Skip to main content

2021 | OriginalPaper | Buchkapitel

7. On Modeling and Performability Evaluation of Time Varying Communication Networks

verfasst von : Sanjay K. Chaturvedi, Sieteng Soh, Gaurav Khanna

Erschienen in: Handbook of Advanced Performability Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Time varying communication networks (TVCNs) are networks in which attributes such as topology and mobility vary with time. In these networks, the concepts used to evaluate the performance of conventional networks, viz., minimal path/cut set and spanning tree/arborescence, are inapplicable in their original form. Consequently, these concepts need to be redefined and extended to address dynamically changing topology as well as to take into account the effects of time ordering on causality. In this regard, this chapter first discusses some models developed to represent various features of TVCNs and then reviews recently developed techniques for analyzing performability of TVCNs. Next, it extends the notion of spanning arborescences to two types of timestamped spanning arborescences, viz., timestamped valid spanning arborescences and timestamped invalid spanning arborescences, of TVCNs for network convergecasting. More specifically, a timestamped spanning arborescence is a spanning arborescence in which each constituting edge accompanies a contact, representing its active time. Thus, a timestamped valid spanning arborescence, aka time-ordered spanning arborescence, is a timestamped spanning arborescence in which traversal over edges is possible as we only move forward in time, that is, each edge is time-ordered. Otherwise, timestamped spanning arborescence is a timestamped invalid spanning arborescence. Later, the chapter presents an approach which first generates all timestamped spanning arborescences and then uses them to enumerate all time-ordered spanning arborescences for convergecasting in predictable TVCNs. The chapter also shows an application of the generated timestamped spanning arborescences in enumeration of all time-ordered minimal path sets. At last, it discusses on how all time-ordered spanning arborescences and minimal path sets can be utilized for assessing reliability of TVCNs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Khanna, G., & Chaturvedi, S. K. (2018). A comprehensive survey on multi-hop wireless networks: milestones, changing trends and concomitant challenges. Wirel Pers Commun, 101, 677–722.CrossRef Khanna, G., & Chaturvedi, S. K. (2018). A comprehensive survey on multi-hop wireless networks: milestones, changing trends and concomitant challenges. Wirel Pers Commun, 101, 677–722.CrossRef
2.
Zurück zum Zitat Soh. S., Rai, S., & Brooks, R. R. (2008). Performability issues in wireless communication networks. Handbook of Performability Engineering (pp. 1047–1067), Springer. Soh. S., Rai, S., & Brooks, R. R. (2008). Performability issues in wireless communication networks. Handbook of Performability Engineering (pp. 1047–1067), Springer.
3.
Zurück zum Zitat Liang, Q., & Modiano, E. (2017). Survivability in time-varying networks. IEEE Transactions on Mobile Computing, 16, 2668–2681.CrossRef Liang, Q., & Modiano, E. (2017). Survivability in time-varying networks. IEEE Transactions on Mobile Computing, 16, 2668–2681.CrossRef
4.
Zurück zum Zitat Casteigts, A., et al. (2012). Time-varying graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed Systems, 27, 387–408.CrossRef Casteigts, A., et al. (2012). Time-varying graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed Systems, 27, 387–408.CrossRef
5.
Zurück zum Zitat Casteigts, A., et al. (2011). Time-varying graphs and dynamic networks. In H. Frey, X. Li, & S. Ruehrup (Eds.), Ad-hoc, mobile, and wireless networks (pp. 346–359). Berlin Heidelberg: Springer.CrossRef Casteigts, A., et al. (2011). Time-varying graphs and dynamic networks. In H. Frey, X. Li, & S. Ruehrup (Eds.), Ad-hoc, mobile, and wireless networks (pp. 346–359). Berlin Heidelberg: Springer.CrossRef
6.
