Skip to main content
Erschienen in: Journal of Scientific Computing 3/2020

01.03.2020

Numerical Solution of Monge–Kantorovich Equations via a Dynamic Formulation

verfasst von: Enrico Facca, Sara Daneri, Franco Cardin, Mario Putti

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We extend our previous work on a biologically inspired dynamic Monge–Kantorovich model (Facca et al. in SIAM J Appl Math 78:651–676, 2018) and propose it as an effective tool for the numerical solution of the \(L^{1}\)-PDE based optimal transportation model. We first introduce a new Lyapunov-candidate functional and show that its derivative along the solution trajectory is strictly negative. Moreover, we are able to show that this functional admits the optimal transport density as a unique minimizer, providing further support to the conjecture that our dynamic model is time-asymptotically equivalent to the Monge–Kantorovich equations governing \(L^{1}\) optimal transport. Remarkably, this newly proposed Lyapunov-candidate functional can be effectively used to calculate the Wasserstein-1 (or earth mover’s) distance between two measures. We numerically solve these equations via a simple approach based on standard forward Euler time stepping and linear Galerkin finite element. The accuracy and robustness of the proposed solver is verified on a number of test problems of mixed complexity also in comparison with other approaches proposed in the literature. Numerical results show that the proposed scheme is very efficient and accurate for the calculation the Wasserstein-1 distances.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ambrosio, L.: Lecture notes on optimal transport problems. In: Mathematical Aspects of Evolving Interfaces. Springer, pp. 1–52 (2003) Ambrosio, L.: Lecture notes on optimal transport problems. In: Mathematical Aspects of Evolving Interfaces. Springer, pp. 1–52 (2003)
2.
Zurück zum Zitat Barrett, J.W., Prigozhin, L.: A mixed formulation of the Monge–Kantorovich equations. Math. Model. Num. Anal. 41, 1041–1060 (2007)MathSciNetCrossRef Barrett, J.W., Prigozhin, L.: A mixed formulation of the Monge–Kantorovich equations. Math. Model. Num. Anal. 41, 1041–1060 (2007)MathSciNetCrossRef
3.
Zurück zum Zitat Bartels, S., Schön, P.: Adaptive approximation of the Monge–Kantorovich problem via primal-dual gap estimates. ESAIM-Math. Model. Num. 51, 2237–2261 (2017)MathSciNetCrossRef Bartels, S., Schön, P.: Adaptive approximation of the Monge–Kantorovich problem via primal-dual gap estimates. ESAIM-Math. Model. Num. 51, 2237–2261 (2017)MathSciNetCrossRef
4.
Zurück zum Zitat Beirão da Veiga, L., Manzini, G., Putti, M.: Post processing of solution and flux for the nodal mimetic finite difference method. Num. Methods PDE 31, 336–363 (2014)MathSciNetCrossRef Beirão da Veiga, L., Manzini, G., Putti, M.: Post processing of solution and flux for the nodal mimetic finite difference method. Num. Methods PDE 31, 336–363 (2014)MathSciNetCrossRef
5.
Zurück zum Zitat Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)MathSciNetCrossRef Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)MathSciNetCrossRef
6.
Zurück zum Zitat Benamou, J.-D., Brenier, Y., Guittet, K.: The Monge–Kantorovitch mass transfer and its computational fluid mechanics formulation. Int. J. Numer. Methods Fluids, 40:21–30. ICFD Conference on Numerical Methods for Fluid Dynamics (Oxford, 2001) (2002) Benamou, J.-D., Brenier, Y., Guittet, K.: The Monge–Kantorovitch mass transfer and its computational fluid mechanics formulation. Int. J. Numer. Methods Fluids, 40:21–30. ICFD Conference on Numerical Methods for Fluid Dynamics (Oxford, 2001) (2002)
