Skip to main content

2015 | OriginalPaper | Buchkapitel

Off-Line and On-Line Trajectory Planning

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The basic problem of motion planning is to select a path, or trajectory, from a given initial state to a destination state, while avoiding collisions with known static and moving obstacles. Ideally, it is desirable that the trajectory to the goal be computed online, during motion, to allow the robot react to changes in the environment, to a moving target, and to errors encountered during motion. However, the inherent difficulty in solving this problem, which stems from the high dimensionality of the search space, the geometric and kinematic properties of the obstacles, the cost function to be optimized, and the robot’s kinematic and dynamic model, may hinder a sufficiently fast solution to be computed online, given reasonable computational resources. As a result, existing work on motion planning can be classified into off-line and on-line planning. Off-line planners compute the entire path or trajectory to the goal before motion begins, whereas on-line planners generate the trajectory to the goal incrementally, during motion. This chapter reviews the main approaches to off-line and on-line planning, and presents one solution for each.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The switching time of the slowest axis occurs when its trajectory reaches one of the switching curves given in (18).
 
2
The obstacle hole is a subset of the obstacle shadow.
 
Literatur
1.
Zurück zum Zitat Choset H, Lynch KM, Hutchinson S, Kantor GA, Burgard W, Kavraki LE, Thrun S (2005) Principles of robot motion: theory, algorithms, and implementations. MIT Press, Cambridge Choset H, Lynch KM, Hutchinson S, Kantor GA, Burgard W, Kavraki LE, Thrun S (2005) Principles of robot motion: theory, algorithms, and implementations. MIT Press, Cambridge
2.
Zurück zum Zitat Shiller Z, Dubowsky S (1991) On computing the global time optimal motions of robotic manipulators in the presence of obstacles. IEEE Trans Robot Autom 7(6):785–797CrossRef Shiller Z, Dubowsky S (1991) On computing the global time optimal motions of robotic manipulators in the presence of obstacles. IEEE Trans Robot Autom 7(6):785–797CrossRef
3.
Zurück zum Zitat Canny JF (1988) The complexity of robot motion planning. MIT Press, Cambridge Canny JF (1988) The complexity of robot motion planning. MIT Press, Cambridge
4.
Zurück zum Zitat Lozano-Perez T, Wesley MA (1979) An algorithm for planning collision-free paths among polyhedral obstacles. Commun ACM 22(10):560–570CrossRef Lozano-Perez T, Wesley MA (1979) An algorithm for planning collision-free paths among polyhedral obstacles. Commun ACM 22(10):560–570CrossRef
5.
Zurück zum Zitat Lumelsky VJ, Stepanov A (1987) Path planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica 2:403–430CrossRefMATHMathSciNet Lumelsky VJ, Stepanov A (1987) Path planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica 2:403–430CrossRefMATHMathSciNet
6.
Zurück zum Zitat Schwartz JT, Sharir M (1983) On the piano movers’ problem: the case of a two-dimensional rigid polygonal body moving amidst polygonal barriers. Commun Pure Appl Math 36:345–398CrossRefMATHMathSciNet Schwartz JT, Sharir M (1983) On the piano movers’ problem: the case of a two-dimensional rigid polygonal body moving amidst polygonal barriers. Commun Pure Appl Math 36:345–398CrossRefMATHMathSciNet
7.
Zurück zum Zitat Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. Int J Robot Res 30(7):846–894CrossRef Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. Int J Robot Res 30(7):846–894CrossRef
8.
Zurück zum Zitat Manor G, Rimon E (2013) Vc-method: high-speed navigation of a uniformly braking mobile robot using position-velocity configuration space. Auton Robot 34(4):295–309CrossRef Manor G, Rimon E (2013) Vc-method: high-speed navigation of a uniformly braking mobile robot using position-velocity configuration space. Auton Robot 34(4):295–309CrossRef
9.
Zurück zum Zitat Lozano-Perez T (1987) A simple motion planning algorithm for robotic manipulators. IEEE Trans Robot Autom RA-3(3):224–238 Lozano-Perez T (1987) A simple motion planning algorithm for robotic manipulators. IEEE Trans Robot Autom RA-3(3):224–238
10.
