Skip to main content

2022 | OriginalPaper | Buchkapitel

5. Numerical Solution Methods

verfasst von : Alfonso Novales, Esther Fernández, Jesús Ruiz

Erschienen in: Economic Growth

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We start by considering the stochastic optimal growth model of Chap. 4, without taxes, explaining the construction of linear and log-linear approximations. Different solution methods are described: the Blanchard and Kahn approach, Uhlig’s method of undetermined coefficients, and Sims’ method based on an eigenvalue–eigenvector decomposition. We pay special attention to characterizing stability. We explain their practical implementation and discuss some of the results obtained. After that, we implement the same methods to solve the stochastic optimal growth model under different tax specifications and discuss some policy issues. The chapter closes with nonlinear solution methods, such as Marcet’s Parameterized Expectations and Projection methods. We apply them to the standard Cass–Koopmans growth model and provide MATLAB programs for their implementation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
There is no externality of any kind in this model, so welfare theorems apply, and the solution to the planner’s problem leads to the same allocation of resources as the competitive equilibrium. This, in turn, can be obtained as the solution to the representative agent problem.
 
2
The certainty-equivalence principle is also know as the separation principle, since it states that in linear-quadratic problems (optimization problems with quadratic objective functions subject to linear constraints) we can separate the control problem from the estimation problem. That implies that we need to solve just the deterministic version of the problem, to then add conditional expectations in the decision rules in front of any term involving future decision or control variables.
 
3
We are using the fact that, for \(\mu _{2}>1, \frac {1}{1-\mu _{2}B}=-\frac {1 }{\mu _{2}B-1}= -\frac {B^{-1}}{\mu _{2}-B^{-1}}= -\frac {B^{-1}}{\mu _{2}}\frac {1}{1-\frac {1}{\mu _{2}}B^{-1}} =-\frac {B^{-1}}{ \mu _{2}}\sum _{s=0}^{\infty }\frac {1}{\mu _{2}^{s}}B^{-s}= -\sum _{s=1}^{\infty }\frac {1}{\mu _{2}^{s}}B^{-s},\) so that \(\frac {1}{1-\mu _{2}B}X_{t}= -\sum _{s=1}^{\infty }\frac {1}{\mu _{2}^{s}}X_{t+s}.\)
 
4
Using the definitions of the α and β coefficients, the second degree equation in η kk can be written: \(\sigma \left [ \eta _{\textit {kk}}^{2}-\left ( 1+\frac {1}{\beta }+\frac {\left [ 1-(1-\delta )\beta \right ] \left ( 1-\alpha \right ) }{\sigma }\frac {c_{\textit {ss}}}{k_{\textit {ss}}}\right ) \eta _{\textit {kk}}+ \frac {1}{\beta }\right ] =0\) and an argument similar to that used in section Systems with a saddle path property in the Mathematical Appendix can be used to show that one of the roots is greater than 1∕β, while the other root is less than one.
 
5
Note that \(\theta _{t+1}=e^{\ln \theta _{t+1}},\) so that \(\frac {\partial \theta _{t+1}}{\partial \ln \theta _{t+1}}=e^{\ln \theta _{t+1}}=\theta _{t+1}.\)
 
6
A similar expression applies to any future expectation, the higher time index showing up in the definition of function g(.)  : E t g t+k = g t+k − ξ t+k, with E t ξ t+k = 0.
 
7
Later on we will introduce a different approach to compute impulse responses.
 
8
Notice that if we change the value of any structural parameter, these standard deviations would have to be estimated again.
 
9
Initially, the σ parameter may be set up to 1, but that might change in subsequent iterations, as explained below.
 
10
Let Ψi(x), Ψj(x) be two polynomials from a same family of basis functions. The two polynomials are said to be orthogonal to each other if there is a weighting function W(x) such that:
$$\displaystyle \begin{aligned} \int_{a}^{b}W(x)\Psi _{i}(x)\Psi _{j}(x){\textit{dx}}=0,\,\forall i\neq j.\end{aligned} $$
A family of polynomials is said to be orthogonal if any two polynomials in the family are orthogonal to each other. The weighting function that makes Chebychev polynomials orthogonal to each other, is: \(W(x)= \frac {1}{\sqrt { 1-x^{2}}}.\)
 
11
Stable solutions will always have control and state variables moving in a bounded space. The [a,b] interval can be chosen allowing for relatively wide fluctuations around steady-state. Violation of that assumed range by the numerical solution may point out to potential instability problems. Otherwise, the range can be widened and the solution algorithm implemented again.
 