7.
Zurück zum Zitat Benamou, J.-D., Carlier, G.: Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations. J. Opt. Theory Appl. 167, 1–26 (2015)MathSciNetCrossRef Benamou, J.-D., Carlier, G.: Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations. J. Opt. Theory Appl. 167, 1–26 (2015)MathSciNetCrossRef
8.
Zurück zum Zitat Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., Peyré, G.: Iterative Bregman projections for regularized transportation problems. SIAM J. Sci. Comput. 37, A1111–A1138 (2015)MathSciNetCrossRef Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., Peyré, G.: Iterative Bregman projections for regularized transportation problems. SIAM J. Sci. Comput. 37, A1111–A1138 (2015)MathSciNetCrossRef
9.
Zurück zum Zitat Bergamaschi, L., Facca, E., Martínez, A., Putti, M.: Spectral preconditioners for the efficient numerical solution of a continuous branched transport model. J. Comput. Appl. Math. 354, 259–270 (2018)MathSciNetCrossRef Bergamaschi, L., Facca, E., Martínez, A., Putti, M.: Spectral preconditioners for the efficient numerical solution of a continuous branched transport model. J. Comput. Appl. Math. 354, 259–270 (2018)MathSciNetCrossRef
10.
Zurück zum Zitat Bochev, P., Lehoucq, R.B.: On the finite element solution of the pure Neumann problem. SIAM Rev. 47, 50–66 (2005)MathSciNetCrossRef Bochev, P., Lehoucq, R.B.: On the finite element solution of the pure Neumann problem. SIAM Rev. 47, 50–66 (2005)MathSciNetCrossRef
11.
Zurück zum Zitat Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. In: Springer Series in Computational Mathematics. Springer, Berlin (2013) Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. In: Springer Series in Computational Mathematics. Springer, Berlin (2013)
12.
Zurück zum Zitat Bonifaci, V., Mehlhorn, K., Varma, G.: Physarum can compute shortest paths. J. Theor. Biol. 309, 121–133 (2012)MathSciNetCrossRef Bonifaci, V., Mehlhorn, K., Varma, G.: Physarum can compute shortest paths. J. Theor. Biol. 309, 121–133 (2012)MathSciNetCrossRef
13.
Zurück zum Zitat Bouchitté, G., Buttazzo, G., Seppecher, P.: Shape optimization solutions via Monge–Kantorovich equation. C. R. Acad. Sci. Paris Sér. I Math 324, 1185–1191 (1997)MathSciNetCrossRef Bouchitté, G., Buttazzo, G., Seppecher, P.: Shape optimization solutions via Monge–Kantorovich equation. C. R. Acad. Sci. Paris Sér. I Math 324, 1185–1191 (1997)MathSciNetCrossRef
14.
Zurück zum Zitat Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)CrossRef Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)CrossRef
15.
Zurück zum Zitat Buttazzo, G., Stepanov, E.: On regularity of transport density in the Monge–Kantorovich problem. SIAM J. Control Optim 42, 1044–1055 (2003)MathSciNetCrossRef Buttazzo, G., Stepanov, E.: On regularity of transport density in the Monge–Kantorovich problem. SIAM J. Control Optim 42, 1044–1055 (2003)MathSciNetCrossRef
16.
Zurück zum Zitat Cuturi, M.: Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances, ArXiv e-prints (2013) Cuturi, M.: Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances, ArXiv e-prints (2013)
17.
Zurück zum Zitat Delzanno, G.L., Finn, J.M.: Generalized Monge–Kantorovich optimization for grid generation and adaptation in \(l_{p}\). SIAM J. Sci. Comput. 32, 3524–3547 (2010)MathSciNetCrossRef Delzanno, G.L., Finn, J.M.: Generalized Monge–Kantorovich optimization for grid generation and adaptation in \(l_{p}\). SIAM J. Sci. Comput. 32, 3524–3547 (2010)MathSciNetCrossRef