Zurück zum Zitat Wein R, van den Berg JP, Halperin D (2005) The visibility-Voronoi complex and its applications. In: Proceedings of 21st symposium on computational geometry, pp 63–72 Wein R, van den Berg JP, Halperin D (2005) The visibility-Voronoi complex and its applications. In: Proceedings of 21st symposium on computational geometry, pp 63–72
11.
Zurück zum Zitat Alexopolous C, Griffin PM (1992) Path planning for a mobile robot. IEEE Trans Syst Man Cybern 22(2):318–322CrossRef Alexopolous C, Griffin PM (1992) Path planning for a mobile robot. IEEE Trans Syst Man Cybern 22(2):318–322CrossRef
12.
Zurück zum Zitat Liu YH, Arimoto S (1992) Path planning using a tangent graph for mobile robots among polygonal and curved obstacles. Int J Robot Res 11(4):376–382CrossRef Liu YH, Arimoto S (1992) Path planning using a tangent graph for mobile robots among polygonal and curved obstacles. Int J Robot Res 11(4):376–382CrossRef
13.
Zurück zum Zitat LaValle SM (2010) Motion planning: the essentials. IEEE Robot Autom Mag 110 LaValle SM (2010) Motion planning: the essentials. IEEE Robot Autom Mag 110
15.
Zurück zum Zitat Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization, algorithms and complexity. Prentice-Hall, Englewood CliffsMATH Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization, algorithms and complexity. Prentice-Hall, Englewood CliffsMATH
16.
Zurück zum Zitat Shiller Z, Gwo YR (1991) Dynamic motion planning of autonomous vehicles. IEEE Trans Robot Autom 7(2):241–249CrossRef Shiller Z, Gwo YR (1991) Dynamic motion planning of autonomous vehicles. IEEE Trans Robot Autom 7(2):241–249CrossRef
17.
Zurück zum Zitat Lavalle SM (1998) Rapidly-exploring random trees: a new tool for path planning. Technical Report 98-11, Department of CS, Iowa State University Lavalle SM (1998) Rapidly-exploring random trees: a new tool for path planning. Technical Report 98-11, Department of CS, Iowa State University
18.
Zurück zum Zitat Hsu D, Latombe JC, Motwani R (1999) Path planning in expansive configuration spaces. Int J Comput Geom Appl 4:495–512CrossRefMathSciNet Hsu D, Latombe JC, Motwani R (1999) Path planning in expansive configuration spaces. Int J Comput Geom Appl 4:495–512CrossRefMathSciNet
19.
Zurück zum Zitat Mazer E, Ahuactzin JM, Bessiere P (1998) The Ariadnes clew algorithm. J Artif Intell 9:295–316MATH Mazer E, Ahuactzin JM, Bessiere P (1998) The Ariadnes clew algorithm. J Artif Intell 9:295–316MATH
20.
Zurück zum Zitat Karaman S, Walter MR, Perez A, Frazzoli E, Teller S (2011) Anytime motion planning using the rrt*. In: International conference on robotics and automation Karaman S, Walter MR, Perez A, Frazzoli E, Teller S (2011) Anytime motion planning using the rrt*. In: International conference on robotics and automation
21.
Zurück zum Zitat Amato NM, Bayazit OB, Dale LK (2000) Choosing good distance metrics and local planners for probabilistic roadmap methods. IEEE Trans Robot Autom 16(4):442–447CrossRef Amato NM, Bayazit OB, Dale LK (2000) Choosing good distance metrics and local planners for probabilistic roadmap methods. IEEE Trans Robot Autom 16(4):442–447CrossRef
22.
Zurück zum Zitat Gmez-Bravo F, Carbone G, Fortes JC (2012) Collision free trajectory planning for hybrid manipulators. Mechatronics 22(6):836–851. Special Issue on Intelligent Mechatronics Gmez-Bravo F, Carbone G, Fortes JC (2012) Collision free trajectory planning for hybrid manipulators. Mechatronics 22(6):836–851. Special Issue on Intelligent Mechatronics
23.
