Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2012

Open Access 01.12.2012 | Research

On Hilbert type inequalities

verfasst von: Chang-Jian Zhao, Wing-Sum Cheung

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2012

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

In the present paper we establish new inequalities similar to the extensions of Hilbert’s double-series inequality and also give their integral analogues. Our results provide some new estimates to these types of inequalities.
MSC:26D15.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

C-JZ and W-SC jointly contributed to the main results Theorems 2.1 and 2.2. All authors read and approved the final manuscript.

1 Introduction

In recent years several authors have given considerable attention to Hilbert’s double-series inequality together with its integral version, inverse version, and various generalizations (see [19]). In this paper, we establish multivariable sum inequalities for the extensions of Hilbert’s inequality and also obtain their integral forms. Our results provide some new estimates to these types of inequalities.
The well-known classical extension of Hilbert’s double-series theorem can be stated as follows [10], p.253].
Theorem A If p 1 , p 2 > 1 are real numbers such that 1 p 1 + 1 p 2 1 and 0 < λ = 2 1 p 1 1 p 2 = 1 q 1 + 1 q 2 1 , where, as usual, q 1 and q 2 are the conjugate exponents of p 1 and p 2 respectively, then
m = 1 n = 1 a m b n ( m + n ) λ K ( m = 1 a m p ) 1 / p 1 ( n = 1 b n q ) 1 / p 2 ,
(1.1)
where K = K ( p 1 , p 2 ) depends on p 1 and p 2 only.
In 2000, Pachpatte [11] established a new inequality similar to inequality (1.1) as follows:
Theorem A′ Let p q a ( s ) b ( t ) a ( 0 ) b ( 0 ) a ( s ) and b ( t ) be as in [11], then
s = 1 m t = 1 n | a ( s ) | | b ( t ) | q s p 1 + p t q 1 1 p q m ( p 1 ) / p n ( q 1 ) / q ( s = 1 m ( m s + 1 ) | a ( s ) | p ) 1 / p × ( t = 1 n ( n t + 1 ) | b ( t ) | q ) 1 / q .
(1.2)
The integral analogue of inequality (1.1) is as follows [10], p.254].
Theorem B Let p, q, p , q and λ be as in Theorem A. If f L p ( 0 , ) and g L q ( 0 , ) , then
0 0 f ( x ) g ( x ) ( x + y ) λ d x d y K ( 0 f p ( x ) d x ) 1 / p ( 0 g q ( y ) d y ) 1 / q ,
(1.3)
where K = K ( p , q ) depends on p and q only.
In [11], Pachpatte also established a similar version of inequality (1.3) as follows.
Theorem B′ Let p q f ( s ) g ( t ) f ( 0 ) g ( 0 ) f ( s ) and g ( t ) be as in [11], then
0 x 0 y | f ( s ) | | g ( t ) | q s p 1 + p t q 1 d t d s 1 p q x ( p 1 ) / p y ( q 1 ) / q ( 0 x ( x s ) | f ( s ) | p d s ) 1 / p ( 0 y ( y t ) | g ( t ) | q d t ) 1 / q .
(1.4)
In the present paper we establish some new inequalities similar to Theorems A, A, B and B. Our results provide some new estimates to these types of inequalities.

