porous body approximation. The results from simulating the flow patterns of lead–bismuth eutectics in the experimental 19-rod assembly and water in a 61-rod nonheated assembly with its flow cross-section locally blocked in the central and corner parts are presented. The thermal–hydraulic processes in the BREST reactor fuel assembly’s heated 19-rod fragment with its flow cross-section locally blocked in the central part were also simulated using the CONV-3D DNS code in the framework of model cross-verification activities. The numerical analysis was carried out using the developed APMod software module implementing the anisotropic porous body model jointly with the integral turbulence model. It was demonstrated from a comparison of the numerical analysis results with both experimental data and simulation results obtained using the CONV-3D computer code that the APMod software module adequately describes the 3D fields of coolant velocities, pressure, and temperature arising in fuel rod assemblies with a locally blocked part of their flow section. The obtained results testify that the anisotropic porous body model can be used for simulating thermal–hydraulic processes in the cores and heat-transfer equipment of prospective reactors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Deviation velocity is the difference between the local flow velocity at a point located within the averaging element and the average velocity value in this element. It describes the motion that has become “invisible” in shifting to a description with the use of averaged quantities [13].
 
Literatur
1.
Zurück zum Zitat F. M. Mitenkov, V. F. Golovko, P. A. Ushakov, and Yu. S. Yur’ev, Design of Heat Exchangers of NPPs (Energoatomizdat, Moscow, 1988), pp. 181–218 [in Russian]. F. M. Mitenkov, V. F. Golovko, P. A. Ushakov, and Yu. S. Yur’ev, Design of Heat Exchangers of NPPs (Energoatomizdat, Moscow, 1988), pp. 181–218 [in Russian].
2.
Zurück zum Zitat S. T. Leskin, V. I. Slobodchuk, A. S. Shelegov, S. V. Yaurov, E. A. Chistozvonova, A. P. Sorokin, A. N. Opanasenko, S. G. Kalyakin, and D. G. Zaryugin, “Numerical simulation of non-isothermal coolant flow in a fast reactor tank,” Izv. Vyssh. Uchebn. Zaved., Ser.: Yad. Energ., No. 4, 78–85 (2013). S. T. Leskin, V. I. Slobodchuk, A. S. Shelegov, S. V. Yaurov, E. A. Chistozvonova, A. P. Sorokin, A. N. Opanasenko, S. G. Kalyakin, and D. G. Zaryugin, “Numerical simulation of non-isothermal coolant flow in a fast reactor tank,” Izv. Vyssh. Uchebn. Zaved., Ser.: Yad. Energ., No. 4, 78–85 (2013).
3.
Zurück zum Zitat L. A. Golibrodo, A. A. Krutikov, Yu. N. Nadinskii, A. V. Nikolaeva, A. P. Skibin, and V. V. Sotskov, “Numerical investigation of mass transfer in the flow path of the experimental model of the PGV-1500 steam generator’s steam receiving section with two steam nozzles,” Therm. Eng. 61, 710–716 (2014). https://doi.org/10.1134/S0040601514100048 CrossRef L. A. Golibrodo, A. A. Krutikov, Yu. N. Nadinskii, A. V. Nikolaeva, A. P. Skibin, and V. V. Sotskov, “Numerical investigation of mass transfer in the flow path of the experimental model of the PGV-1500 steam generator’s steam receiving section with two steam nozzles,” Therm. Eng. 61, 710–716 (2014). https://​doi.​org/​10.​1134/​S004060151410004​8 CrossRef
4.
Zurück zum Zitat A. S. Korsun, V. B. Kruglov, I. G. Merinov, V. N. Fedoseev, and V. S. Kharitonov, “Heat and mass transfer in an array of rods in the approximation of porous medium,” Vopr. At. Nauki Tekh., Ser.: Yad.-Reakt. Konstanty, No. 2, 87–94 (2014). https://vant.ippe.ru/ year2014/2/842-9.html. A. S. Korsun, V. B. Kruglov, I. G. Merinov, V. N. Fedoseev, and V. S. Kharitonov, “Heat and mass transfer in an array of rods in the approximation of porous medium,” Vopr. At. Nauki Tekh., Ser.: Yad.-Reakt. Konstanty, No. 2, 87–94 (2014). https://​vant.​ippe.​ru/​ year2014/2/842-9.html.
5.
Zurück zum Zitat A. S. Korsun and S. V. Vikulova, “To the determination of the resistance of an anisotropic porous body,” in Proc. 2nd Russ. Natl. Conf. on Heat Transfer (Mosk. Energ. Inst., Moscow, 1998), Vol. 5: Two-Phase Flows. Disperse Flows and Porous Media, pp. 215–218. A. S. Korsun and S. V. Vikulova, “To the determination of the resistance of an anisotropic porous body,” in Proc. 2nd Russ. Natl. Conf. on Heat Transfer (Mosk. Energ. Inst., Moscow, 1998), Vol. 5: Two-Phase Flows. Disperse Flows and Porous Media, pp. 215–218.
6.
Zurück zum Zitat M. N. Vlasov, A. S. Korsun, Yu. A. Maslov, I. G. Merinov, V. I. Rachkov, and V. S. Kharitonov, “Determination of integral turbulence model parameters as applied to calculation of rod-bundle flows in porous-body approximation,” Teplophys. Aeromech. 23, 201–209 (2016).CrossRef M. N. Vlasov, A. S. Korsun, Yu. A. Maslov, I. G. Merinov, V. I. Rachkov, and V. S. Kharitonov, “Determination of integral turbulence model parameters as applied to calculation of rod-bundle flows in porous-body approximation,” Teplophys. Aeromech. 23, 201–209 (2016).CrossRef