Zurück zum Zitat Pentland, A., Fletcher, R., & Hasson, A. (2004). DakNet: Rethinking connectivity in developing nations. Computer, 37, 78–83.CrossRef Pentland, A., Fletcher, R., & Hasson, A. (2004). DakNet: Rethinking connectivity in developing nations. Computer, 37, 78–83.CrossRef
7.
Zurück zum Zitat Juang, P., et al. (2002). Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with ZebraNet. ACM SIGARCH Comput Archit News, 30, p. 12. Juang, P., et al. (2002). Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with ZebraNet. ACM SIGARCH Comput Archit News, 30, p. 12.
8.
Zurück zum Zitat Zhang, W., et al. (2019). Efficient topology control for time-varying spacecraft networks with unreliable links. Int J Distrib Sens Netw, 15(9). Zhang, W., et al. (2019). Efficient topology control for time-varying spacecraft networks with unreliable links. Int J Distrib Sens Netw, 15(9).
9.
Zurück zum Zitat Bekmezci, I., Sahingoz, O. K., & Temel, Ş. (2013). Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks, 11, 1254–1270.CrossRef Bekmezci, I., Sahingoz, O. K., & Temel, Ş. (2013). Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks, 11, 1254–1270.CrossRef
10.
Zurück zum Zitat Xuan, B. B., Ferreira, A., & Jarry, A. (2003). Evolving graphs and least cost journeys in dynamic networks. In WiOpt’03: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (p. 10). Sophia Antipolis, France. Xuan, B. B., Ferreira, A., & Jarry, A. (2003). Evolving graphs and least cost journeys in dynamic networks. In WiOpt’03: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (p. 10). Sophia Antipolis, France.
11.
Zurück zum Zitat Huang, M., et al. (2013). Topology control for time-evolving and predictable delay-tolerant networks. IEEE Transactions on Computers, 62, 2308–2321.MathSciNetCrossRef Huang, M., et al. (2013). Topology control for time-evolving and predictable delay-tolerant networks. IEEE Transactions on Computers, 62, 2308–2321.MathSciNetCrossRef
12.
Zurück zum Zitat Raffelsberger, C., & Hellwagner, H. (2014). Combined mobile ad-hoc and delay/disruption-tolerant routing. In S. Guo, J. Lloret, P. Manzoni, et al. (Eds.), Ad-hoc, mobile, and wireless networks (pp. 1–14). Cham: Springer International Publishing. Raffelsberger, C., & Hellwagner, H. (2014). Combined mobile ad-hoc and delay/disruption-tolerant routing. In S. Guo, J. Lloret, P. Manzoni, et al. (Eds.), Ad-hoc, mobile, and wireless networks (pp. 1–14). Cham: Springer International Publishing.
13.
Zurück zum Zitat Baudic, G., Perennou, T., & Lochin, E. (2016). Following the right path: Using traces for the study of DTNs. Computer Communications, 88, 25–33.CrossRef Baudic, G., Perennou, T., & Lochin, E. (2016). Following the right path: Using traces for the study of DTNs. Computer Communications, 88, 25–33.CrossRef
14.
Zurück zum Zitat Khanna, G., Chaturvedi, S. K., & Soh, S. (2020). Time varying communication networks: Modelling, reliability evaluation and optimization. In M. Ram & H. Pham (Eds.), Advances in reliability analysis and its applications (pp. 1–30). Cham: Springer International Publishing. Khanna, G., Chaturvedi, S. K., & Soh, S. (2020). Time varying communication networks: Modelling, reliability evaluation and optimization. In M. Ram & H. Pham (Eds.), Advances in reliability analysis and its applications (pp. 1–30). Cham: Springer International Publishing.
15.
Zurück zum Zitat Chaturvedi, S. K., Khanna, G., & Soh, S. (2018). Reliability evaluation of time evolving Delay Tolerant Networks based on Sum-of-Disjoint products. Reliab Eng Syst Saf, 171, 136–151.CrossRef Chaturvedi, S. K., Khanna, G., & Soh, S. (2018). Reliability evaluation of time evolving Delay Tolerant Networks based on Sum-of-Disjoint products. Reliab Eng Syst Saf, 171, 136–151.CrossRef
16.