Zurück zum Zitat Bryson AE, Ho YC (1969) Applied optimal control. Blaisdell Publishing Company, Cambridge Bryson AE, Ho YC (1969) Applied optimal control. Blaisdell Publishing Company, Cambridge
24.
Zurück zum Zitat Kiriazov P, Marinov P (1985) A method for time-optimal control of dynamically constrained manipulator. Theory and practice of robotics and manipulators. MIT Press, Cambridge, pp 169–178CrossRef Kiriazov P, Marinov P (1985) A method for time-optimal control of dynamically constrained manipulator. Theory and practice of robotics and manipulators. MIT Press, Cambridge, pp 169–178CrossRef
25.
Zurück zum Zitat Niv M, Auslander DM (1984) Optimal control of a robot with obstacles. In: Proceedings of American control conference (San Diego, CA), June 1984, pp 280–287 Niv M, Auslander DM (1984) Optimal control of a robot with obstacles. In: Proceedings of American control conference (San Diego, CA), June 1984, pp 280–287
26.
Zurück zum Zitat Khan ME, Roth B (1971) The near-minimum time control of open loop articulated kinematic chains. J Dyn Syst Meas Control 93(3):164–172CrossRef Khan ME, Roth B (1971) The near-minimum time control of open loop articulated kinematic chains. J Dyn Syst Meas Control 93(3):164–172CrossRef
27.
Zurück zum Zitat Bobrow JE, Dubowsky S, Gibson JS (1985) Time-optimal control of robotic manipulators. IJRR 4(3):3–17 Bobrow JE, Dubowsky S, Gibson JS (1985) Time-optimal control of robotic manipulators. IJRR 4(3):3–17
28.
Zurück zum Zitat Pfeiffer F, Johanni R (1987) A concept for manipulator trajectory planning. IEEE Trans Robot Autom RA-3(3):115–123 Pfeiffer F, Johanni R (1987) A concept for manipulator trajectory planning. IEEE Trans Robot Autom RA-3(3):115–123
29.
Zurück zum Zitat Shin KG, McKay ND (1985) Minimum-time control of robotic manipulators with geometric path constraints. IEEE Trans Autom Control AC-30(6):531–541 Shin KG, McKay ND (1985) Minimum-time control of robotic manipulators with geometric path constraints. IEEE Trans Autom Control AC-30(6):531–541
30.
Zurück zum Zitat Shiller Z, Lu HH (1992) Computation of path constrained time-optimal motions with dynamic singularities. ASME J Dyn Syst Meas Control 14(1):34–40CrossRef Shiller Z, Lu HH (1992) Computation of path constrained time-optimal motions with dynamic singularities. ASME J Dyn Syst Meas Control 14(1):34–40CrossRef
31.
Zurück zum Zitat Slotine JE, Yang HS (1989) Improving the efficiency of time optimal path following algorithms. IEEE Trans Robot Autom 5(1):118–124CrossRef Slotine JE, Yang HS (1989) Improving the efficiency of time optimal path following algorithms. IEEE Trans Robot Autom 5(1):118–124CrossRef
32.
Zurück zum Zitat Tarkiainen M, Shiller Z (1993) Time optimal motions of manipulators with actuator dynamics. In: Proceedings of 1993 IEEE international conference on robotics and automation, vol 2, pp 725–730 Tarkiainen M, Shiller Z (1993) Time optimal motions of manipulators with actuator dynamics. In: Proceedings of 1993 IEEE international conference on robotics and automation, vol 2, pp 725–730
33.
Zurück zum Zitat Bobrow JE (1988) Optimal robot path planning using the minimum time criterion. IEEE Trans Robot Autom 4(4):443–450CrossRef Bobrow JE (1988) Optimal robot path planning using the minimum time criterion. IEEE Trans Robot Autom 4(4):443–450CrossRef
34.
Zurück zum Zitat Shiller Z, Dubowsky S (1989) Time-optimal path-planning for robotic manipulators with obstacles, actuator, gripper and payload constraints. IJRR 8(6):3–18 Shiller Z, Dubowsky S (1989) Time-optimal path-planning for robotic manipulators with obstacles, actuator, gripper and payload constraints. IJRR 8(6):3–18
36.
