Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 9/2020

04.08.2020 | Research Article-Chemical Engineering

Ohmic Heating and Non-uniform Heat Source/Sink Roles on 3D Darcy–Forchheimer Flow of CNTs Nanofluids Over a Stretching Surface

verfasst von: Himanshu Upreti, Alok Kumar Pandey, Manoj Kumar, O. D. Makinde

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The major focus of the current study was the modeling of 3D Darcy–Forchheimer flow of water–CNTs nanofluid. Impacts of non-uniform heat source/sink and Ohmic heating on 3D magneto hydrodynamic flow of water–CNTs (SWCNT and MWCNT) nanofluid were assessed. The numerical analysis method ‘Runge–Kutta–Fehlberg’ was applied for existing PDEs. It was noted that the thermal boundary layer was extended for increasing Eckert numbers along \( x\;{\text{and}}\;y \) direction, when the fluid showed movement away from the surface. Moreover, the gap in thermal boundary layer for H2O-SWCNT was more in comparison with H2O–MWCNT nanofluid. The numerical data of this study were validated with earlier reported outcomes and were observed to have good concord.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)CrossRef Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)CrossRef
2.
Zurück zum Zitat Khan, W.A.; Khan, Z.H.; Rahi, M.: Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary. Appl. Nanosci. 4(5), 633–641 (2014)CrossRef Khan, W.A.; Khan, Z.H.; Rahi, M.: Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary. Appl. Nanosci. 4(5), 633–641 (2014)CrossRef
3.
Zurück zum Zitat Hayat, T.; Khan, M.I.; Waqas, M.; Alsaedi, A.; Farooq, M.: Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbon–water nanofluid. Comput. Methods Appl. Mech. Eng. 315, 1011–1024 (2019)MathSciNetMATHCrossRef Hayat, T.; Khan, M.I.; Waqas, M.; Alsaedi, A.; Farooq, M.: Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbon–water nanofluid. Comput. Methods Appl. Mech. Eng. 315, 1011–1024 (2019)MathSciNetMATHCrossRef
4.
Zurück zum Zitat Ahmed, Z.; Nadeem, S.; Saleem, S.; Ellahi, R.: Numerical study of unsteady flow and heat transfer CNT-based MHD nanofluid with variable viscosity over a permeable shrinking surface. Int. J. Numer. Method Heat Fluid Flow 29(12), 4607–4623 (2019)CrossRef Ahmed, Z.; Nadeem, S.; Saleem, S.; Ellahi, R.: Numerical study of unsteady flow and heat transfer CNT-based MHD nanofluid with variable viscosity over a permeable shrinking surface. Int. J. Numer. Method Heat Fluid Flow 29(12), 4607–4623 (2019)CrossRef
5.
Zurück zum Zitat Shahsavar, A.; Sardari, P.T.; Toghraie, D.: Free convection heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid nanofluid in a concentric annulus. Int. J. Numer. Method Heat Fluid Flow 29(3), 915–934 (2019)CrossRef Shahsavar, A.; Sardari, P.T.; Toghraie, D.: Free convection heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid nanofluid in a concentric annulus. Int. J. Numer. Method Heat Fluid Flow 29(3), 915–934 (2019)CrossRef
6.
Zurück zum Zitat Kumar, K.G.; Rahimi-Gorji, M.; Reddy, M.G.; Chamkha, A.J.; Alarifi, I.M.: Enhancement of heat transfer in a convergent/divergent channel by using carbon nanotubes in the presence of a Darcy–Forchheimer medium. Microsyst. Technol. 26(2), 323–332 (2020)CrossRef Kumar, K.G.; Rahimi-Gorji, M.; Reddy, M.G.; Chamkha, A.J.; Alarifi, I.M.: Enhancement of heat transfer in a convergent/divergent channel by using carbon nanotubes in the presence of a Darcy–Forchheimer medium. Microsyst. Technol. 26(2), 323–332 (2020)CrossRef
7.
Zurück zum Zitat Forchheimer, P.: Wasserbewegung durch boden. Z. Ver. Deutsch. Ing. 45, 1782–1788 (1901) Forchheimer, P.: Wasserbewegung durch boden. Z. Ver. Deutsch. Ing. 45, 1782–1788 (1901)
8.
