Skip to main content
Erschienen in: Experiments in Fluids 6/2010

01.12.2010 | Research Article

On the aerodynamic characteristics of hovering rigid and flexible hawkmoth-like wings

verfasst von: K. B. Lua, K. C. Lai, T. T. Lim, K. S. Yeo

Erschienen in: Experiments in Fluids | Ausgabe 6/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Insect wings are subjected to fluid, inertia and gravitational forces during flapping flight. Owing to their limited rigidity, they bent under the influence of these forces. Numerical study by Hamamoto et al. (Adv Robot 21(1–2):1–21, 2007) showed that a flexible wing is able to generate almost as much lift as a rigid wing during flapping. In this paper, we take a closer look at the relationship between wing flexibility (or stiffness) and aerodynamic force generation in flapping hovering flight. The experimental study was conducted in two stages. The first stage consisted of detailed force measurement and flow visualization of a rigid hawkmoth-like wing undergoing hovering hawkmoth flapping motion and simple harmonic flapping motion, with the aim of establishing a benchmark database for the second stage, which involved hawkmoth-like wing of different flexibility performing the same flapping motions. Hawkmoth motion was conducted at Re = 7,254 and reduced frequency of 0.26, while simple harmonic flapping motion at Re = 7,800 and 11,700, and reduced frequency of 0.25. Results show that aerodynamic force generation on the rigid wing is governed primarily by the combined effect of wing acceleration and leading edge vortex generated on the upper surface of the wing, while the remnants of the wake vortices generated from the previous stroke play only a minor role. Our results from the flexible wing study, while generally supportive of the finding by Hamamoto et al. (Adv Robot 21(1–2):1–21, 2007), also reveal the existence of a critical stiffness constant, below which lift coefficient deteriorates significantly. This finding suggests that although using flexible wing in micro air vehicle application may be beneficial in term of lightweight, too much flexibility can lead to deterioration in flapping performance in terms of aerodynamic force generation. The results further show that wings with stiffness constant above the critical value can deliver mean lift coefficient almost the same as a rigid wing when executing hawkmoth motion, but lower than the rigid wing when performing a simple harmonic motion. In all cases studied (7,800 ≤ Re ≤ 11,700), the Reynolds number does not alter the force generation significantly.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aono H, Liu H (2008) A numerical study of hovering aerodynamics in flapping insect flight, Bio mechanisms of swimming and flying. Springer, Japan Aono H, Liu H (2008) A numerical study of hovering aerodynamics in flapping insect flight, Bio mechanisms of swimming and flying. Springer, Japan
Zurück zum Zitat Aono H, Shyy W, Liu H (2009) Near wake vortex dynamics of a hovering hawkmoth. Acta Mech Sin 25(1):23–36CrossRef Aono H, Shyy W, Liu H (2009) Near wake vortex dynamics of a hovering hawkmoth. Acta Mech Sin 25(1):23–36CrossRef
Zurück zum Zitat Birch JM, Dickinson MH (2001) Spanwise flow and the attachment of leading-edge vortex on insect wings. Nature 412:729–732CrossRef Birch JM, Dickinson MH (2001) Spanwise flow and the attachment of leading-edge vortex on insect wings. Nature 412:729–732CrossRef
Zurück zum Zitat Combes SA, Daniel TL (2003a) Flexural stiffness in insect Wings I. Scaling and the influence of wing venation. J Exp Biol 206(17):2979–2987CrossRef Combes SA, Daniel TL (2003a) Flexural stiffness in insect Wings I. Scaling and the influence of wing venation. J Exp Biol 206(17):2979–2987CrossRef
Zurück zum Zitat Combes SA, Daniel TL (2003b) Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca Sexta. J Exp Biol 206(17):2999–3006CrossRef Combes SA, Daniel TL (2003b) Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca Sexta. J Exp Biol 206(17):2999–3006CrossRef