Zurück zum Zitat Bryson AE (1999) Dynamic optimization. Addison Wesley, New York Bryson AE (1999) Dynamic optimization. Addison Wesley, New York
37.
Zurück zum Zitat Donald B, Xavier P (1989) A provably good approximation algorithm for optimal-time trajectory planning. In: Proceedings of IEEE conference on robotics and automation, May 1989, pp 958–963 Donald B, Xavier P (1989) A provably good approximation algorithm for optimal-time trajectory planning. In: Proceedings of IEEE conference on robotics and automation, May 1989, pp 958–963
38.
Zurück zum Zitat Sahar G, Hollerbach JM (1985) Planning of minimum-time trajectories for robot arms. In: Proceedings of IEEE international conference on robotics and automation (St. Louis, MO), March 1985, pp 751–758 Sahar G, Hollerbach JM (1985) Planning of minimum-time trajectories for robot arms. In: Proceedings of IEEE international conference on robotics and automation (St. Louis, MO), March 1985, pp 751–758
39.
Zurück zum Zitat Kamon I, Rimon E, Rivlin E (1998) Tangentbug: a range-sensor based navigation algorithm. Int J Robot Res 17(9):934–953CrossRef Kamon I, Rimon E, Rivlin E (1998) Tangentbug: a range-sensor based navigation algorithm. Int J Robot Res 17(9):934–953CrossRef
40.
Zurück zum Zitat Laubach S, Burdick J, Matthies L (1998) A practical autonomous path-planner for the rocky7 prototype microrover. IEEE international conference on robotics and automation Laubach S, Burdick J, Matthies L (1998) A practical autonomous path-planner for the rocky7 prototype microrover. IEEE international conference on robotics and automation
41.
Zurück zum Zitat Choset H, Burdick JW (1995) Sensor based planning, part ii: incremental construction of the generalized Voronoi graph. In: Proceedings of IEEE international conference on robotics and automation, ICRA’95, pp 1643–1649 Choset H, Burdick JW (1995) Sensor based planning, part ii: incremental construction of the generalized Voronoi graph. In: Proceedings of IEEE international conference on robotics and automation, ICRA’95, pp 1643–1649
42.
Zurück zum Zitat Sankaranarayanan A, Vidyasagar M (1991) Path planning for moving a point object amidst unknown obstacles in a plane: the universal lower bound on worst case path lengths and a classification of algorithms. In: Proceedings of IEEE international conference on robotics and automation, ICRA’91, pp 1734–1941 Sankaranarayanan A, Vidyasagar M (1991) Path planning for moving a point object amidst unknown obstacles in a plane: the universal lower bound on worst case path lengths and a classification of algorithms. In: Proceedings of IEEE international conference on robotics and automation, ICRA’91, pp 1734–1941
43.
Zurück zum Zitat Connoly CI, Burns JB, Weiss R (1991) Path planning using Laplace’s equation. In: IEEE conference on robotics and automation, Cincinnati, OH, vol 1, pp 102–2106 Connoly CI, Burns JB, Weiss R (1991) Path planning using Laplace’s equation. In: IEEE conference on robotics and automation, Cincinnati, OH, vol 1, pp 102–2106
44.
Zurück zum Zitat Khatib O (1986) Real time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 1:65–78 Khatib O (1986) Real time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 1:65–78
45.
Zurück zum Zitat Rimon E, Koditschek DE (1992) Exact robot navigation using artificial potential functions. IEEE Trans Robot Autom 8:501–518CrossRef Rimon E, Koditschek DE (1992) Exact robot navigation using artificial potential functions. IEEE Trans Robot Autom 8:501–518CrossRef
46.
Zurück zum Zitat Jarvis R (1985) Collision-free trajectory planning using distance transforms. Trans Inst Eng Aust Mech Eng ME10(3):187–191 Jarvis R (1985) Collision-free trajectory planning using distance transforms. Trans Inst Eng Aust Mech Eng ME10(3):187–191
47.