2 Statement of results

Our main results are given in the following theorems.
Theorem 2.1 Let p i > 1 be constants and 1 p i + 1 q i = 1 . Let a i ( s 1 i , , s n i ) be real-valued functions defined for s j i = 1 , 2 , , m j i , where m j i ( i , j = 1 , 2 , , n ) are natural numbers. For convenience, we write a i ( 0 , , 0 ) = 0 and a i ( 0 , s 2 i , , s n i ) = a i ( s 1 i , 0 , s 3 i , , s n i ) = = a i ( s 1 i , , s n 1 , i , 0 ) = 0 . Define the operators i by i a i ( s 1 i , , s n i ) = a i ( s 1 i , , s n i ) a i ( s 1 i , , s i 1 , i , s i i 1 , s i + 1 , i , , s n i ) for any function a i ( s 1 i , , s n i ) . Then
s 11 = 1 m 11 s n 1 = 1 m n 1 s 12 = 1 m 12 s n 2 = 1 m n 2 s 1 n = 1 m 1 n s n n = 1 m n n i = 1 n | a i ( s 1 i , , s n i ) | ( i = 1 n ( s 1 i s n i ) / q i ) i = 1 n 1 / q i M i = 1 n ( s n i = 1 m n i s 1 i = 1 m 1 i j = 1 n ( m j i s j i + 1 ) | n 1 a i ( s 1 i , , s n i ) | p i ) 1 / p i ,
(2.1)
where
M = M ( m 1 i , , m n i ) = ( n i = 1 n 1 / p i ) i = 1 n 1 / p i n i = 1 n ( m 1 i m n i ) 1 / q i .
Remark 2.1 Let a i ( s 1 i , , s n i ) change to a i ( s i ) in Theorem 2.1 and in view of a i ( 0 ) = 0 and a i ( s i ) = a i ( s i ) a i ( s i 1 ) for any function a i ( s i ) , i = 1 , 2 , , n , then
s 1 = 1 m 1 s 2 = 1 m 2 s n = 1 m n i = 1 n | a i ( s i ) | ( i = 1 n s i / q i ) i = 1 n 1 / q i M ¯ i = 1 n ( s i = 1 m i ( m i s i + 1 ) | a i ( s i ) | p i ) 1 / p i ,
(2.2)
where
M ¯ = M ¯ ( m 1 , , m n ) = ( n i = 1 n 1 p i ) i = 1 n 1 / p i n i = 1 n m i 1 / q i .
Remark 2.2 Taking for n = 2 in Remark 2.1. If p 1 , p 2 > 1 satisfy 1 p 1 + 1 p 2 1 and 0 < λ = 2 1 p 1 1 p 2 = 1 q 1 + 1 q 2 1 , then inequality (2.2) reduces to
s 1 = 1 m 1 s 2 = 1 m 2 | a 1 ( s 1 ) | | a 2 ( s 2 ) | ( q 2 s 1 + q 1 s 2 ) λ 1 ( λ q 1 q 2 ) λ m 1 1 / q 1 m 2 1 / q 2 ( s 1 = 1 m 1 ( m 1 s 1 + 1 ) | a 1 ( s 1 ) | p 1 ) 1 / p 1 × ( s 2 = 1 m 2 ( m 2 s 2 + 1 ) | a 2 ( s 2 ) | p 2 ) 1 / p 2 ,
(2.3)
which is an interesting variation of inequality (1.1).
On the other hand, if λ = 1 , then 1 p 1 + 1 p 2 = 1 q 1 + 1 q 2 = 1 and so p 1 = q 2 , p 2 = q 1 . In this case inequality (2.3) reduces to
s 1 = 1 m 1 s 2 = 1 m 2 | a 1 ( s 1 ) | | a 2 ( s 2 ) | p 1 s 1 + q 1 s 2 1 p 1 q 1 m 1 ( p 1 1 ) / p 1 m 2 ( q 1 1 ) / q 1 ( s 1 = 1 m 1 ( m 1 s 1 + 1 ) | a 1 ( s 1 ) | p 1 ) 1 / p 1 × ( s 2 = 1 m 2 ( m 2 s 2 + 1 ) | a 2 ( s 2 ) | q 1 ) 1 / q 1 .
