Skip to main content
Erschienen in: Metals and Materials International 8/2021

19.06.2020

On the Influence of Temperature and Number of Passes on the Mechanical Properties of an Al–Mg Alloy Processed by Cyclic Expansion Extrusion

verfasst von: V. Babu, Balasivanandha Prabu Shanmugavel, K. A. Padmanabhan

Erschienen in: Metals and Materials International | Ausgabe 8/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The influence of working temperature and number of passes on the mechanical properties of aluminium alloy, AA 5083, processed by cyclic expansion and extrusion (CEE) is discussed. The specimens were processed up-to 10 CEE passes at 200 °C, 300 °C and 400 °C. The average grain size of the starting annealed material was 84.5 ± 6.8 μm, with 39.4% being of the high-angle grain boundaries (HAGBs) type. After 8 CEE passes at 200 °C the material had an average grain size of 3.3 ± 0.6 μm and 41.3% of the grain boundaries were of the high-angle type (HAGBs). The combined effect of an increase in dislocation density and reduction in grain size as a result of CEE processing contributed to an increase in hardness and strength of the alloy. At 200 °C, the specimen exhibited uniform hardness values with a maximum improvement of 104% after 8 passes and the ultimate tensile strength had also increased by 64% compared with the unprocessed condition. However, the mechanical properties decreased in the specimens that were processed at the higher temperatures of 300 °C and 400 °C.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.M. García-Infanta, A.P. Zhilyaev, A. Sharafutdinov, O.A. Ruano, F. Carreño, An evidence of high strain rate superplasticity at intermediate homologous temperatures in an Al–Zn–Mg–Cu alloy processed by high-pressure torsion. J. Alloys Comp. 473, 163–166 (2009)CrossRef J.M. García-Infanta, A.P. Zhilyaev, A. Sharafutdinov, O.A. Ruano, F. Carreño, An evidence of high strain rate superplasticity at intermediate homologous temperatures in an Al–Zn–Mg–Cu alloy processed by high-pressure torsion. J. Alloys Comp. 473, 163–166 (2009)CrossRef
2.
Zurück zum Zitat R.Z. Valiev, T.G. Langdon, Developments in the use of ECAP processing for grain refinement. Rev. Adv. Mater. Sci. 13, 15–26 (2006) R.Z. Valiev, T.G. Langdon, Developments in the use of ECAP processing for grain refinement. Rev. Adv. Mater. Sci. 13, 15–26 (2006)
3.
Zurück zum Zitat R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103–189 (2000)CrossRef R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103–189 (2000)CrossRef
4.
Zurück zum Zitat A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications. Prog. Mater. Sci. 53, 893–979 (2008)CrossRef A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications. Prog. Mater. Sci. 53, 893–979 (2008)CrossRef
5.
Zurück zum Zitat Z. Horita, T. Fujinami, M. Nemoto, T.G. Langdon, Equal-channel angular pressing of commercial aluminum alloys: grain refinement, thermal stability and tensile properties. Metall. Mater. Trans. A 31, 691–701 (2000)CrossRef Z. Horita, T. Fujinami, M. Nemoto, T.G. Langdon, Equal-channel angular pressing of commercial aluminum alloys: grain refinement, thermal stability and tensile properties. Metall. Mater. Trans. A 31, 691–701 (2000)CrossRef
6.
Zurück zum Zitat S.H. Seyed Ebrahimi, K. Dehghani, J. Aghazadeh, M.B. Ghasemian, S. Zangeneh, Investigation on microstructure and mechanical properties of Al/Al–Zn–Mg–Cu laminated composite fabricated by accumulative roll bonding (ARB) process. Mater. Sci. Eng. A 718, 311–320 (2018)CrossRef S.H. Seyed Ebrahimi, K. Dehghani, J. Aghazadeh, M.B. Ghasemian, S. Zangeneh, Investigation on microstructure and mechanical properties of Al/Al–Zn–Mg–Cu laminated composite fabricated by accumulative roll bonding (ARB) process. Mater. Sci. Eng. A 718, 311–320 (2018)CrossRef
7.
Zurück zum Zitat M. Richert, J. Richert, J. Zasadziński, S. Hawryłkiewicz, J. Długopolski, Effect of large deformations on the microstructure of aluminium alloys. Mater. Chem. Phys. 81, 528–530 (2003)CrossRef M. Richert, J. Richert, J. Zasadziński, S. Hawryłkiewicz, J. Długopolski, Effect of large deformations on the microstructure of aluminium alloys. Mater. Chem. Phys. 81, 528–530 (2003)CrossRef
8.