Zurück zum Zitat Athans M (1965) Optimal control: an introduction to the theory and it’s applications. Academic Press, New York Athans M (1965) Optimal control: an introduction to the theory and it’s applications. Academic Press, New York
48.
Zurück zum Zitat Cesari L (1983) Optimization—theory and applications: problems with ordinary differential equations. Springer, New YorkCrossRefMATH Cesari L (1983) Optimization—theory and applications: problems with ordinary differential equations. Springer, New YorkCrossRefMATH
49.
Zurück zum Zitat Moskalenko AI (1967) Bellman equations for optimal processes with constraints on the phase coordinates. Autom Remote Control 4:1853–1864 Moskalenko AI (1967) Bellman equations for optimal processes with constraints on the phase coordinates. Autom Remote Control 4:1853–1864
50.
Zurück zum Zitat Shiller Z, Sharma S, Stern I, Stern A (2013) On-line obstacle avoidance at high speeds. Int J Robot Res 32(9–10):1030–1047CrossRef Shiller Z, Sharma S, Stern I, Stern A (2013) On-line obstacle avoidance at high speeds. Int J Robot Res 32(9–10):1030–1047CrossRef
51.
Zurück zum Zitat Sundar S, Shiller Z (1997) Optimal obstacle avoidance based on sufficient conditions of optimality. IEEE Trans Robot Autom 13(2):305–310CrossRef Sundar S, Shiller Z (1997) Optimal obstacle avoidance based on sufficient conditions of optimality. IEEE Trans Robot Autom 13(2):305–310CrossRef
52.
Zurück zum Zitat Lee EB, Markus L (1967) Foundations of optimal control theory. Wiley, New YorkMATH Lee EB, Markus L (1967) Foundations of optimal control theory. Wiley, New YorkMATH
54.
Zurück zum Zitat Bellman R (1957) Dynamic programming. Princeton University Press, PrincetonMATH Bellman R (1957) Dynamic programming. Princeton University Press, PrincetonMATH
55.
Zurück zum Zitat Lawler EL (1976) Combinatorial optimization. Holt, Rinehart and Winston, New YorkMATH Lawler EL (1976) Combinatorial optimization. Holt, Rinehart and Winston, New YorkMATH
56.
Zurück zum Zitat Fujita Y, Nakamura Y, Shiller Z (2003) Dual dijkstra search for paths with different topologies. In: ICRA, pp 3359–3364 Fujita Y, Nakamura Y, Shiller Z (2003) Dual dijkstra search for paths with different topologies. In: ICRA, pp 3359–3364
57.
Zurück zum Zitat Shiller Z, Fujita Y, Ophir D, Nakamura Y (2004) Computing a set of local optimal paths through cluttered environments and over open terrain. In: ICRA, pp 4759–4764 Shiller Z, Fujita Y, Ophir D, Nakamura Y (2004) Computing a set of local optimal paths through cluttered environments and over open terrain. In: ICRA, pp 4759–4764
58.
Zurück zum Zitat Pham QC (2013) Characterizing and addressing dynamic singularities in the time-optimal path parameterization algorithm. In: 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 2357–2363 Pham QC (2013) Characterizing and addressing dynamic singularities in the time-optimal path parameterization algorithm. In: 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 2357–2363
59.
Zurück zum Zitat Dreyfus S (1965) Dynamic programming and the calculus of variations. Academic Press, New YorkMATH Dreyfus S (1965) Dynamic programming and the calculus of variations. Academic Press, New YorkMATH
60.
Zurück zum Zitat Sundar S (1995) Time-optimal obstacle avoidance for robotic manipulators. Doctoral Dissertation, Mechanical and Aerospace Engineering, University of California, Los Angeles, June 1995 Sundar S (1995) Time-optimal obstacle avoidance for robotic manipulators. Doctoral Dissertation, Mechanical and Aerospace Engineering, University of California, Los Angeles, June 1995
Metadaten
Titel
Off-Line and On-Line Trajectory Planning
verfasst von
Zvi Shiller
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-14705-5_2

Neuer Inhalt