12
Let us suppose that \(k_{\min }=0\) and \(k_{\max }=100,\) and that we choose d = 10. Chebychev nodes are then: 0.62, 5.45, 14.65, 27.30, 42.18, 57.82, 72.70, 85.35, 94.55 and 99.38.
 
13
According to Rivlin’s theorem, ‘Chebychev node polynomial interpolants are very nearly optimal polynomial approximants’.
 
14
Using Chebychev nodes and Chebychev polynomials is just one among the many alternative choices available. Chebychev nodes have been shown to provide a superior approximation than alternatives like equally-spaced nodes. Similarly, to compute the approximated decision rule, we could use monomials, splines or a family of orthogonal polynomials other than Chebychev polynomials.
 
15
Note the similarity, but also the differences, with respect to Chebychev polynomials.
 
16
In general, we compute μ by solving a system of equations of the form: ∫Ω W i(x)R(x; μ)dx = 0, i = 1,  2, …, d. In particular, Galerkin’s method consists on choosing as weights the basis polynomials: W(x) ≡ Ψ(x), which in this case will be the complete set of polynomials for (k, z).
 
17
This can be easily changed in the program.
 
18
This may be the most sensitive parte of the numerical algorithm for the projection method, and finding initial values can sometimes be tricky. It is strongly advisable to start solving simplified versions of the model, to gain some insight into appropriate initial values for the μ-coefficients .
 