This is just a similar version of inequality (1.2) in Theorem A.
Theorem 2.2 Let p i > 1 be constants and 1 p i + 1 q i = 1 . Let f i ( τ 1 i , , τ n i ) be real-valued nth differentiable functions defined on [ 0 , x 1 i ) × × [ 0 , x n i ) , where 0 x j i t j i , t j i ( 0 , ) and i , j = 1 , 2 , , n . Suppose
f i ( x 1 i , , x n i ) = 0 x 1 i 0 x n i n τ 1 i τ n i f i ( τ 1 i , , τ n i ) d τ 1 i d τ n i ,
then
0 t 11 0 t n 1 0 t 12 0 t n 2 0 t 1 n 0 t n n i = 1 n ( 0 x 1 i 0 x n i | n τ 1 i τ n i f i ( τ 1 i , , τ n i ) | p i d τ 1 i d τ n i ) 1 / p i ( i = 1 n ( x 1 i x n i ) / q i ) i = 1 n 1 / q i d x 11 d x n 1 d x 12 d x n 2 d x 1 n d x n n N i = 1 n ( 0 t 1 i 0 t n i j = 1 n ( t j i x j i ) × | n x 1 i x n i f i ( x 1 i , , x n i ) | p i d x 1 i d x n i ) 1 / p i ,
(2.4)
where
N = N ( t 1 i , , t n i ) = ( n i = 1 n 1 p i ) i = 1 n 1 / p i n i = 1 n ( t 1 i t n i ) 1 / q i .
Remark 2.3 Let f i ( x 1 i , , x n i ) change to f i ( s i ) in Theorem 2.2 and in view of f i ( 0 ) = 0 , i = 1 , 2 , , n , then
0 x 1 0 x n i = 1 n | f ( s i ) | ( i = 1 n s i / q i ) i = 1 n 1 / q i d s n d s 1 N ¯ i = 1 n ( 0 x i ( x i s i ) | f i ( s i ) | p i d s i ) 1 / p i ,
(2.5)
where
N ¯ = N ¯ ( x 1 , , x n ) = ( n i = 1 n 1 p i ) i = 1 n 1 / p i n i = 1 n x i 1 / q i .
Remark 2.4 Taking for n = 2 in Remark 2.3, if p 1 , p 2 > 1 are such that 1 p 1 + 1 p 2 1 and 0 < λ = 2 1 p 1 1 p 2 = 1 q 1 + 1 q 2 1 , inequality (2.5) reduces to
0 x 1 0 x 2 | f 1 ( s 1 ) | | f 2 ( s 2 ) | ( q 2 s 1 + q 1 s 2 ) λ d s 2 d s 1 1 ( λ q 1 q 2 ) λ x 1 1 / q 1 x 2 1 / q 2 ( 0 x 1 ( x 1 s 1 ) | f 1 ( s 1 ) | p 1 d s 1 ) 1 / p 1 × ( 0 x 2 ( x 2 s 2 ) | f 2 ( s 2 ) | p 2 d s 2 ) 1 / p 2 ,
(2.6)
which is an interesting variation of inequality (1.3).
On the other hand, if λ = 1 , then 1 p 1 + 1 p 2 = 1 q 1 + 1 q 2 = 1 and so p 1 = q 2 , p 2 = q 1 . In this case inequality (2.6) reduces to
0 x 1 0 x 2 | f 1 ( s 1 ) | | f 2 ( s 2 ) | p 1 s 1 + q 1 s 2 h 1 h 2 p 1 q 1 x 1 ( p 1 1 ) / p 1 x 2 ( q 1 1 ) / q 1 ( 0 x 1 ( x 1 s 1 ) | f 1 ( s 1 ) | p 1 d s 1 ) 1 / p 1 × ( 0 x 2 ( x 2 s 2 ) | f 2 ( s 2 ) | q 1 d s 2 ) 1 / q 1 .
This is just a similar version of inequality (1.4) in Theorem B.