18.
Zurück zum Zitat Delzanno, G.L., Finn, J.M.: The fluid dynamic approach to equidistribution methods for grid adaptation. Comput. Phys. Commun. 182, 330–346 (2011)MathSciNetCrossRef Delzanno, G.L., Finn, J.M.: The fluid dynamic approach to equidistribution methods for grid adaptation. Comput. Phys. Commun. 182, 330–346 (2011)MathSciNetCrossRef
19.
Zurück zum Zitat Evans, L.C., Gangbo, W.: Differential equations methods for the Monge–Kantorovich mass transfer problem. Mem. Am. Math. Soc. 137, 1–66 (1999)MathSciNetMATH Evans, L.C., Gangbo, W.: Differential equations methods for the Monge–Kantorovich mass transfer problem. Mem. Am. Math. Soc. 137, 1–66 (1999)MathSciNetMATH
20.
Zurück zum Zitat Facca, E., Cardin, F., Putti, M.: Towards a stationary Monge–Kantorovich dynamics: The Physarum Polycephalum experience. SIAM J. Appl. Math. 78, 651–676 (2018)MathSciNetCrossRef Facca, E., Cardin, F., Putti, M.: Towards a stationary Monge–Kantorovich dynamics: The Physarum Polycephalum experience. SIAM J. Appl. Math. 78, 651–676 (2018)MathSciNetCrossRef
21.
Zurück zum Zitat Feldman, M., McCann, R.J.: Uniqueness and transport density in Monge’s mass transportation problem. Calc. Var. Partial Differ. 15, 81–113 (2002)MathSciNetCrossRef Feldman, M., McCann, R.J.: Uniqueness and transport density in Monge’s mass transportation problem. Calc. Var. Partial Differ. 15, 81–113 (2002)MathSciNetCrossRef
22.
Zurück zum Zitat Flamary, R., Courty, N.: Pot python optimal transport library, (2017) Flamary, R., Courty, N.: Pot python optimal transport library, (2017)
23.
Zurück zum Zitat Fragalà, I., Gelli, M.S., Pratelli, A.: Continuity of an optimal transport in Monge problem. J. Math. Pure Appl. 84, 1261–1294 (2005)MathSciNetCrossRef Fragalà, I., Gelli, M.S., Pratelli, A.: Continuity of an optimal transport in Monge problem. J. Math. Pure Appl. 84, 1261–1294 (2005)MathSciNetCrossRef
24.
Zurück zum Zitat Jacobs, M., Léger, F., Li, W., Osher, S.: Solving large-scale optimization problems with a convergence rate independent of grid size, arXiv, (2018) Jacobs, M., Léger, F., Li, W., Osher, S.: Solving large-scale optimization problems with a convergence rate independent of grid size, arXiv, (2018)
25.
Zurück zum Zitat Larson, M.G., Niklasson, A.J.: A conservative flux for the continuous Galerkin method based on discontinuous enrichment. Calcolo 41, 1–12 (2004)MathSciNetCrossRef Larson, M.G., Niklasson, A.J.: A conservative flux for the continuous Galerkin method based on discontinuous enrichment. Calcolo 41, 1–12 (2004)MathSciNetCrossRef
26.
Zurück zum Zitat Li, W., Ryu, E.K., Osher, S., Yin, W., Gangbo, W.: A parallel method for Earth Mover’s distance. J. Scient. Comput. 75, 182–197 (2018)MathSciNetCrossRef Li, W., Ryu, E.K., Osher, S., Yin, W., Gangbo, W.: A parallel method for Earth Mover’s distance. J. Scient. Comput. 75, 182–197 (2018)MathSciNetCrossRef
27.
Zurück zum Zitat Liu, J., Yin, W., Li, W., Chow, Y. T.: Multilevel optimal transport: a fast approximation of Wasserstein-1 distances, arXiv preprint arXiv:1810.00118, (2018) Liu, J., Yin, W., Li, W., Chow, Y. T.: Multilevel optimal transport: a fast approximation of Wasserstein-1 distances, arXiv preprint arXiv:​1810.​00118, (2018)
28.
Zurück zum Zitat Nakagaki, T., Yamada, H., Toth, A.: Maze-solving by an amoeboid organism. Nature 407, 470–470 (2000)CrossRef Nakagaki, T., Yamada, H., Toth, A.: Maze-solving by an amoeboid organism. Nature 407, 470–470 (2000)CrossRef
29.