Literatur
1.
Zurück zum Zitat Adda, J., & Cooper, R.W. (2003). Dynamic economics: Quantitative methods and applications. Cambridge: MIT. Adda, J., & Cooper, R.W. (2003). Dynamic economics: Quantitative methods and applications. Cambridge: MIT.
2.
Zurück zum Zitat Blanchard, O., & Kahn, C.M. (1980). The solution of linear difference models under rational expectations. Econometrica, 48(5), 1305–1311.CrossRef Blanchard, O., & Kahn, C.M. (1980). The solution of linear difference models under rational expectations. Econometrica, 48(5), 1305–1311.CrossRef
3.
Zurück zum Zitat Brock, W. A., & Mirman, L.J. (1972). Optimal economic growth and uncertainty: The discounted case. Journal of Economic Theory, 4, 479–513.CrossRef Brock, W. A., & Mirman, L.J. (1972). Optimal economic growth and uncertainty: The discounted case. Journal of Economic Theory, 4, 479–513.CrossRef
4.
Zurück zum Zitat Canova, F. (2007). Methods for applied macroeconomic research. Princeton: Princeton University Press.CrossRef Canova, F. (2007). Methods for applied macroeconomic research. Princeton: Princeton University Press.CrossRef
5.
Zurück zum Zitat De Jong, D.N., & Dave, C. (2007). Structural macroeconometrics. Princeton: Princeton University Press. De Jong, D.N., & Dave, C. (2007). Structural macroeconometrics. Princeton: Princeton University Press.
6.
Zurück zum Zitat Den Haan, W., & Marcet, A. (1990). Solving the stochastic growth model by parameterized expectations. Journal of Business and Economic Statistics, 8, 31–34. Den Haan, W., & Marcet, A. (1990). Solving the stochastic growth model by parameterized expectations. Journal of Business and Economic Statistics, 8, 31–34.
7.
Zurück zum Zitat Díaz-Giménez, J. (1999). Linear quadratic approximations. In R. Marimon & A. Scott (Eds.), Computational methods for the study of dynamic economics, Chap. 1, 13–29. New York: Oxford University Press. Díaz-Giménez, J. (1999). Linear quadratic approximations. In R. Marimon & A. Scott (Eds.), Computational methods for the study of dynamic economics, Chap. 1, 13–29. New York: Oxford University Press.
8.
Zurück zum Zitat Heer, B., & Maussner, A. (2005). Dynamic general equilibrium modelling: Computational methods and applications. Berlin: Springer. Heer, B., & Maussner, A. (2005). Dynamic general equilibrium modelling: Computational methods and applications. Berlin: Springer.
9.
Zurück zum Zitat Judd, K. L. (1998). Numerical methods in economics. Cambridge: MIT. Judd, K. L. (1998). Numerical methods in economics. Cambridge: MIT.
10.
Zurück zum Zitat King, R. G., Plosser, C. I., & Rebelo, S. (1988). Production, growth, and business cycles: II. New directions. Journal of Monetary Economics, 21, 309–341.CrossRef King, R. G., Plosser, C. I., & Rebelo, S. (1988). Production, growth, and business cycles: II. New directions. Journal of Monetary Economics, 21, 309–341.CrossRef
11.
Zurück zum Zitat Kydland, F. E., & Prescott, E. C. (1982). Time to build and aggregate fluctuations. Econometrica, 50, 1345–1370.CrossRef Kydland, F. E., & Prescott, E. C. (1982). Time to build and aggregate fluctuations. Econometrica, 50, 1345–1370.CrossRef
12.
Zurück zum Zitat Ljunqvist, L., & Sargent, T. (2004). Recursive macroeconomic theory, 2nd edn. Cambridge: MIT. Ljunqvist, L., & Sargent, T. (2004). Recursive macroeconomic theory, 2nd edn. Cambridge: MIT.
13.
Zurück zum Zitat Marcet, A., & Lorenzoni, G. (1999). Parameterized expectations approach: Some practical issues. In R. Marimon & A. Scott (Eds.), Computational methods for the study of dynamic economics (pp. 143–171). Oxford: Oxford University Press. Marcet, A., & Lorenzoni, G. (1999). Parameterized expectations approach: Some practical issues. In R. Marimon & A. Scott (Eds.), Computational methods for the study of dynamic economics (pp. 143–171). Oxford: Oxford University Press.
14.
Zurück zum Zitat Marimon, R., & Scott, A. (Eds.). (1999). Computational methods for the study of dynamic economics. Oxford: Oxford University Press. Marimon, R., & Scott, A. (Eds.). (1999). Computational methods for the study of dynamic economics. Oxford: Oxford University Press.
15.
Zurück zum Zitat McCallum, B. T. (1989). Real business cycle models. In R. J. Barro (Ed.), Modern business cycle theory. Cambridge: Harvard University Press. McCallum, B. T. (1989). Real business cycle models. In R. J. Barro (Ed.), Modern business cycle theory. Cambridge: Harvard University Press.
16.
Zurück zum Zitat McGrattan, E. R. (1999). Application of weighted residual methods to dynamic economic models. In R. Marimon & A. Scott (Eds.), Computational methods for the study of dynamic economies. Oxford: Oxford University Press. McGrattan, E. R. (1999). Application of weighted residual methods to dynamic economic models. In R. Marimon & A. Scott (Eds.), Computational methods for the study of dynamic economies. Oxford: Oxford University Press.
17.
Zurück zum Zitat Miranda, M. J., & Fackler, P. L. (2002). Applied computational economics and finance. Cambridge: MIT. Miranda, M. J., & Fackler, P. L. (2002). Applied computational economics and finance. Cambridge: MIT.
18.
Zurück zum Zitat Press, W. H., Flannery, B. P., Teukolsky, S.A., & Vetterling, W. T. (1986). Numerical recipes: The art of scientific computing. Cambridge: Cambridge University Press. Press, W. H., Flannery, B. P., Teukolsky, S.A., & Vetterling, W. T. (1986). Numerical recipes: The art of scientific computing. Cambridge: Cambridge University Press.
19.
Zurück zum Zitat Sims, C. A. (2001). Solving linear rational expectations models. Journal of Computational Economics, 20, 1–20.CrossRef Sims, C. A. (2001). Solving linear rational expectations models. Journal of Computational Economics, 20, 1–20.CrossRef
20.
Zurück zum Zitat Uhlig, H. (1999). A toolkit for analyzing nonlinear dynamic stochastic models easily. In R. Marimon & Scott, A. (Eds.), Computational methods for the study of dynamic economics (pp. 30–61). Oxford: Oxford University Press. Uhlig, H. (1999). A toolkit for analyzing nonlinear dynamic stochastic models easily. In R. Marimon & Scott, A. (Eds.), Computational methods for the study of dynamic economics (pp. 30–61). Oxford: Oxford University Press.
Metadaten
Titel
Numerical Solution Methods
verfasst von
Alfonso Novales
Esther Fernández
Jesús Ruiz
Copyright-Jahr
2022
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-63982-5_5

Premium Partner