Skip to main content

2020 | OriginalPaper | Buchkapitel

2. Oil Palm Plantation Wastes

verfasst von : Dr. Phaik Eong Poh, Ta Yeong Wu, Weng Hoong Lam, Wai Ching Poon, Chean Shen Lim

Erschienen in: Waste Management in the Palm Oil Industry

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In Malaysia, palm oil industry is an irreplaceable economic activity due to its high global demand in both food and non-food industries. Thus, large land areas have been used for oil palm plantation in this country. However, oil palm plantation is also generating large amount of raw biomass. The major oil palm biomass produced in the oil palm plantation includes oil palm fronds and oil palm trunk. One hectare of oil palm planted area produces approximately 10 tonnes of oil palm fronds and 75 tonnes of oil palm trunk. In fact, huge amount of solid oil palm biomass is found on the plantations and the rest is generated in the mills during the production of crude palm oil. Even though both oil palm plantation solid wastes have been occupying the majority among the oil palm biomass, the fronds are merely utilized as mulch, while the trunks are normally left to burn or decay in the plantation area. Such underutilization of oil palm plantation wastes is encouraging the researchers to find ways to valorize the solid wastes into different bio-based products. Thus, this review highlights the potential reuse of oil palm fronds and oil palm trunk as the lignocellulosic biomass in producing bioenergy, bio-based chemicals, biochar, fertilizer, animal feed and other bio-based products.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdul Manaf, S. F., Md Jahim, J., Harun, S., & Luthfi, A. A. I. (2018). Fractionation of oil palm fronds (OPF) hemicellulose using dilute nitric acid for fermentative production of xylitol. Industrial Crops and Products, 115, 6–15. Abdul Manaf, S. F., Md Jahim, J., Harun, S., & Luthfi, A. A. I. (2018). Fractionation of oil palm fronds (OPF) hemicellulose using dilute nitric acid for fermentative production of xylitol. Industrial Crops and Products, 115, 6–15.
Zurück zum Zitat Abdullah, H., Jie, W. S., Yusof, N., & Isa, I. M. (2016). Fuel and ash properties of biochar produced from microwave-assisted carbonisation of oil palm trunk core. Journal of Oil Palm Research, 28, 81–92.CrossRef Abdullah, H., Jie, W. S., Yusof, N., & Isa, I. M. (2016). Fuel and ash properties of biochar produced from microwave-assisted carbonisation of oil palm trunk core. Journal of Oil Palm Research, 28, 81–92.CrossRef
Zurück zum Zitat Ahmad, F. B., Zhang, Z., Doherty, W. O. S., & O’Hara, I. M. (2019). The prospect of microbial oil production and applications from oil palm biomass. Biochemical Engineering Journal, 9–23. Ahmad, F. B., Zhang, Z., Doherty, W. O. S., & O’Hara, I. M. (2019). The prospect of microbial oil production and applications from oil palm biomass. Biochemical Engineering Journal, 9–23.
Zurück zum Zitat Alias, N. B., Ibrahim, N., Hamid, M. K. A., Hasbullah, H., Ali, R. R., & Kasmani, R. M. (2015). Investigation of oil palm wastes’ pyrolysis by thermo-gravimetric analyzer for potential biofuel production. Energy Procedia, 78–83. Alias, N. B., Ibrahim, N., Hamid, M. K. A., Hasbullah, H., Ali, R. R., & Kasmani, R. M. (2015). Investigation of oil palm wastes’ pyrolysis by thermo-gravimetric analyzer for potential biofuel production. Energy Procedia, 78–83.
