Skip to main content
Erschienen in: Acta Mechanica Sinica 6/2016

14.10.2016 | Research Paper

On the gating of mechanosensitive channels by fluid shear stress

verfasst von: Zhangli Peng, On Shun Pak, Zhe Feng, Allen P. Liu, Yuan-Nan Young

Erschienen in: Acta Mechanica Sinica | Ausgabe 6/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mechanosensation is an important process in biological fluid–structure interaction. To understand the biophysics underlying mechanosensation, it is essential to quantify the correlation between membrane deformation, membrane tension, external fluid shear stress, and conformation of mechanosensitive (MS) channels. Smoothed dissipative particle dynamics (SDPD) simulations of vesicle/cell in three types of flow configurations are conducted to calculate the tension in lipid membrane due to fluid shear stress from the surrounding viscous flow. In combination with a simple continuum model for an MS channel, SDPD simulation results suggest that shearing adhered vesicles/cells is more effective to induce membrane tension sufficient to stretch MS channels open than a free shear flow or a constrictive channel flow. In addition, we incorporate the bilayer–cytoskeletal interaction in a two-component model to probe the effects of a cytoskeletal network on the gating of MS channels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kung, C., Martinac, B., Sukharev, S.: Mechanosensitive channels in microbes. Annu. Rev. Microbiol. 64, 313–329 (2010)CrossRef Kung, C., Martinac, B., Sukharev, S.: Mechanosensitive channels in microbes. Annu. Rev. Microbiol. 64, 313–329 (2010)CrossRef
2.
Zurück zum Zitat Martinac, B., Kloda, A.: Mechanosensory transduction. Compr. Biophys. 6, 108–141 (2012)CrossRef Martinac, B., Kloda, A.: Mechanosensory transduction. Compr. Biophys. 6, 108–141 (2012)CrossRef
3.
Zurück zum Zitat Sackin, H.: Mechanosensitive channels. Annu. Rev. Physiol. 57, 333–353 (1995)CrossRef Sackin, H.: Mechanosensitive channels. Annu. Rev. Physiol. 57, 333–353 (1995)CrossRef
4.
Zurück zum Zitat Betanzos, M., Chiang, C.-S., Guy, H.R., et al.: A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension. Nat. Struct. Biol. 9, 704 (2002) Betanzos, M., Chiang, C.-S., Guy, H.R., et al.: A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension. Nat. Struct. Biol. 9, 704 (2002)
5.
Zurück zum Zitat Blount, P., Sukharev, S.I., Schroeder, M.J., et al.: Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli. Proc. Natl. Acad. Sci. USA 93, 11652–11657 (1996) Blount, P., Sukharev, S.I., Schroeder, M.J., et al.: Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli. Proc. Natl. Acad. Sci. USA 93, 11652–11657 (1996)
6.
Zurück zum Zitat Sukhareva, S., Sachs, F.: Molecular force transduction by ion channels—diversity and unifying principles. J. Cell Sci. 125, 3075 (2012)CrossRef Sukhareva, S., Sachs, F.: Molecular force transduction by ion channels—diversity and unifying principles. J. Cell Sci. 125, 3075 (2012)CrossRef
7.
Zurück zum Zitat Sukharev, S., Durell, S.R., Guy, H.R.: Structural models of the mscl gating mechanism. Biophys. J. 81, 917–936 (2001)CrossRef Sukharev, S., Durell, S.R., Guy, H.R.: Structural models of the mscl gating mechanism. Biophys. J. 81, 917–936 (2001)CrossRef
8.
Zurück zum Zitat Kong, Y., Shen, Y., Warth, T.E., et al.: Conformational pathways in the gating of Escherichia coli mechanosensitive channel. Proc. Natl. Acad. Sci. USA 99, 5999–6004 (2002) Kong, Y., Shen, Y., Warth, T.E., et al.: Conformational pathways in the gating of Escherichia coli mechanosensitive channel. Proc. Natl. Acad. Sci. USA 99, 5999–6004 (2002)
9.
Zurück zum Zitat Ollila, O.H.S., Risselada, H.J., Louhivuori, M., et al.: 3d pressure field in lipid membranes and membrane-protein complexes. Phys. Rev. Lett. 102, 078101 (2009) Ollila, O.H.S., Risselada, H.J., Louhivuori, M., et al.: 3d pressure field in lipid membranes and membrane-protein complexes. Phys. Rev. Lett. 102, 078101 (2009)
10.
Zurück zum Zitat Yoshimura, K., Usukura, J., Sokabe, M.: Gating-associated conformational changes in the mechanosensitive channel mscl. Proc. Natl. Acad. Sci. USA 105, 4033–4038 (2008)CrossRef Yoshimura, K., Usukura, J., Sokabe, M.: Gating-associated conformational changes in the mechanosensitive channel mscl. Proc. Natl. Acad. Sci. USA 105, 4033–4038 (2008)CrossRef
11.