3 Proofs of results

Proof of Theorem 2.1 From the hypotheses a i ( 0 , , 0 ) = a i ( 0 , s 2 i , , s n i ) = a i ( s 1 i , 0 , s 3 i , , s n i ) = = a i ( s 1 i , , s n 1 , i , 0 ) = 0 , we have
| a i ( s 1 i , , s n i ) | τ n i = 1 s n i τ 1 i = 1 s 1 i | n 1 a i ( τ 1 i , , τ n i ) | .
(3.1)
From the hypotheses of Theorem 2.1 and in view of Hölder’s inequality (see [10]) and inequality for mean [10], we obtain
i = 1 n | a i ( s 1 i , , s n i ) | i = 1 n τ n i = 1 s n i τ 1 i = 1 s 1 i | n 1 a i ( τ 1 i , , τ n i ) | i = 1 n ( s 1 i s n i ) 1 / q i ( τ n i = 1 s n i τ 1 i = 1 s 1 i | n 1 a i ( τ 1 i , , τ n i ) | p i ) 1 / p i ( i = 1 n ( s 1 i s n i ) / q i ) i = 1 n 1 / q i ( n i = 1 n 1 / p i ) n i = 1 n 1 / p i × i = 1 n ( τ n i = 1 s n i τ 1 i = 1 s 1 i | n 1 a i ( τ 1 i , , τ n i ) | p i ) 1 / p i .
(3.2)
Dividing both sides of (3.2) by ( i = 1 n ( s 1 i s n i ) / q i ) i = 1 n 1 / q i and then taking sums over s j i from 1 to m j i ( i , j = 1 , 2 , , n ), respectively and then using again Hölder’s inequality, we obtain
s 11 = 1 m 11 s n 1 = 1 m n 1 s 12 = 1 m 12 s n 2 = 1 m n 2 s 1 n = 1 m 1 n s n n = 1 m n n i = 1 n | n 1 a i ( s 1 i , , s n i ) | ( i = 1 n ( s 1 i s n i ) / q i ) i = 1 n 1 / q i ( n i = 1 n 1 / p i ) i = 1 n 1 / p i n × i = 1 n ( s n i = 1 m n i s 1 i = 1 m 1 i ( τ n i = 1 s n i τ 1 i = 1 s 1 i | n 1 a i ( τ 1 i , , τ n i ) | p i ) 1 / p i ) ( n i = 1 n 1 / p i ) i = 1 n 1 / p i n × i = 1 n ( m 1 i m n i ) 1 / q i ( s n i = 1 m n i s 1 i = 1 m 1 i ( τ n i = 1 s n i τ 1 i = 1 s 1 i | n 1 a i ( τ 1 i , , τ n i ) | p i ) ) 1 / p i = M i = 1 n ( τ n i = 1 m n i τ 1 i = 1 m 1 i j = 1 n ( m j i τ j i + 1 ) | n 1 a i ( τ 1 i , , τ n i ) | p i ) 1 / p i = M i = 1 n ( s n i = 1 m n i s 1 i = 1 m 1 i j = 1 n ( m j i s j i + 1 ) | n 1 a i ( s 1 i , , s n i ) | p i ) 1 / p i .
This concludes the proof. □
Proof of Theorem 2.2 From the hypotheses of Theorem 2.2, we have
| f i ( x 1 i , , x n i ) | 0 x 1 i 0 x n i | n τ 1 i τ n i f i ( τ 1 i , , τ n i ) | d τ 1 i d τ n i .
(3.3)
On the other hand, by using Hölder’s integral inequality (see [10]) and the following inequality for mean [10],
( i = 1 n λ i 1 / q i ) 1 / i = 1 n 1 / q i 1 i = 1 n 1 / q i i = 1 n λ i / q i , λ i > 0 ,
we obtain
i = 1 n | f i ( x 1 i , , x n i ) | i = 1 n 0 x 1 i 0 x n i | n τ 1 i τ n i f i ( τ 1 i , , τ n i ) | d τ 1 i d τ n i i = 1 n ( x 1 i x n i ) 1 / q i × ( 0 x 1 i 0 x n i | n τ 1 i τ n i f i ( τ 1 i , , τ n i ) | p i d τ 1 i d τ n i ) 1 / p i ( i = 1 n ( x 1 i x n i ) / q i ) i = 1 n 1 / q i ( n i = 1 n 1 / p i ) n i = 1 n 1 / p i × i = 1 n ( 0 x 1 i 0 x n i | n τ 1 i τ n i f i ( τ 1 i , , τ n i ) | p i d τ 1 i d τ n i ) 1 / p i .
(3.4)
Dividing both sides of (3.4) by ( i = 1 n ( x 1 i x n i ) / q i ) i = 1 n 1 / q i and then integrating the result inequality over x j i from 1 to t j i ( i , j = 1 , 2 , , n ), respectively and then using again Hölder’s integral inequality, we obtain
0 t 11 0 t n 1 0 t 12 0 t n 2 0 t 1 n 0 t n n i = 1 n ( 0 x 1 i 0 x n i | n τ 1 i τ n i f i ( τ 1 i , , τ n i ) | p i d τ 1 i d τ n i ) 1 / p i ( i = 1 n ( x 1 i x n i ) / q i ) i = 1 n 1 / q i d x 11 d x n 1 d x 12 d x n 2 d x 1 n d x n n ( n i = 1 n 1 / p i ) i = 1 n 1 / p i n × i = 1 n 0 t 1 i 0 t n i ( 0 x 1 i 0 x n i | n τ 1 i τ n i f i ( τ 1 i , , τ n i ) | p i d τ 1 i d τ n i ) 1 / p i d x 1 i d x n i ( n i = 1 n 1 / p i ) i = 1 n 1 / p i n i = 1 n ( t 1 i t n i ) 1 / q i × ( 0 t 1 i 0 t n i ( 0 x 1 i 0 x n i | n τ 1 i τ n i f i ( τ 1 i , , τ n i ) | p i d τ 1 i d τ n i ) d x 1 i d x n i ) 1 / p i = N i = 1 n ( 0 t 1 i 0 t n i j = 1 n ( t j i x j i ) | n x 1 i x n i f i ( x 1 i , , x n i ) | p i d x 1 i d x n i ) 1 / p i .
This concludes the proof. □

Acknowledgement

CJZ is supported by National Natural Science Foundation of China (10971205). WSC is partially supported by a HKU URG grant. The authors express their grateful thanks to the referees for their many very valuable suggestions and comments.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