Zurück zum Zitat Ang, S. K., Adibah, Y., Abd-Aziz, S., & Madihah, M. S. (2015). Potential uses of xylanase-rich lignocellulolytic enzymes cocktail for oil palm trunk (OPT) degradation and lignocellulosic ethanol production. Energy & Fuels, 29, 5103–5116.CrossRef Ang, S. K., Adibah, Y., Abd-Aziz, S., & Madihah, M. S. (2015). Potential uses of xylanase-rich lignocellulolytic enzymes cocktail for oil palm trunk (OPT) degradation and lignocellulosic ethanol production. Energy & Fuels, 29, 5103–5116.CrossRef
Zurück zum Zitat Azmi, M. A., Yusof, M. T., Zunita, Z., & Hassim, H. A. (2019). Enhancing the utilization of oil palm fronds as livestock feed using biological pre-treatment method. In IOP Conference Series: Earth and Environmental Science. Azmi, M. A., Yusof, M. T., Zunita, Z., & Hassim, H. A. (2019). Enhancing the utilization of oil palm fronds as livestock feed using biological pre-treatment method. In IOP Conference Series: Earth and Environmental Science.
Zurück zum Zitat Bardant, T. B., Winarni, I., & Sukmana, H. (2017). High-loading-substrate enzymatic hydrolysis of palm plantation waste followed by unsterilized-mixed-culture fermentation for bio-ethanol production. In AIP Conference Proceedings. Bardant, T. B., Winarni, I., & Sukmana, H. (2017). High-loading-substrate enzymatic hydrolysis of palm plantation waste followed by unsterilized-mixed-culture fermentation for bio-ethanol production. In AIP Conference Proceedings.
Zurück zum Zitat Brandt, A., Gräsvik, J., Hallett, J. P., & Welton, T. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry, 15, 550–583.CrossRef Brandt, A., Gräsvik, J., Hallett, J. P., & Welton, T. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry, 15, 550–583.CrossRef
Zurück zum Zitat Bubparenu, N., Laemsak, N., Chitaree, R., & Sihabut, T. (2018). Effect of density and surface finishing on sound absorption of oil palm frond. Asia-Pacific Journal of Science and Technology, 23. Bubparenu, N., Laemsak, N., Chitaree, R., & Sihabut, T. (2018). Effect of density and surface finishing on sound absorption of oil palm frond. Asia-Pacific Journal of Science and Technology, 23.
Zurück zum Zitat Bukhari, N. A., Jahim, J. M., Loh, S. K., Bakar, N. A., & Luthfi, A. A. I. (2019). Response surface optimisation of enzymatically hydrolysed and dilute acid pretreated oil palm trunk bagasse for succinic acid production. BioResources, 14, 1679–1693. Bukhari, N. A., Jahim, J. M., Loh, S. K., Bakar, N. A., & Luthfi, A. A. I. (2019). Response surface optimisation of enzymatically hydrolysed and dilute acid pretreated oil palm trunk bagasse for succinic acid production. BioResources, 14, 1679–1693.
Zurück zum Zitat Chandel, A. K., Garlapati, V. K., Singh, A. K., Antunes, F. A. F., & da Silva, S. S. (2018). The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresource Technology, 264, 370–381.CrossRef Chandel, A. K., Garlapati, V. K., Singh, A. K., Antunes, F. A. F., & da Silva, S. S. (2018). The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresource Technology, 264, 370–381.CrossRef
Zurück zum Zitat Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51, 1412–1421.CrossRef Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51, 1412–1421.CrossRef
Zurück zum Zitat Dur, S., Daulay, A. H., Padli Nasution, M. I., Sari, R. F., & Furqan, M. (2018). Preparation and properties nanozeolite-filled modified oil palm trunk starch nanocomposites. In Journal of Physics: Conference Series. Dur, S., Daulay, A. H., Padli Nasution, M. I., Sari, R. F., & Furqan, M. (2018). Preparation and properties nanozeolite-filled modified oil palm trunk starch nanocomposites. In Journal of Physics: Conference Series.