Zurück zum Zitat Khanna, G., Chaturvedi, S. K., & Soh, S. (2019). On computing the reliability of opportunistic multihop networks with Mobile relays. Qual Reliab Eng Int, 35, 870–888.CrossRef Khanna, G., Chaturvedi, S. K., & Soh, S. (2019). On computing the reliability of opportunistic multihop networks with Mobile relays. Qual Reliab Eng Int, 35, 870–888.CrossRef
17.
Zurück zum Zitat Khanna, G., Chaturvedi, S. K., & Soh, S. (2020). Two-terminal reliability analysis for time-evolving and predictable delay-tolerant networks. Recent Adv Electr Electron Eng Former Recent Pat Electr Electron Eng, 13, 236–250. Khanna, G., Chaturvedi, S. K., & Soh, S. (2020). Two-terminal reliability analysis for time-evolving and predictable delay-tolerant networks. Recent Adv Electr Electron Eng Former Recent Pat Electr Electron Eng, 13, 236–250.
18.
Zurück zum Zitat Santi, P. (2012). Mobility models for next generation wireless networks: Ad hoc, vehicular and mesh networks. Wiley. Santi, P. (2012). Mobility models for next generation wireless networks: Ad hoc, vehicular and mesh networks. Wiley.
19.
Zurück zum Zitat Batabyal, S., & Bhaumik, P. (2015). Mobility models, traces and impact of mobility on opportunistic routing algorithms: A survey. IEEE Commun Surv Tutor, 17, 1679–1707.CrossRef Batabyal, S., & Bhaumik, P. (2015). Mobility models, traces and impact of mobility on opportunistic routing algorithms: A survey. IEEE Commun Surv Tutor, 17, 1679–1707.CrossRef
20.
Zurück zum Zitat Aschenbruck, N., Munjal, A., & Camp, T. (2011). Trace-based mobility modeling for multi-hop wireless networks. Computer Communications, 34, 704–714.CrossRef Aschenbruck, N., Munjal, A., & Camp, T. (2011). Trace-based mobility modeling for multi-hop wireless networks. Computer Communications, 34, 704–714.CrossRef
21.
Zurück zum Zitat Munjal, A., Camp, T., & Aschenbruck, N. (2012). Changing trends in modeling mobility. J Electr Comput Eng, 2012, 1–16.MathSciNetCrossRef Munjal, A., Camp, T., & Aschenbruck, N. (2012). Changing trends in modeling mobility. J Electr Comput Eng, 2012, 1–16.MathSciNetCrossRef
22.
Zurück zum Zitat Matis, M., Doboš, L., & Papaj, J. (2016). An enhanced hybrid social based routing algorithm for MANET-DTN. Mob Inf Syst, pp. 1–12. Matis, M., Doboš, L., & Papaj, J. (2016). An enhanced hybrid social based routing algorithm for MANET-DTN. Mob Inf Syst, pp. 1–12.
23.
Zurück zum Zitat Zhang, Z. (2006). Routing in intermittently connected mobile ad hoc networks and delay tolerant networks: Overview and challenges. IEEE Commun Surv Tutor, 8, 24–37.CrossRef Zhang, Z. (2006). Routing in intermittently connected mobile ad hoc networks and delay tolerant networks: Overview and challenges. IEEE Commun Surv Tutor, 8, 24–37.CrossRef
24.
Zurück zum Zitat Du, D., & Hu, X. (2008). Steiner tree problems in computer communication networks, World Scientific. Du, D., & Hu, X. (2008). Steiner tree problems in computer communication networks, World Scientific.
25.