Zurück zum Zitat Chamkha, A.J.: Solar radiation assisted natural convection in uniform porous medium supported by a vertical flat plate. J. Heat Transf. 119(1), 89–96 (1997)CrossRef Chamkha, A.J.: Solar radiation assisted natural convection in uniform porous medium supported by a vertical flat plate. J. Heat Transf. 119(1), 89–96 (1997)CrossRef
9.
Zurück zum Zitat Zeng, Z.; Grigg, R.: A criterion for non-Darcy flow in porous media. Transp. Porous Med. 63(1), 57–69 (2006)CrossRef Zeng, Z.; Grigg, R.: A criterion for non-Darcy flow in porous media. Transp. Porous Med. 63(1), 57–69 (2006)CrossRef
10.
Zurück zum Zitat Mukhopadhyay, S.; De, P.R.; Bhattacharyya, K.; Layek, G.C.: Forced convective flow and heat transfer over a porous plate in a Darcy–Forchheimer porous medium in presence of radiation. Meccanica 47(1), 153–161 (2012)MathSciNetMATHCrossRef Mukhopadhyay, S.; De, P.R.; Bhattacharyya, K.; Layek, G.C.: Forced convective flow and heat transfer over a porous plate in a Darcy–Forchheimer porous medium in presence of radiation. Meccanica 47(1), 153–161 (2012)MathSciNetMATHCrossRef
11.
Zurück zum Zitat Muhammad, T.; Alsaedi, A.; Hayat, T.; Shehzad, S.A.: A revised model for Darcy–Forchheimer three-dimensional flow of nanofluid subject to convective boundary condition. Results Phys. 7, 2791–2797 (2017)CrossRef Muhammad, T.; Alsaedi, A.; Hayat, T.; Shehzad, S.A.: A revised model for Darcy–Forchheimer three-dimensional flow of nanofluid subject to convective boundary condition. Results Phys. 7, 2791–2797 (2017)CrossRef
12.
Zurück zum Zitat Sheikholeslami, M.; Zeeshan, A.: Numerical simulation of Fe3O4-water nanofluid flow in a non-Darcy porous media. Int. J. Numer. Method Heat Fluid Flow 28(3), 641–660 (2018)CrossRef Sheikholeslami, M.; Zeeshan, A.: Numerical simulation of Fe3O4-water nanofluid flow in a non-Darcy porous media. Int. J. Numer. Method Heat Fluid Flow 28(3), 641–660 (2018)CrossRef
13.
Zurück zum Zitat Jawad, M.; Shah, Z.; Islam, S.; Bonyah, E.; Khan, A.Z.: Darcy–Forchheimer flow of MHD nanofluid thin film flow with Joule dissipation and Navier’s partial slip. J. Phys. Commun. 2(11), 115014 (2018)CrossRef Jawad, M.; Shah, Z.; Islam, S.; Bonyah, E.; Khan, A.Z.: Darcy–Forchheimer flow of MHD nanofluid thin film flow with Joule dissipation and Navier’s partial slip. J. Phys. Commun. 2(11), 115014 (2018)CrossRef
14.
Zurück zum Zitat Hayat, T.; Rafique, K.; Muhammad, T.; Alsaedi, A.; Ayub, M.: Carbon nanotubes significance in Darcy–Forchheimer flow. Results Phys. 8, 26–33 (2018)CrossRef Hayat, T.; Rafique, K.; Muhammad, T.; Alsaedi, A.; Ayub, M.: Carbon nanotubes significance in Darcy–Forchheimer flow. Results Phys. 8, 26–33 (2018)CrossRef
15.
Zurück zum Zitat Hayat, T.; Haider, F.; Muhammad, T.; Alsaedi, A.: Numerical study for Darcy–Forchheimer flow of nanofluid due to an exponentially stretching curved surface. Results Phys. 8, 764–771 (2018)CrossRef Hayat, T.; Haider, F.; Muhammad, T.; Alsaedi, A.: Numerical study for Darcy–Forchheimer flow of nanofluid due to an exponentially stretching curved surface. Results Phys. 8, 764–771 (2018)CrossRef
16.
