Skip to main content

2015 | OriginalPaper | Buchkapitel

On Temporally Connected Graphs of Small Cost

verfasst von : Eleni C. Akrida, Leszek Gąsieniec, George B. Mertzios, Paul G. Spirakis

Erschienen in: Approximation and Online Algorithms

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study the design of small cost temporally connected graphs, under various constraints. We mainly consider undirected graphs of n vertices, where each edge has an associated set of discrete availability instances (labels). A journey from vertex u to vertex v is a path from u to v where successive path edges have strictly increasing labels. A graph is temporally connected iff there is a (uv)-journey for any pair of vertices \(u,v,~u\not = v\). We first give a simple polynomial-time algorithm to check whether a given temporal graph is temporally connected. We then consider the case in which a designer of temporal graphs can freely choose availability instances for all edges and aims for temporal connectivity with very small cost; the cost is the total number of availability instances used. We achieve this via a simple polynomial-time procedure which derives designs of cost linear in n, and at most the optimal cost plus 2. To show this, we prove a lower bound on the cost for any undirected graph. However, there are pragmatic cases where one is not free to design a temporally connected graph anew, but is instead given a temporal graph design with the claim that it is temporally connected, and wishes to make it more cost-efficient by removing labels without destroying temporal connectivity (redundant labels). Our main technical result is that computing the maximum number of redundant labels is APX-hard, i.e., there is no PTAS unless \(P=NP\). On the positive side, we show that in dense graphs with random edge availabilities, all but \(\varTheta (n)\) labels are redundant whp. A temporal design may, however, be minimal, i.e., no redundant labels exist. We show the existence of minimal temporal designs with at least \(n \log {n}\) labels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The labels of an edge (arc) are the discrete time instances at which it is available.
 
2
Note that an undirected edge \(e=\{u,v\}\) is associated with \(2\cdot |L_e|\) time edges, namely both (uvl) and (vul) for every \(l\in L_e\).
 
3
Here, removal of a label l from L refers to the removal of l only from a particular edge and not from all edges that are assigned label l, that is, if \(l \in L_{e_1} \cap L_{e_2}\) and we remove l from both \(L_{e_1}\) and \(L_{e_2}\), it counts as two labels removed from L.
 
4
In this scenario, the designer is allowed to only use the given set of edge availabilities, or a subset of them.
 
5
PTAS stands for Polynomial-Time Approximation Scheme.
 
6
A monotone XOR-boolean formula is a conjunction of XOR-clauses of the form \( (x_{i}\oplus x_{j})\), where no variable is negated.
 