Zurück zum Zitat Fraire, J. A., Madoery, P., & Finochietto, J. M. (2017). Contact plan design for predictable disruption-tolerant space sensor networks. In H. F. Rashvand & A. Abedi (Eds.), Wireless sensor systems for extreme environments (pp. 123–150). Chichester, UK: Wiley.CrossRef Fraire, J. A., Madoery, P., & Finochietto, J. M. (2017). Contact plan design for predictable disruption-tolerant space sensor networks. In H. F. Rashvand & A. Abedi (Eds.), Wireless sensor systems for extreme environments (pp. 123–150). Chichester, UK: Wiley.CrossRef
26.
Zurück zum Zitat Maini, A. K., & Agrawal, V. (2014). Satellite technology: Principles and applications (3rd ed.). Chichester, West Sussex: Wiley.CrossRef Maini, A. K., & Agrawal, V. (2014). Satellite technology: Principles and applications (3rd ed.). Chichester, West Sussex: Wiley.CrossRef
27.
Zurück zum Zitat Chen, H., Shi, K., & Wu, C. (2016). Spanning tree based topology control for data collecting in predictable delay-tolerant networks. Ad Hoc Networks, 46, 48–60.CrossRef Chen, H., Shi, K., & Wu, C. (2016). Spanning tree based topology control for data collecting in predictable delay-tolerant networks. Ad Hoc Networks, 46, 48–60.CrossRef
28.
Zurück zum Zitat Bhadra, S., & Ferreira, A. (2003). Complexity of connected components in evolving graphs and the computation of multicast trees in dynamic networks. In Ad-Hoc, Mobile, and Wireless Networks (pp. 259–270). Springer. Bhadra, S., & Ferreira, A. (2003). Complexity of connected components in evolving graphs and the computation of multicast trees in dynamic networks. In Ad-Hoc, Mobile, and Wireless Networks (pp. 259–270). Springer.
29.
Zurück zum Zitat Bhadra, S., & Ferreira, A. (2002). Computing multicast trees in dynamic networks using evolving graphs. RR-4531, INRIA. Bhadra, S., & Ferreira, A. (2002). Computing multicast trees in dynamic networks using evolving graphs. RR-4531, INRIA.
30.
Zurück zum Zitat Holme, P. (2015). Modern temporal network theory: A colloquium. European Physical Journal B: Condensed Matter and Complex Systems, 88, 1–30.CrossRef Holme, P. (2015). Modern temporal network theory: A colloquium. European Physical Journal B: Condensed Matter and Complex Systems, 88, 1–30.CrossRef
31.
Zurück zum Zitat Díaz, J., Mitsche, D., & Santi, P. (2011). Theoretical aspects of graph models for MANETs. Theoretical Aspects of Distributed Computing in Sensor Networks (pp. 161–190). Springer. Díaz, J., Mitsche, D., & Santi, P. (2011). Theoretical aspects of graph models for MANETs. Theoretical Aspects of Distributed Computing in Sensor Networks (pp. 161–190). Springer.
32.
Zurück zum Zitat George, B., & Shekhar, S. (2008). Time-aggregated graphs for modeling spatio-temporal networks. Journal on Data Semantics XI. Springer, pp. 191–212. George, B., & Shekhar, S. (2008). Time-aggregated graphs for modeling spatio-temporal networks. Journal on Data Semantics XI. Springer, pp. 191–212.
33.
Zurück zum Zitat Kawamoto, Y., Nishiyama, H., & Kato, N. (2013). Toward terminal-to-terminal communication networks: A hybrid MANET and DTN approach. In 18th IEEE International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD) (pp. 228–232). Kawamoto, Y., Nishiyama, H., & Kato, N. (2013). Toward terminal-to-terminal communication networks: A hybrid MANET and DTN approach. In 18th IEEE International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD) (pp. 228–232).
34.
Zurück zum Zitat Abolhasan, M., Wysocki, T., & Dutkiewicz, E. (2004). A review of routing protocols for mobile ad hoc networks. Ad Hoc Networks, 2, 1–22.CrossRef Abolhasan, M., Wysocki, T., & Dutkiewicz, E. (2004). A review of routing protocols for mobile ad hoc networks. Ad Hoc Networks, 2, 1–22.CrossRef
35.