Zurück zum Zitat Hayat, T.; Ullah, S.; Khan, M.I.; Alsaedi, A.; Zia, Q.Z.: Non-Darcy flow of water-based carbon nanotubes with nonlinear radiation and heat generation/absorption. Results Phys. 8, 473–480 (2018)CrossRef Hayat, T.; Ullah, S.; Khan, M.I.; Alsaedi, A.; Zia, Q.Z.: Non-Darcy flow of water-based carbon nanotubes with nonlinear radiation and heat generation/absorption. Results Phys. 8, 473–480 (2018)CrossRef
17.
Zurück zum Zitat Tarakaramu, N.; Narayana, P.S.; Venkateswarlu, B.: MHD three dimensional Darcy–Forchheimer flow of a nanofluid with nonlinear thermal radiation. In: Applied Mathematics and Scientific Computing Birkhäuser, Cham, pp. 87–97 (2019) Tarakaramu, N.; Narayana, P.S.; Venkateswarlu, B.: MHD three dimensional Darcy–Forchheimer flow of a nanofluid with nonlinear thermal radiation. In: Applied Mathematics and Scientific Computing Birkhäuser, Cham, pp. 87–97 (2019)
18.
Zurück zum Zitat Hoseinzadeh, S.; Heyns, P.S.; Chamkha, A.J.; Shirkhani, A.: Thermal analysis of porous fins enclosure with the comparison of analytical and numerical methods. J. Therm. Anal. Calorim. 138(1), 727–735 (2019)CrossRef Hoseinzadeh, S.; Heyns, P.S.; Chamkha, A.J.; Shirkhani, A.: Thermal analysis of porous fins enclosure with the comparison of analytical and numerical methods. J. Therm. Anal. Calorim. 138(1), 727–735 (2019)CrossRef
19.
Zurück zum Zitat Hoseinzadeh, S.; Moafi, A.; Shirkhani, A.; Chamkha, A.J.: Numerical validation heat transfer of rectangular cross-section porous fins. J. Thermophys. Heat Tr. 33(3), 698–704 (2019)CrossRef Hoseinzadeh, S.; Moafi, A.; Shirkhani, A.; Chamkha, A.J.: Numerical validation heat transfer of rectangular cross-section porous fins. J. Thermophys. Heat Tr. 33(3), 698–704 (2019)CrossRef
20.
Zurück zum Zitat Alsabery, A.I.; Mohebbi, R.; Chamkha, A.J.; Hashim, I.: Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder. Chem. Eng. Sci. 201, 247–263 (2019)CrossRef Alsabery, A.I.; Mohebbi, R.; Chamkha, A.J.; Hashim, I.: Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder. Chem. Eng. Sci. 201, 247–263 (2019)CrossRef
21.
Zurück zum Zitat Takhar, H.S.; Chamkha, A.J.; Nath, G.: Unsteady three-dimensional MHD-boundary-layer flow due to the impulsive motion of a stretching surface. Acta Mech. 146(1–2), 59–71 (2001)MATHCrossRef Takhar, H.S.; Chamkha, A.J.; Nath, G.: Unsteady three-dimensional MHD-boundary-layer flow due to the impulsive motion of a stretching surface. Acta Mech. 146(1–2), 59–71 (2001)MATHCrossRef
22.
Zurück zum Zitat Chamkha, A.J.; Al-Mudhaf, A.: Unsteady heat and mass transfer from a rotating vertical cone with a magnetic field and heat generation or absorption effects. Int. J. Therm. Sci. 44(3), 267–276 (2005)CrossRef Chamkha, A.J.; Al-Mudhaf, A.: Unsteady heat and mass transfer from a rotating vertical cone with a magnetic field and heat generation or absorption effects. Int. J. Therm. Sci. 44(3), 267–276 (2005)CrossRef
23.
Zurück zum Zitat Raju, C.S.K.; Sandeep, N.; Malvandi, A.: Free convective heat and mass transfer of MHD non-Newtonian nanofluids over a cone in the presence of non-uniform heat source/sink. J. Mol. Liq. 221, 108–115 (2016)CrossRef Raju, C.S.K.; Sandeep, N.; Malvandi, A.: Free convective heat and mass transfer of MHD non-Newtonian nanofluids over a cone in the presence of non-uniform heat source/sink. J. Mol. Liq. 221, 108–115 (2016)CrossRef
24.