Zurück zum Zitat N. Thangapandian, S. Balasivanandha Prabu, K.A. Padmanabhan, Effects of die profile on grain refinement in Al–Mg alloy processed by repetitive corrugation and straightening. Mater. Sci. Eng. A 649, 229–238 (2016)CrossRef N. Thangapandian, S. Balasivanandha Prabu, K.A. Padmanabhan, Effects of die profile on grain refinement in Al–Mg alloy processed by repetitive corrugation and straightening. Mater. Sci. Eng. A 649, 229–238 (2016)CrossRef
9.
Zurück zum Zitat H. Lianxi, L. Yuping, W. Erde, Y. Yang, Ultrafine grained structure and mechanical properties of a LY12 Al alloy prepared by repetitive upsetting-extrusion. Mater. Sci. Eng. A 422, 327–332 (2006)CrossRef H. Lianxi, L. Yuping, W. Erde, Y. Yang, Ultrafine grained structure and mechanical properties of a LY12 Al alloy prepared by repetitive upsetting-extrusion. Mater. Sci. Eng. A 422, 327–332 (2006)CrossRef
10.
Zurück zum Zitat M.R. Jandaghi, H. Pouraliakbar, M.K.G. Shiran, G. Khalaj, M. Shirazi, On the effect of non-isothermal annealing and multi-directional forging on the microstructural evolutions and correlated mechanical and electrical characteristics of hot-deformed Al–Mg alloy. Mater. Sci. Eng. A 657, 431–440 (2016)CrossRef M.R. Jandaghi, H. Pouraliakbar, M.K.G. Shiran, G. Khalaj, M. Shirazi, On the effect of non-isothermal annealing and multi-directional forging on the microstructural evolutions and correlated mechanical and electrical characteristics of hot-deformed Al–Mg alloy. Mater. Sci. Eng. A 657, 431–440 (2016)CrossRef
11.
Zurück zum Zitat D.M. Fouad, A. Moataz, W.H. El-Garaihy, H.G. Salem, Numerical and experimental analysis of multi-channel spiral twist extrusion processing of AA5083. Mater. Sci. Eng. A 764, 138216 (2019)CrossRef D.M. Fouad, A. Moataz, W.H. El-Garaihy, H.G. Salem, Numerical and experimental analysis of multi-channel spiral twist extrusion processing of AA5083. Mater. Sci. Eng. A 764, 138216 (2019)CrossRef
12.
Zurück zum Zitat N. Pardis, B. Talebanpour, R. Ebrahimi, S. Zomorodian, Cyclic expansion-extrusion (CEE): A modified counterpart of cyclic extrusion-compression (CEC). Mater. Sci. Eng. A 528, 7537–7540 (2011)CrossRef N. Pardis, B. Talebanpour, R. Ebrahimi, S. Zomorodian, Cyclic expansion-extrusion (CEE): A modified counterpart of cyclic extrusion-compression (CEC). Mater. Sci. Eng. A 528, 7537–7540 (2011)CrossRef
13.
Zurück zum Zitat K.A. Padmanabhan, S. Balasivanandha Prabu, On the conflicts in the experimental results concerning the mechanical properties of ultra-fine grained and nanostructured materials: effects of processing routes and experimental conditions. Mater. Sci. Forum 683, 3–54 (2011)CrossRef K.A. Padmanabhan, S. Balasivanandha Prabu, On the conflicts in the experimental results concerning the mechanical properties of ultra-fine grained and nanostructured materials: effects of processing routes and experimental conditions. Mater. Sci. Forum 683, 3–54 (2011)CrossRef
14.
Zurück zum Zitat J.J. Rino, S. Balasivanandha Prabu, K.A. Padmanabhan, On the influence of repetitive corrugation and straightening on the microstructure and mechanical properties of AA 8090 Al–Li alloy. Arch. Civ. Mech. Eng. 18, 280–290 (2018)CrossRef J.J. Rino, S. Balasivanandha Prabu, K.A. Padmanabhan, On the influence of repetitive corrugation and straightening on the microstructure and mechanical properties of AA 8090 Al–Li alloy. Arch. Civ. Mech. Eng. 18, 280–290 (2018)CrossRef
15.
Zurück zum Zitat N. Thangapandian, S. Balasivanandha Prabu, K.A. Padmanabhan, Effect of temperature and velocity of pressing on grain refinement in AA5083 aluminum alloy during repetitive corrugation and straightening process. Metall. Mater. Trans. A 47, 6374–6383 (2016)CrossRef N. Thangapandian, S. Balasivanandha Prabu, K.A. Padmanabhan, Effect of temperature and velocity of pressing on grain refinement in AA5083 aluminum alloy during repetitive corrugation and straightening process. Metall. Mater. Trans. A 47, 6374–6383 (2016)CrossRef
16.