Zurück zum Zitat Deng X, Schenato L, Wu WC, Sastry SS (2006a) Flapping flight for biomimetic insects: part I-system modeling. IEEE Trans Robot 22(4):776–788CrossRef Deng X, Schenato L, Wu WC, Sastry SS (2006a) Flapping flight for biomimetic insects: part I-system modeling. IEEE Trans Robot 22(4):776–788CrossRef
Zurück zum Zitat Deng X, Schenato L, Sastry SS (2006b) Flapping flight for biomimetic insects: part II-flight control design. IEEE Trans Robot 22(4):789–803CrossRef Deng X, Schenato L, Sastry SS (2006b) Flapping flight for biomimetic insects: part II-flight control design. IEEE Trans Robot 22(4):789–803CrossRef
Zurück zum Zitat Dickinson MH, Gotz KG (1993) Unsteady aerodynamic performance on model wings at low Reynolds numbers. J Exp Biol 174:45–64 Dickinson MH, Gotz KG (1993) Unsteady aerodynamic performance on model wings at low Reynolds numbers. J Exp Biol 174:45–64
Zurück zum Zitat Dickinson MH, Lehmann F, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284(5422):1954–1960CrossRef Dickinson MH, Lehmann F, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284(5422):1954–1960CrossRef
Zurück zum Zitat Ellington CP (1984) The aerodynamics of hovering insect flight. II. Morphological parameters. Philos Trans R Soc Lond B 305(1122):17–40CrossRef Ellington CP (1984) The aerodynamics of hovering insect flight. II. Morphological parameters. Philos Trans R Soc Lond B 305(1122):17–40CrossRef
Zurück zum Zitat Ellington CP (1999) The novel aerodynamics of insect flight: applications to micro-air vehicles. J Exp Biol 202(23):3439–3448 Ellington CP (1999) The novel aerodynamics of insect flight: applications to micro-air vehicles. J Exp Biol 202(23):3439–3448
Zurück zum Zitat Ellington CP, Van Den Berg C, Willmott AP, Thomas ALR (1996) Leading–edge vortices in insect flight. Nature 384(6610):626–630CrossRef Ellington CP, Van Den Berg C, Willmott AP, Thomas ALR (1996) Leading–edge vortices in insect flight. Nature 384(6610):626–630CrossRef
Zurück zum Zitat Hamamoto M, Ohta Y, Hara K, Hisada T (2007) Application of fluid-structure interaction analysis to flapping flight of insects with deformable wings. Adv Robot 21(1–2):1–21CrossRef Hamamoto M, Ohta Y, Hara K, Hisada T (2007) Application of fluid-structure interaction analysis to flapping flight of insects with deformable wings. Adv Robot 21(1–2):1–21CrossRef
Zurück zum Zitat Isaac KM, Colozza A, Rolwes J (2006) Force measurements on a flapping and pitching wing at low Reynolds numbers. AIAA 2006-0450 Isaac KM, Colozza A, Rolwes J (2006) Force measurements on a flapping and pitching wing at low Reynolds numbers. AIAA 2006-0450
Zurück zum Zitat Lehmann FO (2004) Aerial locomotion in flies and robots: kinematic control and aerodynamics of oscillating wings. Anthr Strut Dev 33(3):331–345CrossRef Lehmann FO (2004) Aerial locomotion in flies and robots: kinematic control and aerodynamics of oscillating wings. Anthr Strut Dev 33(3):331–345CrossRef
Zurück zum Zitat Lehmann FO, Sane SP, Dickinson M (2005) The aerodynamics of wing-wing interaction in flapping insect wings. J Exp Biol 208(16):3075–3092CrossRef Lehmann FO, Sane SP, Dickinson M (2005) The aerodynamics of wing-wing interaction in flapping insect wings. J Exp Biol 208(16):3075–3092CrossRef
Zurück zum Zitat Lim TT, Teo CJ, Lua KB, Yeo KS (2009) On the prolong attachment of leading edge vortex on a flapping wing. Mod Phys Lett B 23:357–360CrossRef Lim TT, Teo CJ, Lua KB, Yeo KS (2009) On the prolong attachment of leading edge vortex on a flapping wing. Mod Phys Lett B 23:357–360CrossRef
Zurück zum Zitat Liu H, Ellington CP, Kawachi K, Van Den Berg C, Willmott AP (1998) A computational fluid dynamic study of hawkmoth hovering. J Exp Biol 201(4):461–477 Liu H, Ellington CP, Kawachi K, Van Den Berg C, Willmott AP (1998) A computational fluid dynamic study of hawkmoth hovering. J Exp Biol 201(4):461–477