Zurück zum Zitat Pandey, A.K.; Kumar, M.: Effect of viscous dissipation and suction/injection on MHD nanofluid flow over a wedge with porous medium and slip. Alex. Eng. J. 55(4), 3115–3123 (2018)CrossRef Pandey, A.K.; Kumar, M.: Effect of viscous dissipation and suction/injection on MHD nanofluid flow over a wedge with porous medium and slip. Alex. Eng. J. 55(4), 3115–3123 (2018)CrossRef
25.
Zurück zum Zitat Reddy, P.S.A.; Chamkha, A.: Heat and mass transfer characteristics of MHD three-dimensional flow over a stretching sheet filled with water-based alumina nanofluid. Int. J. Numer. Method Heat Fluid Flow 28(3), 532–546 (2018)CrossRef Reddy, P.S.A.; Chamkha, A.: Heat and mass transfer characteristics of MHD three-dimensional flow over a stretching sheet filled with water-based alumina nanofluid. Int. J. Numer. Method Heat Fluid Flow 28(3), 532–546 (2018)CrossRef
26.
Zurück zum Zitat Pandey, A.K.; Kumar, M.: MHD flow inside a stretching/shrinking convergent/divergent channel with heat generation/absorption and viscous-Ohmic dissipation utilizing Cu–water nanofluid. Comput. Therm. Sci. 10(05), 457–471 (2018)CrossRef Pandey, A.K.; Kumar, M.: MHD flow inside a stretching/shrinking convergent/divergent channel with heat generation/absorption and viscous-Ohmic dissipation utilizing Cu–water nanofluid. Comput. Therm. Sci. 10(05), 457–471 (2018)CrossRef
27.
Zurück zum Zitat Mishra, A.; Pandey, A.K.; Kumar, M.: Velocity, thermal and concentration slip effects on MHD silver-water nanofluid past a permeable cone with suction/injection and viscous-Ohmic dissipation. Heat Transf. Res. 50(14), 1351–1367 (2019)CrossRef Mishra, A.; Pandey, A.K.; Kumar, M.: Velocity, thermal and concentration slip effects on MHD silver-water nanofluid past a permeable cone with suction/injection and viscous-Ohmic dissipation. Heat Transf. Res. 50(14), 1351–1367 (2019)CrossRef
28.
Zurück zum Zitat Ibáñez, G.; López, A.; López, I.; Pantoja, J.; Moreira, J.; Lastres, O.: Optimization of MHD nanofluid flow in a vertical microchannel with a porous medium, nonlinear radiation heat flux, slip flow and convective–radiative boundary conditions. J. Therm. Anal. Calorim. 135(6), 3401–3420 (2019)CrossRef Ibáñez, G.; López, A.; López, I.; Pantoja, J.; Moreira, J.; Lastres, O.: Optimization of MHD nanofluid flow in a vertical microchannel with a porous medium, nonlinear radiation heat flux, slip flow and convective–radiative boundary conditions. J. Therm. Anal. Calorim. 135(6), 3401–3420 (2019)CrossRef
29.
Zurück zum Zitat Ma, Y.; Mohebbi, R.; Rashidi, M.M.; Yang, Z.; Sheremet, M.A.: Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure. Int. J. Heat Mass Tran. 130, 123–134 (2019)CrossRef Ma, Y.; Mohebbi, R.; Rashidi, M.M.; Yang, Z.; Sheremet, M.A.: Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure. Int. J. Heat Mass Tran. 130, 123–134 (2019)CrossRef
30.
Zurück zum Zitat Dogonchi, A.S.; Armaghani, T.; Chamkha, A.J.; Ganji, D.D.: Natural convection analysis in a cavity with an inclined elliptical heater subject to shape factor of nanoparticles and magnetic field. Arab. J. Sci. Eng. 44(9), 7919–7931 (2019)CrossRef Dogonchi, A.S.; Armaghani, T.; Chamkha, A.J.; Ganji, D.D.: Natural convection analysis in a cavity with an inclined elliptical heater subject to shape factor of nanoparticles and magnetic field. Arab. J. Sci. Eng. 44(9), 7919–7931 (2019)CrossRef
31.