Zurück zum Zitat Eom, I. Y., Oh, Y. H., Park, S. J., Lee, S. H., & Yu, J. H. (2015a). Fermentative l-lactic acid production from pretreated whole slurry of oil palm trunk treated by hydrothermolysis and subsequent enzymatic hydrolysis. Bioresource Technology, 185, 143–149.CrossRef Eom, I. Y., Oh, Y. H., Park, S. J., Lee, S. H., & Yu, J. H. (2015a). Fermentative l-lactic acid production from pretreated whole slurry of oil palm trunk treated by hydrothermolysis and subsequent enzymatic hydrolysis. Bioresource Technology, 185, 143–149.CrossRef
Zurück zum Zitat Eom, I. Y., Yu, J. H., Jung, C. D., & Hong, K. S. (2015b). Efficient ethanol production from dried oil palm trunk treated by hydrothermolysis and subsequent enzymatic hydrolysis. Biotechnology for Biofuels, 8. Eom, I. Y., Yu, J. H., Jung, C. D., & Hong, K. S. (2015b). Efficient ethanol production from dried oil palm trunk treated by hydrothermolysis and subsequent enzymatic hydrolysis. Biotechnology for Biofuels, 8.
Zurück zum Zitat Farah Amani, A. H., Toh, S. M., Tan, J. S., & Lee, C. K. (2018). The efficiency of using oil palm frond hydrolysate from enzymatic hydrolysis in bioethanol production. Waste and Biomass Valorization, 9, 539–548. Farah Amani, A. H., Toh, S. M., Tan, J. S., & Lee, C. K. (2018). The efficiency of using oil palm frond hydrolysate from enzymatic hydrolysis in bioethanol production. Waste and Biomass Valorization, 9, 539–548.
Zurück zum Zitat Febrina, D., Jamarun, N., Zain, M., & Khasrad. (2017). Effects of using different levels of oil palm fronds (Fopfs) fermented with phanerochaete chrysosporium plus minerals (p, s and mg) instead of napier grass on nutrient consumption and the growth performance of goats. Pakistan Journal of Nutrition, 16, 612–617. Febrina, D., Jamarun, N., Zain, M., & Khasrad. (2017). Effects of using different levels of oil palm fronds (Fopfs) fermented with phanerochaete chrysosporium plus minerals (p, s and mg) instead of napier grass on nutrient consumption and the growth performance of goats. Pakistan Journal of Nutrition, 16, 612–617.
Zurück zum Zitat Ghani, A. A. A., Rusli, N. D., Shahudin, M. S., Goh, Y. M., Zamri-Saad, M., Hafandi, A., et al. (2017). Utilisation of oil palm fronds as ruminant feed and its effect on fatty acid metabolism. Pertanika Journal of Tropical Agricultural Science, 40, 215–224. Ghani, A. A. A., Rusli, N. D., Shahudin, M. S., Goh, Y. M., Zamri-Saad, M., Hafandi, A., et al. (2017). Utilisation of oil palm fronds as ruminant feed and its effect on fatty acid metabolism. Pertanika Journal of Tropical Agricultural Science, 40, 215–224.
Zurück zum Zitat Hamchara, P., Chanjula, P., Cherdthong, A., & Wanapat, M. (2018). Digestibility, ruminal fermentation, and nitrogen balance with various feeding levels of oil palm fronds treated with Lentinus sajor-caju in goats. Asian-Australasian Journal of Animal Sciences, 31, 1619–1626.CrossRef Hamchara, P., Chanjula, P., Cherdthong, A., & Wanapat, M. (2018). Digestibility, ruminal fermentation, and nitrogen balance with various feeding levels of oil palm fronds treated with Lentinus sajor-caju in goats. Asian-Australasian Journal of Animal Sciences, 31, 1619–1626.CrossRef
Zurück zum Zitat Harahap, R. P., Jayanegara, A., Nahrowi, & Fakhri, S. (2018). Evaluation of oil palm fronds using fiber cracking technology combined with Indigofera sp. in ruminant ration by Rusitec. In AIP Conference Proceedings. Harahap, R. P., Jayanegara, A., Nahrowi, & Fakhri, S. (2018). Evaluation of oil palm fronds using fiber cracking technology combined with Indigofera sp. in ruminant ration by Rusitec. In AIP Conference Proceedings.