C-JZ and W-SC jointly contributed to the main results Theorems 2.1 and 2.2. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Pachpatte BG: On some new inequalities similar to Hilbert’s inequality. J. Math. Anal. Appl. 1998, 226: 166–179. 10.1006/jmaa.1998.6043MathSciNetCrossRefMATH Pachpatte BG: On some new inequalities similar to Hilbert’s inequality. J. Math. Anal. Appl. 1998, 226: 166–179. 10.1006/jmaa.1998.6043MathSciNetCrossRefMATH
2.
Zurück zum Zitat Handley GD, Koliha JJ, Pečarić JE: New Hilbert-Pachpatte type integral inequalities. J. Math. Anal. Appl. 2001, 257: 238–250. 10.1006/jmaa.2000.7350MathSciNetCrossRefMATH Handley GD, Koliha JJ, Pečarić JE: New Hilbert-Pachpatte type integral inequalities. J. Math. Anal. Appl. 2001, 257: 238–250. 10.1006/jmaa.2000.7350MathSciNetCrossRefMATH
3.
Zurück zum Zitat Gao MZ, Yang BC: On the extended Hilbert’s inequality. Proc. Am. Math. Soc. 1998, 126: 751–759. 10.1090/S0002-9939-98-04444-XMathSciNetCrossRefMATH Gao MZ, Yang BC: On the extended Hilbert’s inequality. Proc. Am. Math. Soc. 1998, 126: 751–759. 10.1090/S0002-9939-98-04444-XMathSciNetCrossRefMATH
4.
Zurück zum Zitat Kuang JC: On new extensions of Hilbert’s integral inequality. J. Math. Anal. Appl. 1999, 235: 608–614. 10.1006/jmaa.1999.6373MathSciNetCrossRefMATH Kuang JC: On new extensions of Hilbert’s integral inequality. J. Math. Anal. Appl. 1999, 235: 608–614. 10.1006/jmaa.1999.6373MathSciNetCrossRefMATH
5.
6.
Zurück zum Zitat Zhao CJ: On inverses of disperse and continuous Pachpatte’s inequalities. Acta Math. Sin. 2003, 46: 1111–1116. Zhao CJ: On inverses of disperse and continuous Pachpatte’s inequalities. Acta Math. Sin. 2003, 46: 1111–1116.
7.
Zurück zum Zitat Zhao CJ: Generalizations on two new Hilbert type inequalities. J. Math. (Wuhan) 2000, 20: 413–416.MathSciNetMATH Zhao CJ: Generalizations on two new Hilbert type inequalities. J. Math. (Wuhan) 2000, 20: 413–416.MathSciNetMATH
8.
Zurück zum Zitat Zhao CJ, Debnath L: Some new inverse type Hilbert integral inequalities. J. Math. Anal. Appl. 2001, 262: 411–418. 10.1006/jmaa.2001.7595MathSciNetCrossRefMATH Zhao CJ, Debnath L: Some new inverse type Hilbert integral inequalities. J. Math. Anal. Appl. 2001, 262: 411–418. 10.1006/jmaa.2001.7595MathSciNetCrossRefMATH
9.
Zurück zum Zitat Handley GD, Koliha JJ, Pečarić JE: A Hilbert type inequality. Tamkang J. Math. 2000, 31: 311–315.MathSciNetMATH Handley GD, Koliha JJ, Pečarić JE: A Hilbert type inequality. Tamkang J. Math. 2000, 31: 311–315.MathSciNetMATH
10.
Zurück zum Zitat Hardy GH, Littlewood JE, Pólya G: Inequalities. Cambridge University Press, Cambridge; 1934.MATH Hardy GH, Littlewood JE, Pólya G: Inequalities. Cambridge University Press, Cambridge; 1934.MATH
11.
Zurück zum Zitat Pachpatte BG: Inequalities similar to certain extensions of Hilbert’s inequality. J. Math. Anal. Appl. 2000, 243: 217–227. 10.1006/jmaa.1999.6646MathSciNetCrossRefMATH Pachpatte BG: Inequalities similar to certain extensions of Hilbert’s inequality. J. Math. Anal. Appl. 2000, 243: 217–227. 10.1006/jmaa.1999.6646MathSciNetCrossRefMATH
Metadaten
Titel
On Hilbert type inequalities
verfasst von
Chang-Jian Zhao
Wing-Sum Cheung
Publikationsdatum
01.12.2012
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2012
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/1029-242X-2012-145

Weitere Artikel der Ausgabe 1/2012

Journal of Inequalities and Applications 1/2012 Zur Ausgabe

Premium Partner