Zurück zum Zitat Mukherjee, N., Jose, M.D., Brikner, J.P., et al.: The activation mode of the mechanosensitive ion channel, mscl, by lysophosphatidylcholine differs from tension-induced gating. FASEB 28, 4292–4302 (2014) Mukherjee, N., Jose, M.D., Brikner, J.P., et al.: The activation mode of the mechanosensitive ion channel, mscl, by lysophosphatidylcholine differs from tension-induced gating. FASEB 28, 4292–4302 (2014)
12.
Zurück zum Zitat Phillips, R., Ursell, T., Wiggins, P., et al.: Emerging roles for lipids in shaping membrane-protein function. Nature 459, 379 (2009) Phillips, R., Ursell, T., Wiggins, P., et al.: Emerging roles for lipids in shaping membrane-protein function. Nature 459, 379 (2009)
13.
Zurück zum Zitat Vanegas, J.M., Arroyo, M.: Force transduction an lipid binding in mscl: a continuum-molecular approach. PLOS ONE 9, 0113947 (2014)CrossRef Vanegas, J.M., Arroyo, M.: Force transduction an lipid binding in mscl: a continuum-molecular approach. PLOS ONE 9, 0113947 (2014)CrossRef
14.
Zurück zum Zitat Sukharev, S., Akitake, B., Anishkin, A.: The bacterial mechanosensitive channel mscs: emerging principles of gating and modulation. Curr. Top. Membr. 58, 235–267 (2007)CrossRef Sukharev, S., Akitake, B., Anishkin, A.: The bacterial mechanosensitive channel mscs: emerging principles of gating and modulation. Curr. Top. Membr. 58, 235–267 (2007)CrossRef
15.
Zurück zum Zitat Kung, C.: A possible unifying principle for mechanosensation. Nature 436, 647 (2005)CrossRef Kung, C.: A possible unifying principle for mechanosensation. Nature 436, 647 (2005)CrossRef
16.
Zurück zum Zitat Teng, J., Loukin, S., Anishkin, A., et al.: The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements. Pflugers Arch. Eur. J. Physiol. 467, 27–37 (2015) Teng, J., Loukin, S., Anishkin, A., et al.: The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements. Pflugers Arch. Eur. J. Physiol. 467, 27–37 (2015)
17.
Zurück zum Zitat Belyy, V., Anishkin, A., Kamaraju, K., et al.: The tension-transmitting ‘clutch’ in the mechansensitive channel mscs. Nat. Struct. Mol. Biol. 17, 451–459 (2010) Belyy, V., Anishkin, A., Kamaraju, K., et al.: The tension-transmitting ‘clutch’ in the mechansensitive channel mscs. Nat. Struct. Mol. Biol. 17, 451–459 (2010)
18.
Zurück zum Zitat Hamill, O.P., Martinac, B.: Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81, 685 (2001) Hamill, O.P., Martinac, B.: Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81, 685 (2001)
19.
Zurück zum Zitat Martinac, B., Buechner, M., Delcour, A.H., et al.: Pressure-sensitive ion channel in Escherichia coli. Proc. Natl. Acad. Sci. USA 84, 2297–2301 (1987) Martinac, B., Buechner, M., Delcour, A.H., et al.: Pressure-sensitive ion channel in Escherichia coli. Proc. Natl. Acad. Sci. USA 84, 2297–2301 (1987)
20.
Zurück zum Zitat Sachs, F.: Mechanical transduction by membrane ion channels: a mini review. Mol. Cell. Biochem. 104, 57–60 (1991)CrossRef Sachs, F.: Mechanical transduction by membrane ion channels: a mini review. Mol. Cell. Biochem. 104, 57–60 (1991)CrossRef
21.
Zurück zum Zitat Wiggins, P., Phillips, R.: Analytic models for mechanotransduction: gating a mechanosensitive channel. Proc. Natl. Acad. Sci. USA 101, 4071–4076 (2004)CrossRef Wiggins, P., Phillips, R.: Analytic models for mechanotransduction: gating a mechanosensitive channel. Proc. Natl. Acad. Sci. USA 101, 4071–4076 (2004)CrossRef
22.
Zurück zum Zitat Jeon, J., Voth, G.A.: Gating of the mechanosensitive channel protein mscl: the interplay of membrane and protein. Biophys. J. 94, 3497–3511 (2008)CrossRef Jeon, J., Voth, G.A.: Gating of the mechanosensitive channel protein mscl: the interplay of membrane and protein. Biophys. J. 94, 3497–3511 (2008)CrossRef
23.