Zurück zum Zitat Lua KB, Lim TT, Yeo KS (2008) Aerodynamic forces and flow fields of a two-dimensional hovering wing. Exp Fluids 45(6):1047–1065CrossRef Lua KB, Lim TT, Yeo KS (2008) Aerodynamic forces and flow fields of a two-dimensional hovering wing. Exp Fluids 45(6):1047–1065CrossRef
Zurück zum Zitat Mountcastle AM, Daniel TL (2009) Aerodynamic and functional consequences of wing compliance. Exp Fluids 46:873–882CrossRef Mountcastle AM, Daniel TL (2009) Aerodynamic and functional consequences of wing compliance. Exp Fluids 46:873–882CrossRef
Zurück zum Zitat Mueller TJ (2001) Fixed and flapping wing aerodynamics for micro air vehicle applications. AIAA Progress in Astronautics and Aeronautics, Vol. 195, the American Institute of Aeronautics and Astronautics Mueller TJ (2001) Fixed and flapping wing aerodynamics for micro air vehicle applications. AIAA Progress in Astronautics and Aeronautics, Vol. 195, the American Institute of Aeronautics and Astronautics
Zurück zum Zitat Pederzani J, Haj-Hariri H (2006) A numerical method for the analysis of flexible bodies in unsteady viscous flows. Intern J Numer Methods Eng 68:1096–1112MATHCrossRefMathSciNet Pederzani J, Haj-Hariri H (2006) A numerical method for the analysis of flexible bodies in unsteady viscous flows. Intern J Numer Methods Eng 68:1096–1112MATHCrossRefMathSciNet
Zurück zum Zitat Platzer MF, Jones KD, Young J, Lai JCS (2008) Flapping-wing aerodynamics: progress and challenges. AIAA J 46(9):2136–2149CrossRef Platzer MF, Jones KD, Young J, Lai JCS (2008) Flapping-wing aerodynamics: progress and challenges. AIAA J 46(9):2136–2149CrossRef
Zurück zum Zitat Poelma C, Dickson WB, Dickinson MH (2006) Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing. Exp Fluids 41:213–225CrossRef Poelma C, Dickson WB, Dickinson MH (2006) Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing. Exp Fluids 41:213–225CrossRef
Zurück zum Zitat Sane SP, Dickinson MH (2001) The control of flight force by a flapping wing: lift and drag production. J Exp Biol 204(19):2607–2626 Sane SP, Dickinson MH (2001) The control of flight force by a flapping wing: lift and drag production. J Exp Biol 204(19):2607–2626
Zurück zum Zitat Shyy W, Lian YS, Tang J, Viieru D, Liu H (2008) Aerodynamics of low Reynolds number flyers. Cambridge University Press, Cambridge Aerospace SeriesCrossRef Shyy W, Lian YS, Tang J, Viieru D, Liu H (2008) Aerodynamics of low Reynolds number flyers. Cambridge University Press, Cambridge Aerospace SeriesCrossRef
Zurück zum Zitat Smith MJC (1996) Simulating moth wing aerodynamics: towards the development of flapping-wing technology. AIAA J 34(7):1348–1355MATHCrossRef Smith MJC (1996) Simulating moth wing aerodynamics: towards the development of flapping-wing technology. AIAA J 34(7):1348–1355MATHCrossRef
Zurück zum Zitat Srygley RB, Thomas ALR (2002) Unconventional lift-generating mechanisms in free-flying butterflies. Nature 420(6916):660–663CrossRef Srygley RB, Thomas ALR (2002) Unconventional lift-generating mechanisms in free-flying butterflies. Nature 420(6916):660–663CrossRef
Zurück zum Zitat Sun M, Tang J (2002) Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J Exp Biol 205:55–70 Sun M, Tang J (2002) Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J Exp Biol 205:55–70
Zurück zum Zitat Usherwood JR, Ellington CP (2001) The aerodynamics of revolving wings I. Model hawkmoth wings. J Exp Biol 205(11):1547–1564 Usherwood JR, Ellington CP (2001) The aerodynamics of revolving wings I. Model hawkmoth wings. J Exp Biol 205(11):1547–1564
Zurück zum Zitat Van den Berg C, Ellington CP (1997) The three dimensional leading-edge vortex of a “hovering” model hawkmoth. Phil Trans B 352(1351):329–340CrossRef Van den Berg C, Ellington CP (1997) The three dimensional leading-edge vortex of a “hovering” model hawkmoth. Phil Trans B 352(1351):329–340CrossRef