Zurück zum Zitat J.J. Rino, I. Jayaram Krishnan, S. Balasivanandha Prabu, K.A. Padmanabhan, Influence of velocity of pressing in RCS processed AA8090 Al–Li alloy. Mater. Charact. 140, 55–63 (2018)CrossRef J.J. Rino, I. Jayaram Krishnan, S. Balasivanandha Prabu, K.A. Padmanabhan, Influence of velocity of pressing in RCS processed AA8090 Al–Li alloy. Mater. Charact. 140, 55–63 (2018)CrossRef
17.
Zurück zum Zitat N. Hansen, Hall–Petch relation and boundary strengthening. Scr. Mater. 51, 801–806 (2004)CrossRef N. Hansen, Hall–Petch relation and boundary strengthening. Scr. Mater. 51, 801–806 (2004)CrossRef
18.
Zurück zum Zitat N.Q. Chinh, J. Gubicza, T. Czeppe, J. Lendvai, C. Xu, R.Z. Valiev, T.G. Langdon, Developing a strategy for the processing of age-hardenable alloys by ECAP at room temperature. Mater. Sci. Eng. A 516, 248–252 (2009)CrossRef N.Q. Chinh, J. Gubicza, T. Czeppe, J. Lendvai, C. Xu, R.Z. Valiev, T.G. Langdon, Developing a strategy for the processing of age-hardenable alloys by ECAP at room temperature. Mater. Sci. Eng. A 516, 248–252 (2009)CrossRef
19.
Zurück zum Zitat N. Fakhar, F. Fereshteh-Saniee, R. Mahmudi, Significant improvements in mechanical properties of AA5083 aluminum alloy using dual equal channel lateral extrusion. Trans. Nonferrous Met. Soc. China 26, 3081–3090 (2016)CrossRef N. Fakhar, F. Fereshteh-Saniee, R. Mahmudi, Significant improvements in mechanical properties of AA5083 aluminum alloy using dual equal channel lateral extrusion. Trans. Nonferrous Met. Soc. China 26, 3081–3090 (2016)CrossRef
20.
Zurück zum Zitat S. Najafi, A.R. Eivani, M. Samaee, H.R. Jafarian, J. Zhou, A comprehensive investigation of the strengthening effects of dislocations, texture and low and high angle grain boundaries in ultrafine grained AA6063 aluminum alloy. Mater. Charact. 136, 60–68 (2018)CrossRef S. Najafi, A.R. Eivani, M. Samaee, H.R. Jafarian, J. Zhou, A comprehensive investigation of the strengthening effects of dislocations, texture and low and high angle grain boundaries in ultrafine grained AA6063 aluminum alloy. Mater. Charact. 136, 60–68 (2018)CrossRef
21.
Zurück zum Zitat I. Mazurina, T. Sakai, H. Miura, O. Sitdikov, R. Kaibyshev, Effect of deformation temperature on microstructure evolution in aluminum alloy 2219 during hot ECAP. Mater. Sci. Eng. A 486, 662–671 (2008)CrossRef I. Mazurina, T. Sakai, H. Miura, O. Sitdikov, R. Kaibyshev, Effect of deformation temperature on microstructure evolution in aluminum alloy 2219 during hot ECAP. Mater. Sci. Eng. A 486, 662–671 (2008)CrossRef
22.
Zurück zum Zitat A. Goloborodko, O. Sitdikov, R. Kaibyshev, H. Miura, T. Sakai, Effect of pressing temperature on fine-grained structure formation in 7475 aluminum alloy during ECAP. Mater. Sci. Eng. A 381, 121–128 (2004)CrossRef A. Goloborodko, O. Sitdikov, R. Kaibyshev, H. Miura, T. Sakai, Effect of pressing temperature on fine-grained structure formation in 7475 aluminum alloy during ECAP. Mater. Sci. Eng. A 381, 121–128 (2004)CrossRef
23.
Zurück zum Zitat V. Babu, S. Balasivanandha Prabu, K.A. Padmanabhan, Microstructure homogeneity in AA6063 alloy processed by cyclic expansion extrusion. Defect Diffusion Forum 385, 223–227 (2018)CrossRef V. Babu, S. Balasivanandha Prabu, K.A. Padmanabhan, Microstructure homogeneity in AA6063 alloy processed by cyclic expansion extrusion. Defect Diffusion Forum 385, 223–227 (2018)CrossRef
24.