Literatur
1.
Zurück zum Zitat Akrida, E.C., Gąsieniec, L., Mertzios, G.B., Spirakis, P.G.: Ephemeral networks with random availability of links: Diameter and connectivity. In: Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) (2014) Akrida, E.C., Gąsieniec, L., Mertzios, G.B., Spirakis, P.G.: Ephemeral networks with random availability of links: Diameter and connectivity. In: Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) (2014)
2.
Zurück zum Zitat Alimonti, P., Kann, V.: Hardness of approximating problems on cubic graphs. In: Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203, pp. 288–298. Springer, Heidelberg (1997) CrossRef Alimonti, P., Kann, V.: Hardness of approximating problems on cubic graphs. In: Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203, pp. 288–298. Springer, Heidelberg (1997) CrossRef
3.
Zurück zum Zitat Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (cover time of a simple random walk on evolving graphs). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008) CrossRef Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (cover time of a simple random walk on evolving graphs). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008) CrossRef
4.
Zurück zum Zitat Bui-Xuan, B.-M., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003)MathSciNetCrossRef Bui-Xuan, B.-M., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003)MathSciNetCrossRef
5.
Zurück zum Zitat Casteigts, A., Flocchini, P.: Deterministic Algorithms in Dynamic Networks: Formal Models and Metrics. Defence R&D Canada, Technical report, April 2013 Casteigts, A., Flocchini, P.: Deterministic Algorithms in Dynamic Networks: Formal Models and Metrics. Defence R&D Canada, Technical report, April 2013
6.
Zurück zum Zitat Casteigts, A., Flocchini, P.: Deterministic Algorithms in Dynamic Networks: Problems, Analysis, and Algorithmic Tools. Defence R&D Canada, Technical report, April 2013 Casteigts, A., Flocchini, P.: Deterministic Algorithms in Dynamic Networks: Problems, Analysis, and Algorithmic Tools. Defence R&D Canada, Technical report, April 2013
7.
Zurück zum Zitat Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. (IJPEDS) 27(5), 387–408 (2012)CrossRef Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. (IJPEDS) 27(5), 387–408 (2012)CrossRef
8.
Zurück zum Zitat Clementi, A.E.F., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time of edge-markovian evolving graphs. SIAM J. Discrete Math. (SIDMA) 24(4), 1694–1712 (2010)MATHMathSciNetCrossRef Clementi, A.E.F., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time of edge-markovian evolving graphs. SIAM J. Discrete Math. (SIDMA) 24(4), 1694–1712 (2010)MATHMathSciNetCrossRef
9.
Zurück zum Zitat Dutta, C., Pandurangan, G., Rajaraman, R., Sun, Z., Viola, E.: On the complexity of information spreading in dynamic networks. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 717–736 (2013) Dutta, C., Pandurangan, G., Rajaraman, R., Sun, Z., Viola, E.: On the complexity of information spreading in dynamic networks. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 717–736 (2013)
11.
Zurück zum Zitat Fleischer, L., Tardos, É.: Efficient continuous-time dynamic network flow algorithms. Oper. Res. Lett. 23(3–5), 71–80 (1998)MATHMathSciNetCrossRef Fleischer, L., Tardos, É.: Efficient continuous-time dynamic network flow algorithms. Oper. Res. Lett. 23(3–5), 71–80 (1998)MATHMathSciNetCrossRef
12.
Zurück zum Zitat Gupta, A., Krishnaswamy, R., Ravi, R.: Online and stochastic survivable network design. SIAM J. Comput. 41(6), 1649–1672 (2012)MATHMathSciNetCrossRef Gupta, A., Krishnaswamy, R., Ravi, R.: Online and stochastic survivable network design. SIAM J. Comput. 41(6), 1649–1672 (2012)MATHMathSciNetCrossRef
13.
Zurück zum Zitat Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for temporal networks. In: Proceedings of the 32nd Annual ACM symposium on Theory of computing (STOC), pp. 504–513 (2000) Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for temporal networks. In: Proceedings of the 32nd Annual ACM symposium on Theory of computing (STOC), pp. 504–513 (2000)
14.
Zurück zum Zitat Klinz, B., Woeginger, G.J.: One, two, three, many, or: complexity aspects of dynamic network flows with dedicated arcs. Oper. Res. Lett. 22(4–5), 119–127 (1998)MATHMathSciNetCrossRef Klinz, B., Woeginger, G.J.: One, two, three, many, or: complexity aspects of dynamic network flows with dedicated arcs. Oper. Res. Lett. 22(4–5), 119–127 (1998)MATHMathSciNetCrossRef
15.
Zurück zum Zitat Koch, R., Nasrabadi, E., Skutella, M.: Continuous and discrete flows over time - A general model based on measure theory. Math. Meth. of OR 73(3), 301–337 (2011)MATHMathSciNetCrossRef Koch, R., Nasrabadi, E., Skutella, M.: Continuous and discrete flows over time - A general model based on measure theory. Math. Meth. of OR 73(3), 301–337 (2011)MATHMathSciNetCrossRef
16.
Zurück zum Zitat Kontogiannis, S., Zaroliagis, C.: Distance oracles for time-dependent networks. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 713–725. Springer, Heidelberg (2014) Kontogiannis, S., Zaroliagis, C.: Distance oracles for time-dependent networks. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 713–725. Springer, Heidelberg (2014)
17.
Zurück zum Zitat Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic networks. In: Proceedings of the 42nd Annual ACM Symposium on Theory of Computing (STOC), pp. 513–522 (2010) Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic networks. In: Proceedings of the 42nd Annual ACM Symposium on Theory of Computing (STOC), pp. 513–522 (2010)
18.
Zurück zum Zitat Lau, L.C., Naor, J., Salavatipour, M.R., Singh, M.: Survivable network design with degree or order constraints. SIAM J. Comput. 39(3), 1062–1087 (2009)MATHMathSciNetCrossRef Lau, L.C., Naor, J., Salavatipour, M.R., Singh, M.: Survivable network design with degree or order constraints. SIAM J. Comput. 39(3), 1062–1087 (2009)MATHMathSciNetCrossRef
19.
Zurück zum Zitat Lau, L.C., Singh, M.: Additive approximation for bounded degree survivable network design. SIAM J. Comput. 42(6), 2217–2242 (2013)MATHMathSciNetCrossRef Lau, L.C., Singh, M.: Additive approximation for bounded degree survivable network design. SIAM J. Comput. 42(6), 2217–2242 (2013)MATHMathSciNetCrossRef
20.
Zurück zum Zitat Mertzios, G.B., Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Temporal network optimization subject to connectivity constraints. In: Fomin, F.V., Freivalds, R.U., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 657–668. Springer, Heidelberg (2013) CrossRef Mertzios, G.B., Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Temporal network optimization subject to connectivity constraints. In: Fomin, F.V., Freivalds, R.U., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 657–668. Springer, Heidelberg (2013) CrossRef
21.
Zurück zum Zitat Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Causality, influence, and computation in possibly disconnected synchronous dynamic networks. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 269–283. Springer, Heidelberg (2012) CrossRef Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Causality, influence, and computation in possibly disconnected synchronous dynamic networks. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 269–283. Springer, Heidelberg (2012) CrossRef
22.
Zurück zum Zitat O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs. In: Proceedings of the 2005 Joint Workshop on Foundations of Mobile Computing (DIALM-POMC), pp. 104–110 (2005) O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs. In: Proceedings of the 2005 Joint Workshop on Foundations of Mobile Computing (DIALM-POMC), pp. 104–110 (2005)
23.
Zurück zum Zitat Scheideler, C.: Models and techniques for communication in dynamic networks. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 27–49. Springer, Heidelberg (2002) CrossRef Scheideler, C.: Models and techniques for communication in dynamic networks. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 27–49. Springer, Heidelberg (2002) CrossRef
Metadaten
Titel
On Temporally Connected Graphs of Small Cost
verfasst von
Eleni C. Akrida
Leszek Gąsieniec
George B. Mertzios
Paul G. Spirakis
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-28684-6_8