Zurück zum Zitat Hazeena, S. H., Pandey, A., & Binod, P. (2016). Evaluation of oil palm front hydrolysate as a novel substrate for 2,3-butanediol production using a novel isolate Enterobacter cloacae SG1. Renewable Energy, 98, 216–220.CrossRef Hazeena, S. H., Pandey, A., & Binod, P. (2016). Evaluation of oil palm front hydrolysate as a novel substrate for 2,3-butanediol production using a novel isolate Enterobacter cloacae SG1. Renewable Energy, 98, 216–220.CrossRef
Zurück zum Zitat Ho, M. C., Ong. V. Z., & Wu, T. Y. (2019). Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization–A review. Renewable and Sustainable Energy Reviews, 112, 75–86. Ho, M. C., Ong. V. Z., & Wu, T. Y. (2019). Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization–A review. Renewable and Sustainable Energy Reviews, 112, 75–86.
Zurück zum Zitat Ho, M. C., & Wu, T. Y. (2020). Sequential pretreatment with alkaline hydrogen peroxide and choline chloride:copper (II) chloride dihydrate–Synergistic fractionation of oil palm fronds. Bioresource Technology, 301, 122684. Ho, M. C., & Wu, T. Y. (2020). Sequential pretreatment with alkaline hydrogen peroxide and choline chloride:copper (II) chloride dihydrate–Synergistic fractionation of oil palm fronds. Bioresource Technology, 301, 122684.
Zurück zum Zitat Jafari, S., Meng, G. Y., Rajion, M. A., Torshizi, M. A. K., & Ebrahimi, M. (2018). Effect of supplementation of oil palm (Eleis guineensis) frond as a substitute for concentrate feed on rumen fermentation, carcass characteristics and microbial populations in sheep. Thai Journal of Veterinary Medicine, 48, 9–18. Jafari, S., Meng, G. Y., Rajion, M. A., Torshizi, M. A. K., & Ebrahimi, M. (2018). Effect of supplementation of oil palm (Eleis guineensis) frond as a substitute for concentrate feed on rumen fermentation, carcass characteristics and microbial populations in sheep. Thai Journal of Veterinary Medicine, 48, 9–18.
Zurück zum Zitat Kabir, G., Mohd Din, A. T., & Hameed, B. H. (2017). Pyrolysis of oil palm mesocarp fiber and palm frond in a slow-heating fixed-bed reactor: A comparative study. Bioresource Technology, 241, 563–572. Kabir, G., Mohd Din, A. T., & Hameed, B. H. (2017). Pyrolysis of oil palm mesocarp fiber and palm frond in a slow-heating fixed-bed reactor: A comparative study. Bioresource Technology, 241, 563–572.
Zurück zum Zitat Kumar, D., Singh, B., & Korstad, J. (2017). Utilization of lignocellulosic biomass by oleaginous yeast and bacteria for production of biodiesel and renewable diesel. Renewable and Sustainable Energy Reviews, 73, 654–671.CrossRef Kumar, D., Singh, B., & Korstad, J. (2017). Utilization of lignocellulosic biomass by oleaginous yeast and bacteria for production of biodiesel and renewable diesel. Renewable and Sustainable Energy Reviews, 73, 654–671.CrossRef
Zurück zum Zitat Kunasundari, B., Arai, T., Sudesh, K., Hashim, R., Sulaiman, O., Stalin, N. J., et al. (2017). Detoxification of sap from felled oil palm trunks for the efficient production of lactic acid. Applied Biochemistry and Biotechnology, 183, 412–425.CrossRef Kunasundari, B., Arai, T., Sudesh, K., Hashim, R., Sulaiman, O., Stalin, N. J., et al. (2017). Detoxification of sap from felled oil palm trunks for the efficient production of lactic acid. Applied Biochemistry and Biotechnology, 183, 412–425.CrossRef
Zurück zum Zitat Lai, L. W., & Idris, A. (2013). Disruption of oil palm trunks and fronds by microwave-alkali pretreatment. BioResources, 8(2), 2792–2804. Lai, L. W., & Idris, A. (2013). Disruption of oil palm trunks and fronds by microwave-alkali pretreatment. BioResources, 8(2), 2792–2804.