Zurück zum Zitat Upreti, H.; Kumar, M.: Influence of non-linear radiation, Joule heating and viscous dissipation on the boundary layer flow of MHD nanofluid flow over a thin moving needle. Multidisp. Model. Mater. Struct. 16(1), 208–224 (2019)CrossRef Upreti, H.; Kumar, M.: Influence of non-linear radiation, Joule heating and viscous dissipation on the boundary layer flow of MHD nanofluid flow over a thin moving needle. Multidisp. Model. Mater. Struct. 16(1), 208–224 (2019)CrossRef
32.
Zurück zum Zitat Dogonchi, A.S.; Tayebi, T.; Chamkha, A.J.; Ganji, D.D.: Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. J. Therm. Anal. Calorim 139(1), 661–671 (2020)CrossRef Dogonchi, A.S.; Tayebi, T.; Chamkha, A.J.; Ganji, D.D.: Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. J. Therm. Anal. Calorim 139(1), 661–671 (2020)CrossRef
33.
Zurück zum Zitat Chamkha, A.J.: Hydromagnetic natural convection from an isothermal inclined surface adjacent to a thermally stratified porous medium. Int. J. Eng. Sci. 35(10–11), 975–986 (1997)MathSciNetMATHCrossRef Chamkha, A.J.: Hydromagnetic natural convection from an isothermal inclined surface adjacent to a thermally stratified porous medium. Int. J. Eng. Sci. 35(10–11), 975–986 (1997)MathSciNetMATHCrossRef
34.
Zurück zum Zitat Chamkha, A.J.; Al-Mudhaf, A.F.; Pop, I.: Effect of heat generation or absorption on thermophoretic free convection boundary layer from a vertical flat plate embedded in a porous medium. Int. Commun. Heat Mass 33(9), 1096–1102 (2006)CrossRef Chamkha, A.J.; Al-Mudhaf, A.F.; Pop, I.: Effect of heat generation or absorption on thermophoretic free convection boundary layer from a vertical flat plate embedded in a porous medium. Int. Commun. Heat Mass 33(9), 1096–1102 (2006)CrossRef
35.
Zurück zum Zitat Akbar, N.S.; Nadeem, S.; Haq, R.U.; Khan, Z.H.: Radiation effects on MHD stagnation point flow of nano fluid towards a stretching surface with convective boundary condition. Chin. J. Aeronaut. 26(6), 1389–1397 (2013)CrossRef Akbar, N.S.; Nadeem, S.; Haq, R.U.; Khan, Z.H.: Radiation effects on MHD stagnation point flow of nano fluid towards a stretching surface with convective boundary condition. Chin. J. Aeronaut. 26(6), 1389–1397 (2013)CrossRef
36.
Zurück zum Zitat Muhammad, T.; Hayat, T.; Shehzad, S.A.; Alsaedi, A.: Viscous dissipation and Joule heating effects in MHD 3D flow with heat and mass fluxes. Results Phys. 8, 365–371 (2016)CrossRef Muhammad, T.; Hayat, T.; Shehzad, S.A.; Alsaedi, A.: Viscous dissipation and Joule heating effects in MHD 3D flow with heat and mass fluxes. Results Phys. 8, 365–371 (2016)CrossRef
37.
Zurück zum Zitat Khan, M.; Ahmad, L.; Khan, W.A.: Numerically framing the impact of radiation on magnetonanoparticles for 3D Sisko fluid flow. J. Braz. Soc. Mech. Sci. Eng. 39(11), 4475–4487 (2017)CrossRef Khan, M.; Ahmad, L.; Khan, W.A.: Numerically framing the impact of radiation on magnetonanoparticles for 3D Sisko fluid flow. J. Braz. Soc. Mech. Sci. Eng. 39(11), 4475–4487 (2017)CrossRef
38.
Zurück zum Zitat Nayak, M.K.; Akbar, N.S.; Pandey, V.S.; Khan, Z.H.; Tripathi, D.: 3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation. Powder Technol. 315, 205–215 (2017)CrossRef Nayak, M.K.; Akbar, N.S.; Pandey, V.S.; Khan, Z.H.; Tripathi, D.: 3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation. Powder Technol. 315, 205–215 (2017)CrossRef
39.