Zurück zum Zitat Perozo, E., Kloda, A., Cortes, D.M., et al.: Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat. Struct. Mol. Biol. 9, 696–703 (2002)CrossRef Perozo, E., Kloda, A., Cortes, D.M., et al.: Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat. Struct. Mol. Biol. 9, 696–703 (2002)CrossRef
24.
Zurück zum Zitat Sukharev, S.I., Sigurdson, W.J., Kung, C., et al.: Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, mscl. J. Gen. Physiol. 113, 525–539 (1999)CrossRef Sukharev, S.I., Sigurdson, W.J., Kung, C., et al.: Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, mscl. J. Gen. Physiol. 113, 525–539 (1999)CrossRef
25.
Zurück zum Zitat Louhivuori, M., Risselada, H.J., van der Giessen, E., et al.: Release of content through mechano-sensitive gates in pressurized liposomes. Proc. Natl. Acad. Sci. USA 107, 19856–19860 (2010). doi:10.1073/pnas.1001316107 Louhivuori, M., Risselada, H.J., van der Giessen, E., et al.: Release of content through mechano-sensitive gates in pressurized liposomes. Proc. Natl. Acad. Sci. USA 107, 19856–19860 (2010). doi:10.​1073/​pnas.​1001316107
26.
Zurück zum Zitat Deplazes, E., Louhivuori, M., Jayatilaka, D., et al.: Structural investigation of mscl gating using experimental data and coarse grained md simulations. PLoS Comput. Biol. 8, e1002683 (2012)CrossRef Deplazes, E., Louhivuori, M., Jayatilaka, D., et al.: Structural investigation of mscl gating using experimental data and coarse grained md simulations. PLoS Comput. Biol. 8, e1002683 (2012)CrossRef
27.
Zurück zum Zitat Phillips, R., Kondev, J., Theriot, J.: Physical Biology of the Cell. Garland Science, Taylor and Francis Group, New York (2012) Phillips, R., Kondev, J., Theriot, J.: Physical Biology of the Cell. Garland Science, Taylor and Francis Group, New York (2012)
28.
Zurück zum Zitat Lee, L.M., Liu, A.P.: A microfluidic pipette array for mechanophenotyping of cancer cells and mechanical gating of mechanosensitive channels. Lab Chip 15, 264–273 (2015)CrossRef Lee, L.M., Liu, A.P.: A microfluidic pipette array for mechanophenotyping of cancer cells and mechanical gating of mechanosensitive channels. Lab Chip 15, 264–273 (2015)CrossRef
29.
Zurück zum Zitat Heureaux, J., Chen, D., Murray, V.L., et al.: Activation of a bacterial mechanosensitive channel in mammalian cells by cytoskeletal stress. Cell. Mol. Bioeng. 7, 307–319 (2014)CrossRef Heureaux, J., Chen, D., Murray, V.L., et al.: Activation of a bacterial mechanosensitive channel in mammalian cells by cytoskeletal stress. Cell. Mol. Bioeng. 7, 307–319 (2014)CrossRef
30.
Zurück zum Zitat Pak, O.S., Young, Y.-N., Marple, G.R., et al.: Gating of a mechanosensitive channel due to cellular flows. Proc. Natl. Acad. Sci. USA 112, 9822–9827 (2015)CrossRef Pak, O.S., Young, Y.-N., Marple, G.R., et al.: Gating of a mechanosensitive channel due to cellular flows. Proc. Natl. Acad. Sci. USA 112, 9822–9827 (2015)CrossRef
31.
Zurück zum Zitat Ho, K.K.Y., Murray, V.L., Liu, A.P.: Engineering artificial cells by combining HeLa-based cell free expression and ultrathin double emulsion template. Methods Cell Biol. 128, 303–318 (2015) Ho, K.K.Y., Murray, V.L., Liu, A.P.: Engineering artificial cells by combining HeLa-based cell free expression and ultrathin double emulsion template. Methods Cell Biol. 128, 303–318 (2015)
32.
Zurück zum Zitat Huang, H.W.: Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys. J. 50, 1061–1070 (1986)CrossRef Huang, H.W.: Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys. J. 50, 1061–1070 (1986)CrossRef
33.
Zurück zum Zitat Peng, Z., Li, X., Pivkin, I.V., et al.: Lipid bilayer and cytoskeletal interactions in a red blood cell. Proc. Natl. Acad. Sci. USA 110, 13356–13361 (2013) Peng, Z., Li, X., Pivkin, I.V., et al.: Lipid bilayer and cytoskeletal interactions in a red blood cell. Proc. Natl. Acad. Sci. USA 110, 13356–13361 (2013)
34.