Zurück zum Zitat Lamaming, J., Hashim, R., Sulaiman, O., Leh, C. P., Sugimoto, T., & Nordin, N. A. (2015). Cellulose nanocrystals isolated from oil palm trunk. Carbohydrate Polymers, 127, 202–208.CrossRef Lamaming, J., Hashim, R., Sulaiman, O., Leh, C. P., Sugimoto, T., & Nordin, N. A. (2015). Cellulose nanocrystals isolated from oil palm trunk. Carbohydrate Polymers, 127, 202–208.CrossRef
Zurück zum Zitat Lee, C. B. T. L., Wu, T. Y., Ting, C. H., Tan, J. K., Siow, L. F., Cheng, C. K., Md. Jahim, J., & Mohammad, A. W. (2019). One-pot furfural production using choline chloride-dicarboxylic acid based deep eutectic solvents under mild conditions. Bioresource Technology, 278, 486–489. Lee, C. B. T. L., Wu, T. Y., Ting, C. H., Tan, J. K., Siow, L. F., Cheng, C. K., Md. Jahim, J., & Mohammad, A. W. (2019). One-pot furfural production using choline chloride-dicarboxylic acid based deep eutectic solvents under mild conditions. Bioresource Technology, 278, 486–489.
Zurück zum Zitat Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota—A review. Soil Biology & Biochemistry, 43, 1812–1836.CrossRef Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota—A review. Soil Biology & Biochemistry, 43, 1812–1836.CrossRef
Zurück zum Zitat Liew, R. K., Nam, W. L., Chong, M. Y., Phang, X. Y., Su, M. H., Yek, P. N. Y., et al. (2018). Oil palm waste: An abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications. Process Safety and Environmental Protection, 115, 57–69.CrossRef Liew, R. K., Nam, W. L., Chong, M. Y., Phang, X. Y., Su, M. H., Yek, P. N. Y., et al. (2018). Oil palm waste: An abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications. Process Safety and Environmental Protection, 115, 57–69.CrossRef
Zurück zum Zitat Loh, S. K., Cheong, K. Y., Choo, Y. M., & Salimon, J. (2015). Formulation and optimisation of spent bleaching earth-based bio organic fertiliser. Journal of Oil Palm Research, 27, 57–66. Loh, S. K., Cheong, K. Y., Choo, Y. M., & Salimon, J. (2015). Formulation and optimisation of spent bleaching earth-based bio organic fertiliser. Journal of Oil Palm Research, 27, 57–66.
Zurück zum Zitat Loh, S. K. (2017). The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Conversion and Management, 141, 285–298.CrossRef Loh, S. K. (2017). The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Conversion and Management, 141, 285–298.CrossRef
Zurück zum Zitat Loow, Y. L., New, E. K., Yang, G. H., Ang, L. Y., Foo, L. Y. W., & Wu, T. Y. (2017a) Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion. Cellulose, 24(9), 3591–3618. Loow, Y. L., New, E. K., Yang, G. H., Ang, L. Y., Foo, L. Y. W., & Wu, T. Y. (2017a) Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion. Cellulose, 24(9), 3591–3618.
Zurück zum Zitat Loow., Y. L., & Wu, T. Y., Lim, Y. S., Tan, K. A., Siow, L. F., Jahim, J. M., & Mohammad, A. W. (2017b). Improvement of xylose recovery from the stalks of oil palm fronds using inorganic salt and oxidative agent. Energy Conversion and Management, 138, 248–260. Loow., Y. L., & Wu, T. Y., Lim, Y. S., Tan, K. A., Siow, L. F., Jahim, J. M., & Mohammad, A. W. (2017b). Improvement of xylose recovery from the stalks of oil palm fronds using inorganic salt and oxidative agent. Energy Conversion and Management, 138, 248–260.