Zurück zum Zitat Gireesha, B.J.; Archana, M.; Gorla, R.R.; Makinde, O.D.: MHD three dimensional double diffusive flow of Casson nanofluid with buoyancy forces and nonlinear thermal radiation over a stretching surface. Int. J. Numer. Method Heat Fluid Flow 27(12), 2858–2878 (2017) Gireesha, B.J.; Archana, M.; Gorla, R.R.; Makinde, O.D.: MHD three dimensional double diffusive flow of Casson nanofluid with buoyancy forces and nonlinear thermal radiation over a stretching surface. Int. J. Numer. Method Heat Fluid Flow 27(12), 2858–2878 (2017)
40.
Zurück zum Zitat Olatundun, A.T.; Makinde, O.D.: Analysis of Blasius flow of hybrid nanofluids over a convectively heated surface. Defect Diffus. Forum 377, 29–41 (2017)CrossRef Olatundun, A.T.; Makinde, O.D.: Analysis of Blasius flow of hybrid nanofluids over a convectively heated surface. Defect Diffus. Forum 377, 29–41 (2017)CrossRef
41.
Zurück zum Zitat Krishna, P.M.; Sandeep, N.; Sharma, R.P.; Makinde, O.D.: Thermal radiation effect on 3D slip motion of AlCu-water and Cu-water nanofluids over a variable thickness stretched surface. Defect Diffus. Forum 377, 141–154 (2017)CrossRef Krishna, P.M.; Sandeep, N.; Sharma, R.P.; Makinde, O.D.: Thermal radiation effect on 3D slip motion of AlCu-water and Cu-water nanofluids over a variable thickness stretched surface. Defect Diffus. Forum 377, 141–154 (2017)CrossRef
42.
Zurück zum Zitat Upreti, H.; Pandey, A.K.; Kumar, M.: MHD flow of Ag-water nanofluid over a flat porous plate with viscous-Ohmic dissipation, suction/injection and heat generation/absorption. Alex. Eng. J. 57(3), 1839–1847 (2018)CrossRef Upreti, H.; Pandey, A.K.; Kumar, M.: MHD flow of Ag-water nanofluid over a flat porous plate with viscous-Ohmic dissipation, suction/injection and heat generation/absorption. Alex. Eng. J. 57(3), 1839–1847 (2018)CrossRef
43.
Zurück zum Zitat Hussain, Z.; Hayat, T.; Alsaedi, A.; Ahmad, B.: Three-dimensional convective flow of CNTs nanofluids with heat generation/absorption effect: a numerical study. Comput. Method Appl. M. 329, 40–54 (2018)MathSciNetMATHCrossRef Hussain, Z.; Hayat, T.; Alsaedi, A.; Ahmad, B.: Three-dimensional convective flow of CNTs nanofluids with heat generation/absorption effect: a numerical study. Comput. Method Appl. M. 329, 40–54 (2018)MathSciNetMATHCrossRef
44.
Zurück zum Zitat Upreti, H.; Rawat, S.K.; Kumar, M.: Radiation and non-uniform heat sink/source effects on 2D MHD flow of CNTs-H2O nanofluid over a flat porous plate. Multidisp. Model. Mater. Struct. 16(4), 791–809 (2019)CrossRef Upreti, H.; Rawat, S.K.; Kumar, M.: Radiation and non-uniform heat sink/source effects on 2D MHD flow of CNTs-H2O nanofluid over a flat porous plate. Multidisp. Model. Mater. Struct. 16(4), 791–809 (2019)CrossRef
Metadaten
Titel
Ohmic Heating and Non-uniform Heat Source/Sink Roles on 3D Darcy–Forchheimer Flow of CNTs Nanofluids Over a Stretching Surface
verfasst von
Himanshu Upreti
Alok Kumar Pandey
Manoj Kumar
O. D. Makinde
Publikationsdatum
04.08.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 9/2020
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04826-7

Weitere Artikel der Ausgabe 9/2020

Arabian Journal for Science and Engineering 9/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.