Zurück zum Zitat Berk, D.A., Hochmuth, R.M., Waugh, R.E.: Viscoelastic properties and rheology, red blood cell membranes. In: Agre, P., Parker, J.C. (eds.) Red Blood Cell Membranes, Marcel Dekker, New York, 445–446 (1989) Berk, D.A., Hochmuth, R.M., Waugh, R.E.: Viscoelastic properties and rheology, red blood cell membranes. In: Agre, P., Parker, J.C. (eds.) Red Blood Cell Membranes, Marcel Dekker, New York, 445–446 (1989)
35.
Zurück zum Zitat Heinrich, V., Ritchie, K., Mohandas, N., et al.: Elastic thickness compressibilty of the red cell membrane. Biophys. J. 81, 1452–1463 (2001) Heinrich, V., Ritchie, K., Mohandas, N., et al.: Elastic thickness compressibilty of the red cell membrane. Biophys. J. 81, 1452–1463 (2001)
36.
Zurück zum Zitat Malone, J.G., Johnson, N.L.: A parallel finite-element contact/impact algorithm for nonlinear explicit transient analysis 1. The search algorithm and contact mechanics. Int. J. Numer. Methods Eng. 37, 559–590 (1994) Malone, J.G., Johnson, N.L.: A parallel finite-element contact/impact algorithm for nonlinear explicit transient analysis 1. The search algorithm and contact mechanics. Int. J. Numer. Methods Eng. 37, 559–590 (1994)
37.
Zurück zum Zitat Espanol, P.: Fluid particle model. Phys. Rev. E 57, 2930–2948 (1998)CrossRef Espanol, P.: Fluid particle model. Phys. Rev. E 57, 2930–2948 (1998)CrossRef
38.
Zurück zum Zitat Espanol, P., Revenga, M.: Smoothed dissipative particle dynamics. Phys. Rev. E 67, 026705 (2003) Espanol, P., Revenga, M.: Smoothed dissipative particle dynamics. Phys. Rev. E 67, 026705 (2003)
39.
Zurück zum Zitat Hoogerbrugge, P.J., Koelman, J.M.V.A.: Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19, 155–160 (1992) Hoogerbrugge, P.J., Koelman, J.M.V.A.: Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19, 155–160 (1992)
40.
Zurück zum Zitat Groot, R.D., Warren, P.B.: Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423–4435 (1997) Groot, R.D., Warren, P.B.: Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423–4435 (1997)
41.
Zurück zum Zitat Fedosov, D.A., Peltomaki, M., Gompper, G.: Deformation and dynamics of red blood cells in flow through cylindrical microchannels. Soft Matter 10, 4258–4267 (2014) Fedosov, D.A., Peltomaki, M., Gompper, G.: Deformation and dynamics of red blood cells in flow through cylindrical microchannels. Soft Matter 10, 4258–4267 (2014)
42.
Zurück zum Zitat Muller, K., Fedosov, D.A., Gompper, G.: Smoothed dissipative particle dynamics with angular momentum conservation. J. Comput. Phys. 281, 301–315 (2015)MathSciNetCrossRef Muller, K., Fedosov, D.A., Gompper, G.: Smoothed dissipative particle dynamics with angular momentum conservation. J. Comput. Phys. 281, 301–315 (2015)MathSciNetCrossRef
43.
Zurück zum Zitat Katanov, D., Gompper, G., Fedosov, D.A.: Microvascular blood flow resistance. Microvasc. Res. 99, 57–66 (2015)CrossRef Katanov, D., Gompper, G., Fedosov, D.A.: Microvascular blood flow resistance. Microvasc. Res. 99, 57–66 (2015)CrossRef
44.
Zurück zum Zitat Fedosov, D.A., Caswell, B., Karniadakis, G.E.: A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys. J. 98, 2215–2225 (2010)CrossRef Fedosov, D.A., Caswell, B., Karniadakis, G.E.: A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys. J. 98, 2215–2225 (2010)CrossRef
45.
Zurück zum Zitat Ge, J., Li, W., Zhao, Q., et al.: Architecture of the mammalian mechanosensitive piezol channel. Nature 527, 64–69 (2015)CrossRef Ge, J., Li, W., Zhao, Q., et al.: Architecture of the mammalian mechanosensitive piezol channel. Nature 527, 64–69 (2015)CrossRef
46.
Zurück zum Zitat Sabass, B., Stone, H.A.: Role of the membrane for mechanosensing by tethered channels. Phys. Rev. Lett. 116, 258101 (2016) Sabass, B., Stone, H.A.: Role of the membrane for mechanosensing by tethered channels. Phys. Rev. Lett. 116, 258101 (2016)
Metadaten
Titel
On the gating of mechanosensitive channels by fluid shear stress
verfasst von
Zhangli Peng
On Shun Pak
Zhe Feng
Allen P. Liu
Yuan-Nan Young
Publikationsdatum
14.10.2016
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 6/2016
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-016-0606-y

Weitere Artikel der Ausgabe 6/2016

Acta Mechanica Sinica 6/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.