Zurück zum Zitat Loow, Y. L., Wu, T. Y., Yang, G. H., Ang, L. Y., New, E. K., Siow, L. F., Jahim, J. M., Mohammad, A. W., & Teoh, W. H. (2018). Deep eutectic solvent and inorganic salt pretreatment of lignocellulosic biomass for improving xylose recovery. Bioresource Technology, 249, 818–825. Loow, Y. L., Wu, T. Y., Yang, G. H., Ang, L. Y., New, E. K., Siow, L. F., Jahim, J. M., Mohammad, A. W., & Teoh, W. H. (2018). Deep eutectic solvent and inorganic salt pretreatment of lignocellulosic biomass for improving xylose recovery. Bioresource Technology, 249, 818–825.
Zurück zum Zitat Luthfi, A. A. I., Tan, J. P., Harun, S., Manaf, S. F. A., & Jahim, J. M. (2019). Homogeneous solid dispersion (HSD) system for rapid and stable production of succinic acid from lignocellulosic hydrolysate. Bioprocess and Biosystems Engineering, 42, 117–130.CrossRef Luthfi, A. A. I., Tan, J. P., Harun, S., Manaf, S. F. A., & Jahim, J. M. (2019). Homogeneous solid dispersion (HSD) system for rapid and stable production of succinic acid from lignocellulosic hydrolysate. Bioprocess and Biosystems Engineering, 42, 117–130.CrossRef
Zurück zum Zitat Mahmood, W. M. F. W., Ariffin, M. A., Harun, Z., Ishak, N. A. I. M., Ghani, J. A., & Rahman, M. N. A. (2015). Characterisation and potential use of biochar from gasified oil palm wastes. Journal of Engineering Science and Technology, 10, 45–54. Mahmood, W. M. F. W., Ariffin, M. A., Harun, Z., Ishak, N. A. I. M., Ghani, J. A., & Rahman, M. N. A. (2015). Characterisation and potential use of biochar from gasified oil palm wastes. Journal of Engineering Science and Technology, 10, 45–54.
Zurück zum Zitat Manyà, J. J. (2012). Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environmental Science and Technology, 46, 7939–7954.CrossRef Manyà, J. J. (2012). Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environmental Science and Technology, 46, 7939–7954.CrossRef
Zurück zum Zitat Marlida, Y., Arnim, & Roza, E. (2016). The effect treated of oil palm trunk by ligninase thermostable to improvement fiber quality as energy sources by ruminant. International Journal of ChemTech Research, 9, 429–436. Marlida, Y., Arnim, & Roza, E. (2016). The effect treated of oil palm trunk by ligninase thermostable to improvement fiber quality as energy sources by ruminant. International Journal of ChemTech Research, 9, 429–436.
Zurück zum Zitat Masilamany, D., Mat, M. C., & Seng, C. T. (2017). The potential use of oil palm frond mulch treated with imazethapyr for weed control in Malaysian coconut plantation. Sains Malaysiana, 46, 1171–1181.CrossRef Masilamany, D., Mat, M. C., & Seng, C. T. (2017). The potential use of oil palm frond mulch treated with imazethapyr for weed control in Malaysian coconut plantation. Sains Malaysiana, 46, 1171–1181.CrossRef
Zurück zum Zitat Mastuli, M. S., Kamarulzaman, N., Kasim, M. F., Sivasangar, S., Saiman, M. I., & Taufiq-Yap, Y. H. (2017). Catalytic gasification of oil palm frond biomass in supercritical water using MgO supported Ni, Cu and Zn oxides as catalysts for hydrogen production. International Journal of Hydrogen Energy, 42, 11215–11228.CrossRef Mastuli, M. S., Kamarulzaman, N., Kasim, M. F., Sivasangar, S., Saiman, M. I., & Taufiq-Yap, Y. H. (2017). Catalytic gasification of oil palm frond biomass in supercritical water using MgO supported Ni, Cu and Zn oxides as catalysts for hydrogen production. International Journal of Hydrogen Energy, 42, 11215–11228.CrossRef
Zurück zum Zitat Maulina, S., & Iriansyah, M. (2018). Characteristics of activated carbon resulted from pyrolysis of the oil palm fronds powder. In IOP Conference Series: Materials Science and Engineering. Maulina, S., & Iriansyah, M. (2018). Characteristics of activated carbon resulted from pyrolysis of the oil palm fronds powder. In IOP Conference Series: Materials Science and Engineering.