Zurück zum Zitat Alotaibi, E., & Mukherjee, B. (2012). A survey on routing algorithms for wireless Ad-Hoc and mesh networks. Computer Networks, 56, 940–965.CrossRef Alotaibi, E., & Mukherjee, B. (2012). A survey on routing algorithms for wireless Ad-Hoc and mesh networks. Computer Networks, 56, 940–965.CrossRef
36.
Zurück zum Zitat Khanna, G., Chaturvedi, S. K., & Soh, S. (2019). Reliability evaluation of mobile ad hoc networks by considering link expiration time and border time. Int J Syst Assur Eng Manag, 10, 399–415.CrossRef Khanna, G., Chaturvedi, S. K., & Soh, S. (2019). Reliability evaluation of mobile ad hoc networks by considering link expiration time and border time. Int J Syst Assur Eng Manag, 10, 399–415.CrossRef
37.
Zurück zum Zitat Misra, K. B. (Ed.). (2008). Handbook of performability engineering. London: Springer. Misra, K. B. (Ed.). (2008). Handbook of performability engineering. London: Springer.
38.
Zurück zum Zitat Cook, J. L., & Ramirez-Marquez, J. E. (2008). Mobility and reliability modeling for a mobile ad hoc network. IIE Transactions, 41, 23–31.CrossRef Cook, J. L., & Ramirez-Marquez, J. E. (2008). Mobility and reliability modeling for a mobile ad hoc network. IIE Transactions, 41, 23–31.CrossRef
39.
Zurück zum Zitat Padmavathy, N., & Chaturvedi, S. K. (2013). Evaluation of mobile ad hoc network reliability using propagation-based link reliability model. Reliab Eng Syst Saf, 115, 1–9.CrossRef Padmavathy, N., & Chaturvedi, S. K. (2013). Evaluation of mobile ad hoc network reliability using propagation-based link reliability model. Reliab Eng Syst Saf, 115, 1–9.CrossRef
40.
Zurück zum Zitat Ahmad, M., & Mishra, D. K. (2012). A reliability calculations model for large-scale MANETs. Int J Comput Appl, 59. Ahmad, M., & Mishra, D. K. (2012). A reliability calculations model for large-scale MANETs. Int J Comput Appl, 59.
41.
Zurück zum Zitat Singh, M. M., Baruah, M., & Mandal, J. K. (2014). Reliability computation of mobile ad-hoc network using logistic regression. In Eleventh International Conference on Wireless and Optical Communications Networks (WOCN) (pp. 1–5). IEEE. Singh, M. M., Baruah, M., & Mandal, J. K. (2014). Reliability computation of mobile ad-hoc network using logistic regression. In Eleventh International Conference on Wireless and Optical Communications Networks (WOCN) (pp. 1–5). IEEE.
42.
Zurück zum Zitat Egeland, G., & Engelstad, P. (2009). The availability and reliability of wireless multi-hop networks with stochastic link failures. IEEE Journal on Selected Areas in Communications, 27, 1132–1146.CrossRef Egeland, G., & Engelstad, P. (2009). The availability and reliability of wireless multi-hop networks with stochastic link failures. IEEE Journal on Selected Areas in Communications, 27, 1132–1146.CrossRef
43.
Zurück zum Zitat Meena, K. S., & Vasanthi, T. (2016). Reliability analysis of mobile ad hoc networks using universal generating function: Reliability analysis of manet using ugf. Qual Reliab Eng Int, 32, 111–122.CrossRef Meena, K. S., & Vasanthi, T. (2016). Reliability analysis of mobile ad hoc networks using universal generating function: Reliability analysis of manet using ugf. Qual Reliab Eng Int, 32, 111–122.CrossRef
44.