Zurück zum Zitat Perrot, M., Courty, N., Flamary, R., Habrard, A.: Mapping estimation for discrete optimal transport, In: Advances in Neural Information Processing Systems, pp. 4197–4205 (2016) Perrot, M., Courty, N., Flamary, R., Habrard, A.: Mapping estimation for discrete optimal transport, In: Advances in Neural Information Processing Systems, pp. 4197–4205 (2016)
30.
Zurück zum Zitat Putti, M., Cordes, C.: Finite element approximation of the diffusion operator on tetrahedra. SIAM J. Sci. Comput. 19, 1154–1168 (1998)MathSciNetCrossRef Putti, M., Cordes, C.: Finite element approximation of the diffusion operator on tetrahedra. SIAM J. Sci. Comput. 19, 1154–1168 (1998)MathSciNetCrossRef
31.
Zurück zum Zitat Quarteroni, A., Valli, A.: Numerical approximation of partial differential equations. Springer Series in Computational Mathematics, vol. 23. Springer-Verlag, Berlin (1994) Quarteroni, A., Valli, A.: Numerical approximation of partial differential equations. Springer Series in Computational Mathematics, vol. 23. Springer-Verlag, Berlin (1994)
32.
Zurück zum Zitat Ryu, E.K., Chen, Y., Li, W., Osher, S.: Vector and matrix optimal mass transport: Theory, algorithm, and applications. SIAM J. Sci. Comput. 40, A3675–A3698 (2018)MathSciNetCrossRef Ryu, E.K., Chen, Y., Li, W., Osher, S.: Vector and matrix optimal mass transport: Theory, algorithm, and applications. SIAM J. Sci. Comput. 40, A3675–A3698 (2018)MathSciNetCrossRef
33.
Zurück zum Zitat Santambrogio, F.: Optimal transport for applied mathematicians, vol. 87 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser/Springer, Cham, 2015. Calculus of variations, PDEs, and modeling Santambrogio, F.: Optimal transport for applied mathematicians, vol. 87 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser/Springer, Cham, 2015. Calculus of variations, PDEs, and modeling
34.
Zurück zum Zitat Solomon, J., Rustamov, R., Guibas, L., Butscher, A.: Earth mover’s distances on discrete surfaces. ACM Transactions on Graphics (TOG) 33, 67 (2014)CrossRef Solomon, J., Rustamov, R., Guibas, L., Butscher, A.: Earth mover’s distances on discrete surfaces. ACM Transactions on Graphics (TOG) 33, 67 (2014)CrossRef
35.
Zurück zum Zitat Tero, A., Kobayashi, R., Nakagaki, T.: A mathematical model for adaptive transport network in path finding by true slime mold. J. Theor. Biol. 244, 553–564 (2007)MathSciNetCrossRef Tero, A., Kobayashi, R., Nakagaki, T.: A mathematical model for adaptive transport network in path finding by true slime mold. J. Theor. Biol. 244, 553–564 (2007)MathSciNetCrossRef
36.
Zurück zum Zitat Vardi, Y., Zhang, C.-H.: A modified Weiszfeld algorithm for the Fermat-Weber location problem. Math. Prog. 90, 559–566 (2001)MathSciNetCrossRef Vardi, Y., Zhang, C.-H.: A modified Weiszfeld algorithm for the Fermat-Weber location problem. Math. Prog. 90, 559–566 (2001)MathSciNetCrossRef
37.
Zurück zum Zitat Villani, C.: Optimal transport, old and new. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338. Springer-Verlag, Berlin (2009) Villani, C.: Optimal transport, old and new. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338. Springer-Verlag, Berlin (2009)
Metadaten
Titel
Numerical Solution of Monge–Kantorovich Equations via a Dynamic Formulation
verfasst von
Enrico Facca
Sara Daneri
Franco Cardin
Mario Putti
Publikationsdatum
01.03.2020
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2020
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01170-8

Weitere Artikel der Ausgabe 3/2020

Journal of Scientific Computing 3/2020 Zur Ausgabe

Premium Partner