Zurück zum Zitat Maulina, S., & Rahmadi, I. (2017). The utilization of oil palm fronds in producing oxalic acid through oxidation. In AIP Conference Proceedings. Maulina, S., & Rahmadi, I. (2017). The utilization of oil palm fronds in producing oxalic acid through oxidation. In AIP Conference Proceedings.
Zurück zum Zitat Mohd Zakria, R., Gimbun, J., Asras, M. F. F., & Chua, G. K. (2017). Magnesium sulphate and Β-alanine enhanced the ability of Kluyveromyces marxianus producing bioethanol using oil palm trunk sap. Biofuels, 8, 595–603. Mohd Zakria, R., Gimbun, J., Asras, M. F. F., & Chua, G. K. (2017). Magnesium sulphate and Β-alanine enhanced the ability of Kluyveromyces marxianus producing bioethanol using oil palm trunk sap. Biofuels, 8, 595–603.
Zurück zum Zitat Nasution, D. Y., Marpongahtun, Gea, S., Ardiansyah, & Ridho. (2018). Characterization of composite boards made of oil palm trunk flour/maleic anhydride grafted polypropylene. In Journal of Physics: Conference Series. Nasution, D. Y., Marpongahtun, Gea, S., Ardiansyah, & Ridho. (2018). Characterization of composite boards made of oil palm trunk flour/maleic anhydride grafted polypropylene. In Journal of Physics: Conference Series.
Zurück zum Zitat Ong, V. Z., Wu, T. Y., Lee, C. B. T. L., Cheong, N. W. R., & Shak, K. P. Y. (2019). Sequential ultrasonication and deep eutectic solvent pretreatment to remove lignin and recover xylose from oil palm fronds. Ultrasonics Sonochemistry, 58, 104598. Ong, V. Z., Wu, T. Y., Lee, C. B. T. L., Cheong, N. W. R., & Shak, K. P. Y. (2019). Sequential ultrasonication and deep eutectic solvent pretreatment to remove lignin and recover xylose from oil palm fronds. Ultrasonics Sonochemistry, 58, 104598.
Zurück zum Zitat Ramli, N. A. S., & Amin, N. A. S. (2015). Optimization of renewable levulinic acid production from glucose conversion catalyzed by Fe/HY zeolite catalyst in aqueous medium. Energy Conversion and Management, 95, 10–19.CrossRef Ramli, N. A. S., & Amin, N. A. S. (2015). Optimization of renewable levulinic acid production from glucose conversion catalyzed by Fe/HY zeolite catalyst in aqueous medium. Energy Conversion and Management, 95, 10–19.CrossRef
Zurück zum Zitat Ramli, N. A. S., & Amin, N. A. S. (2017). Optimization of biomass conversion to levulinic acid in acidic ionic liquid and upgrading of levulinic acid to ethyl levulinate. Bioenergy Research, 10, 50–63.CrossRef Ramli, N. A. S., & Amin, N. A. S. (2017). Optimization of biomass conversion to levulinic acid in acidic ionic liquid and upgrading of levulinic acid to ethyl levulinate. Bioenergy Research, 10, 50–63.CrossRef
Zurück zum Zitat Selamat, M. E., Hashim, R., Sulaiman, O., Kassim, M. H. M., Saharudin, N. I., & Taiwo, O. F. A. (2019). Comparative study of oil palm trunk and rice husk as fillers in gypsum composite for building material. Construction and Building Materials, 197, 526–532.CrossRef Selamat, M. E., Hashim, R., Sulaiman, O., Kassim, M. H. M., Saharudin, N. I., & Taiwo, O. F. A. (2019). Comparative study of oil palm trunk and rice husk as fillers in gypsum composite for building material. Construction and Building Materials, 197, 526–532.CrossRef