Zurück zum Zitat Clark, J., & Holton, D.A. (1991). A first look at graph theory. World Scientific. Clark, J., & Holton, D.A. (1991). A first look at graph theory. World Scientific.
45.
Zurück zum Zitat Kamiyama, N., & Kawase, Y. (2015). On packing arborescences in temporal networks. Inf Process Lett, 115, 321–325.MathSciNetCrossRef Kamiyama, N., & Kawase, Y. (2015). On packing arborescences in temporal networks. Inf Process Lett, 115, 321–325.MathSciNetCrossRef
46.
Zurück zum Zitat Rai, S., Veeraraghavan, M., & Trivedi, K. S. (1995). A survey of efficient reliability computation using disjoint products approach. Networks, 25, 147–163.CrossRef Rai, S., Veeraraghavan, M., & Trivedi, K. S. (1995). A survey of efficient reliability computation using disjoint products approach. Networks, 25, 147–163.CrossRef
47.
Zurück zum Zitat Misra, K. B. (1993). New trends in system reliability evaluation. Elsevier Science Ltd. Misra, K. B. (1993). New trends in system reliability evaluation. Elsevier Science Ltd.
48.
Zurück zum Zitat Mertzios, G. B., Michail, O., & Spirakis, P. G. (2019). Temporal network optimization subject to connectivity constraints. Algorithmica, 81, 1416–1449.MathSciNetCrossRef Mertzios, G. B., Michail, O., & Spirakis, P. G. (2019). Temporal network optimization subject to connectivity constraints. Algorithmica, 81, 1416–1449.MathSciNetCrossRef
49.
Zurück zum Zitat Xuan, B. B., Ferreira, A., & Jarry, A. (2003). Computing shortest, fastest, and foremost journeys in dynamic networks. Int J Found Comput Sci, 14, 267–285.MathSciNetCrossRef Xuan, B. B., Ferreira, A., & Jarry, A. (2003). Computing shortest, fastest, and foremost journeys in dynamic networks. Int J Found Comput Sci, 14, 267–285.MathSciNetCrossRef
50.
Zurück zum Zitat Coll-Perales, B., Gozalvez, J., & Friderikos, V. (2016). Energy-efficient opportunistic forwarding in multi-hop cellular networks using device-to-device communications. Trans Emerg Telecommun Technol, 27, 249–265.CrossRef Coll-Perales, B., Gozalvez, J., & Friderikos, V. (2016). Energy-efficient opportunistic forwarding in multi-hop cellular networks using device-to-device communications. Trans Emerg Telecommun Technol, 27, 249–265.CrossRef
51.
Zurück zum Zitat Tutte, W. T. (1984). Graph theory. Menlo Park, Calif: Addison-Wesley Pub. Co., Advanced Book Program.MATH Tutte, W. T. (1984). Graph theory. Menlo Park, Calif: Addison-Wesley Pub. Co., Advanced Book Program.MATH
52.
Zurück zum Zitat Aigner, M. (2007). A course in enumeration. Springer Science & Business Media. Aigner, M. (2007). A course in enumeration. Springer Science & Business Media.
53.
Zurück zum Zitat Hsieh, Y.-C. (2003). New reliability bounds for coherent systems. Journal of the Operational Research Society, 54, 995–1001.CrossRef Hsieh, Y.-C. (2003). New reliability bounds for coherent systems. Journal of the Operational Research Society, 54, 995–1001.CrossRef
54.
Zurück zum Zitat Schwager, S. J. (1984). Bonferroni sometimes loses. American Statistician, 38, 192–197.MathSciNet Schwager, S. J. (1984). Bonferroni sometimes loses. American Statistician, 38, 192–197.MathSciNet
Metadaten
Titel
On Modeling and Performability Evaluation of Time Varying Communication Networks
verfasst von
Sanjay K. Chaturvedi
Sieteng Soh
Gaurav Khanna
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-55732-4_7

Neuer Inhalt