Zurück zum Zitat Wang ZJ, Birch JM, Dickinson MH (2004) Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments. J Exp Biol 207(3):449–460CrossRef Wang ZJ, Birch JM, Dickinson MH (2004) Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments. J Exp Biol 207(3):449–460CrossRef
Zurück zum Zitat Weis-Fogh T (1973) Quick estimates of flight fitness in hovering animals including novel mechanisms for lift production. J Exp Biol 59(1):169–230 Weis-Fogh T (1973) Quick estimates of flight fitness in hovering animals including novel mechanisms for lift production. J Exp Biol 59(1):169–230
Zurück zum Zitat Willmott AP, Ellington CP (1997a) The mechanics of flight in the hawkmoth Manduca Sexta I. Kinematics of hovering and forward flight. J Exp Biol 200(21):2705–2722 Willmott AP, Ellington CP (1997a) The mechanics of flight in the hawkmoth Manduca Sexta I. Kinematics of hovering and forward flight. J Exp Biol 200(21):2705–2722
Zurück zum Zitat Willmott AP, Ellington CP (1997b) The mechanics of flight in the hawkmoth Manduca Sexta II. Aerodynamic consequences of kinematic and morphological variation. J Exp Biol 200(21):2723–2745 Willmott AP, Ellington CP (1997b) The mechanics of flight in the hawkmoth Manduca Sexta II. Aerodynamic consequences of kinematic and morphological variation. J Exp Biol 200(21):2723–2745
Zurück zum Zitat Wootton RJ (1992) Functional morphology of insect wings. Annu Rev Entomol 37:113–140CrossRef Wootton RJ (1992) Functional morphology of insect wings. Annu Rev Entomol 37:113–140CrossRef
Zurück zum Zitat Wootton RJ, Evans KE, Herbert R, Smith CW (2000) The hind wing of the desert locust (Schistocerca gregaria Forskal). I. Functional morphology and mode of operation. J Exp Biol 203:2921–2931 Wootton RJ, Evans KE, Herbert R, Smith CW (2000) The hind wing of the desert locust (Schistocerca gregaria Forskal). I. Functional morphology and mode of operation. J Exp Biol 203:2921–2931
Zurück zum Zitat Wootton RJ, Herbert RC, Young PG, Evans KE (2003) Approaches to the structural modelling of insect wings. Philos Trans R Soc Lond B 358(1437):1577–1587CrossRef Wootton RJ, Herbert RC, Young PG, Evans KE (2003) Approaches to the structural modelling of insect wings. Philos Trans R Soc Lond B 358(1437):1577–1587CrossRef
Zurück zum Zitat Wu JH, Sun M (2004) Unsteady aerodynamic forces of a flapping wing. J Exp Biol 207(7):1137–1150CrossRef Wu JH, Sun M (2004) Unsteady aerodynamic forces of a flapping wing. J Exp Biol 207(7):1137–1150CrossRef
Zurück zum Zitat Young J, Lai JCS, Germain C (2008) Simulation and parameter variation of flapping-wing motion based on dragonfly hovering. AIAA J 46(4):918–924CrossRef Young J, Lai JCS, Germain C (2008) Simulation and parameter variation of flapping-wing motion based on dragonfly hovering. AIAA J 46(4):918–924CrossRef
Zurück zum Zitat Young J, Walker SM, Bomphrey RJ, Taylor GK, Thomas ALR (2009) Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 325:1549–1552CrossRef Young J, Walker SM, Bomphrey RJ, Taylor GK, Thomas ALR (2009) Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 325:1549–1552CrossRef
Zurück zum Zitat Zheng L, Wang X, Khan A, Vallance RR, Mittal RA (2009) Combined experimental-numerical study of the role of wing flexibility in insect flight. AIAA 2009-382 Zheng L, Wang X, Khan A, Vallance RR, Mittal RA (2009) Combined experimental-numerical study of the role of wing flexibility in insect flight. AIAA 2009-382
Metadaten
Titel
On the aerodynamic characteristics of hovering rigid and flexible hawkmoth-like wings
verfasst von
K. B. Lua
K. C. Lai
T. T. Lim
K. S. Yeo
Publikationsdatum
01.12.2010
Verlag
Springer-Verlag
Erschienen in
Experiments in Fluids / Ausgabe 6/2010
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-010-0873-5

Weitere Artikel der Ausgabe 6/2010

Experiments in Fluids 6/2010 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.