Zurück zum Zitat Selamat, M. E., Hui, T. Y., Hashim, R., Sulaiman, O., Kassim, M. H. M., & Stalin, N. J. (2018). Properties of particleboard made from oil palm trunks added magnesium oxide as fire retardant. Journal of Physical Science, 29, 59–75.CrossRef Selamat, M. E., Hui, T. Y., Hashim, R., Sulaiman, O., Kassim, M. H. M., & Stalin, N. J. (2018). Properties of particleboard made from oil palm trunks added magnesium oxide as fire retardant. Journal of Physical Science, 29, 59–75.CrossRef
Zurück zum Zitat Sitthikitpanya, S., Reungsang, A., & Prasertsan, P. (2018). Two-stage thermophilic bio-hydrogen and methane production from lime-pretreated oil palm trunk by simultaneous saccharification and fermentation. International Journal of Hydrogen Energy, 43, 4284–4293.CrossRef Sitthikitpanya, S., Reungsang, A., & Prasertsan, P. (2018). Two-stage thermophilic bio-hydrogen and methane production from lime-pretreated oil palm trunk by simultaneous saccharification and fermentation. International Journal of Hydrogen Energy, 43, 4284–4293.CrossRef
Zurück zum Zitat Sitthikitpanya, S., Reungsang, A., Prasertsan, P., & Khanal, S. K. (2017). Two-stage thermophilic bio-hydrogen and methane production from oil palm trunk hydrolysate using Thermoanaerobacterium thermosaccharolyticum KKU19. International Journal of Hydrogen Energy, 42, 28222–28232.CrossRef Sitthikitpanya, S., Reungsang, A., Prasertsan, P., & Khanal, S. K. (2017). Two-stage thermophilic bio-hydrogen and methane production from oil palm trunk hydrolysate using Thermoanaerobacterium thermosaccharolyticum KKU19. International Journal of Hydrogen Energy, 42, 28222–28232.CrossRef
Zurück zum Zitat Sukudom, N., Jariyasakoolroj, P., Jarupan, L., & Tansin, K. (2019). Mechanical, thermal, and biodegradation behaviors of poly(vinyl alcohol) biocomposite with reinforcement of oil palm frond fiber. Journal of Material Cycles and Waste Management, 21, 125–133.CrossRef Sukudom, N., Jariyasakoolroj, P., Jarupan, L., & Tansin, K. (2019). Mechanical, thermal, and biodegradation behaviors of poly(vinyl alcohol) biocomposite with reinforcement of oil palm frond fiber. Journal of Material Cycles and Waste Management, 21, 125–133.CrossRef
Zurück zum Zitat Suryani, H., Zain, M., Ningrat, R. W. S., & Jamarun, N. (2017). Effect of dietary supplementation based on an ammoniated palm frond with direct fed microbials and virgin coconut oil on the growth performance and methane production of bali cattle. Pakistan Journal of Nutrition, 16, 599–604.CrossRef Suryani, H., Zain, M., Ningrat, R. W. S., & Jamarun, N. (2017). Effect of dietary supplementation based on an ammoniated palm frond with direct fed microbials and virgin coconut oil on the growth performance and methane production of bali cattle. Pakistan Journal of Nutrition, 16, 599–604.CrossRef
Zurück zum Zitat Warly, L., Suyitman, Evitayani, & Fariani, A. (2017). Nutrient digestibility and apparent bioavailability of minerals in beef cattle fed with different levels of concentrate and oil-palm fronds. Pakistan Journal of Nutrition, 16, 131–135. Warly, L., Suyitman, Evitayani, & Fariani, A. (2017). Nutrient digestibility and apparent bioavailability of minerals in beef cattle fed with different levels of concentrate and oil-palm fronds. Pakistan Journal of Nutrition, 16, 131–135.
Metadaten
Titel
Oil Palm Plantation Wastes
verfasst von
Dr. Phaik Eong Poh
Ta Yeong Wu
Weng Hoong Lam
Wai Ching Poon
Chean Shen Lim
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-39550-6_2