7.
Zurück zum Zitat Certificate of State Registration of Computer Program No. 2016615797 of May 30, 2016. Certificate of State Registration of Computer Program No. 2016615797 of May 30, 2016.
8.
Zurück zum Zitat J. Pacio, M. Daubner, F. Fellmoser, K. Litfin, L. Marocco, R. Stieglitz, S. Taulall, and Th. Wetzel, “Heavy-liquid metal heat transfer experiment in a 19‑rod bundle with grid spacers,” Nucl. Eng. Des. 273, 33–46 (2014).CrossRef J. Pacio, M. Daubner, F. Fellmoser, K. Litfin, L. Marocco, R. Stieglitz, S. Taulall, and Th. Wetzel, “Heavy-liquid metal heat transfer experiment in a 19‑rod bundle with grid spacers,” Nucl. Eng. Des. 273, 33–46 (2014).CrossRef
9.
Zurück zum Zitat K. Litfin, A. Batta, A. G. Class, Th. Wetzel, and R. Stieglitz, “Investigation on heavy metal cooling of ADS fuel pin assemblies,” J. Nucl. Mater. 415, 425–432 (2011).CrossRef K. Litfin, A. Batta, A. G. Class, Th. Wetzel, and R. Stieglitz, “Investigation on heavy metal cooling of ADS fuel pin assemblies,” J. Nucl. Mater. 415, 425–432 (2011).CrossRef
10.
Zurück zum Zitat H. Nukamura, K. Miyaguchi, and J. Takahashi, “Hydraulic simulation experiments with simulated LMFBR subassemblies under nominal and non-nominal operating conditions,” in Int. At. Energy Agency Report No. IWGFR-29 (IAEA, 1979), pp. 58–75. H. Nukamura, K. Miyaguchi, and J. Takahashi, “Hydraulic simulation experiments with simulated LMFBR subassemblies under nominal and non-nominal operating conditions,” in Int. At. Energy Agency Report No. IWGFR-29 (IAEA, 1979), pp. 58–75.
11.
Zurück zum Zitat H. Nukamura, K. Miyaguchi, and J. Takahashi, “Hydraulic simulation of local blockages in a LMFBR fuel subassembly,” Nucl. Eng. Des. 62, 323–333 (1980).CrossRef H. Nukamura, K. Miyaguchi, and J. Takahashi, “Hydraulic simulation of local blockages in a LMFBR fuel subassembly,” Nucl. Eng. Des. 62, 323–333 (1980).CrossRef
12.
Zurück zum Zitat V. V. Chudanov, A. E. Aksenova, A. A. Makarevich, V. A. Pervichko, and I. V. Romero Reyes, “Use of CFD-code CONV-3D in reactor applications,” At. Energy 121, 179–184 (2017).CrossRef V. V. Chudanov, A. E. Aksenova, A. A. Makarevich, V. A. Pervichko, and I. V. Romero Reyes, “Use of CFD-code CONV-3D in reactor applications,” At. Energy 121, 179–184 (2017).CrossRef
13.
Zurück zum Zitat A. S. Korsun and E. A. Satanovskii, “Effective thermal conductivity due to the speeds of deflection in transverse flow of coolant assemblies of rods,” in Proc. 3rd Russ. Natl. Conf. on Heat Transfer (Mosk. Energ. Inst, Moscow, 2002), Vol. 5: Two-Phase Flows, Disperse Flows and Porous Media, pp. 231–234. A. S. Korsun and E. A. Satanovskii, “Effective thermal conductivity due to the speeds of deflection in transverse flow of coolant assemblies of rods,” in Proc. 3rd Russ. Natl. Conf. on Heat Transfer (Mosk. Energ. Inst, Moscow, 2002), Vol. 5: Two-Phase Flows, Disperse Flows and Porous Media, pp. 231–234.
14.
Zurück zum Zitat Handbook on Thermo-Hydraulic Calculations in Nuclear Power Industry, Vol. 1: Thermo-Hydraulic Processes in Nuclear Power Generating Units, Ed. by. P. L. Kirillov (IzdAt, Moscow, 2010) [in Russian]. Handbook on Thermo-Hydraulic Calculations in Nuclear Power Industry, Vol. 1: Thermo-Hydraulic Processes in Nuclear Power Generating Units, Ed. by. P. L. Kirillov (IzdAt, Moscow, 2010) [in Russian].
15.
Zurück zum Zitat A. S. Korsun, I. G. Merinov, V. S. Kharitonov, V. V. Chudanov, A. E. Aksenova, and V. A. Pervichko, “Modeling of heat-and-mass transfer in fuel assemblies in liquid-metal-cooled reactors with partial flow-passage blockage,” At. Energy 124, 166–172 (2018).CrossRef A. S. Korsun, I. G. Merinov, V. S. Kharitonov, V. V. Chudanov, A. E. Aksenova, and V. A. Pervichko, “Modeling of heat-and-mass transfer in fuel assemblies in liquid-metal-cooled reactors with partial flow-passage blockage,” At. Energy 124, 166–172 (2018).CrossRef
Metadaten
Titel
Numerical Simulation of Thermal–Hydraulic Processes in Liquid-Metal Cooled Fuel Assemblies in the Anisotropic Porous Body Approximation
verfasst von
A. S. Korsun
I. G. Merinov
V. S. Kharitonov
M. V. Bayaskhalanov
V. V. Chudanov
A. E. Aksenova
V. A. Pervichko
Publikationsdatum
01.04.2019
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 4/2019
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601519040049

Weitere Artikel der Ausgabe 4/2019

Thermal Engineering 4/2019 Zur Ausgabe

HEAT AND MASS TRANSFER AND PROPERTIES OF WORKING FLUIDS AND MATERIALS

Long-Term High-Temperature Longevity Testing of Thermosyphons with Actual Dimensions

    Premium Partner