Zurück zum Zitat K.R. Cardoso, M.A. Munoz-Morris, K.V. León, D.G. Morris, Room and high temperature ECAP processing of Al–10% Si alloy. Mater. Sci. Eng. A 587, 387–396 (2013)CrossRef K.R. Cardoso, M.A. Munoz-Morris, K.V. León, D.G. Morris, Room and high temperature ECAP processing of Al–10% Si alloy. Mater. Sci. Eng. A 587, 387–396 (2013)CrossRef
25.
Zurück zum Zitat S. Bathul, R.C. Anandani, A. Dhar, A.K. Srivastava, Microstructural features and mechanical properties of Al 5083/SiCp metal matrix nanocomposites produced by high energy ball milling and spark plasma sintering. Mater. Sci. Eng. A 545, 97–102 (2012)CrossRef S. Bathul, R.C. Anandani, A. Dhar, A.K. Srivastava, Microstructural features and mechanical properties of Al 5083/SiCp metal matrix nanocomposites produced by high energy ball milling and spark plasma sintering. Mater. Sci. Eng. A 545, 97–102 (2012)CrossRef
26.
Zurück zum Zitat S.Y. Chang, B.D. Ahn, S.K. Hong, S. Kamado, Y. Kojima, D.H. Shin, Tensile deformation characteristics of a nano-structured 5083 Al alloy. J. Alloys Compd. 386, 197–201 (2005)CrossRef S.Y. Chang, B.D. Ahn, S.K. Hong, S. Kamado, Y. Kojima, D.H. Shin, Tensile deformation characteristics of a nano-structured 5083 Al alloy. J. Alloys Compd. 386, 197–201 (2005)CrossRef
27.
Zurück zum Zitat B.B. Straumal, B. Baretzky, A.A. Mazilkin, F. Phillipp, O.A. Kogtenkova, M.N. Volkov, R.Z. Valiev, Formation of nanograined structure and decomposition of supersaturated solid solution during high pressure torsion of Al–Zn and Al–Mg alloys. Acta Mater. 52, 4469–4478 (2004)CrossRef B.B. Straumal, B. Baretzky, A.A. Mazilkin, F. Phillipp, O.A. Kogtenkova, M.N. Volkov, R.Z. Valiev, Formation of nanograined structure and decomposition of supersaturated solid solution during high pressure torsion of Al–Zn and Al–Mg alloys. Acta Mater. 52, 4469–4478 (2004)CrossRef
28.
Zurück zum Zitat T.B. Massalski, et al. (eds.), Binary Alloy Phase Diagrams (ASM International, Materials Park, 1993), p. 3534 T.B. Massalski, et al. (eds.), Binary Alloy Phase Diagrams (ASM International, Materials Park, 1993), p. 3534
29.
Zurück zum Zitat Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, The process of grain refinement in equal-channel angular pressing. Acta Mater. 46, 3317–3331 (1998)CrossRef Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, The process of grain refinement in equal-channel angular pressing. Acta Mater. 46, 3317–3331 (1998)CrossRef
30.
Zurück zum Zitat T. Morishige, T. Hirata, T. Uesugi, Y. Takigawa, M. Tsujikawa, K. Higashi, Effect of Mg content on the minimum grain size of Al–Mg alloys obtained by friction stir processing. Scr. Mater. 64, 355–358 (2011)CrossRef T. Morishige, T. Hirata, T. Uesugi, Y. Takigawa, M. Tsujikawa, K. Higashi, Effect of Mg content on the minimum grain size of Al–Mg alloys obtained by friction stir processing. Scr. Mater. 64, 355–358 (2011)CrossRef
31.
Zurück zum Zitat H. Huang, J. Zhang, Microstructure and mechanical properties of AZ31 magnesium alloy processed by multi-directional forging at different temperatures. Mater. Sci. Eng. A 674, 52–58 (2016)CrossRef H. Huang, J. Zhang, Microstructure and mechanical properties of AZ31 magnesium alloy processed by multi-directional forging at different temperatures. Mater. Sci. Eng. A 674, 52–58 (2016)CrossRef
32.
Zurück zum Zitat F. Liu, H. Yuan, J. Yin, J.T. Wang, Influence of stacking fault energy and temperature on microstructures and mechanical properties of fcc pure metals processed by equal-channel angular pressing. Mater. Sci. Eng. A 662, 578–587 (2016)CrossRef F. Liu, H. Yuan, J. Yin, J.T. Wang, Influence of stacking fault energy and temperature on microstructures and mechanical properties of fcc pure metals processed by equal-channel angular pressing. Mater. Sci. Eng. A 662, 578–587 (2016)CrossRef
33.
Zurück zum Zitat P. Rodriguez-Calvillo, J.M. Cabrera, Microstructure and mechanical properties of a commercially pure Ti processed by warm equal channel angular pressing. Mater. Sci. Eng. A 625, 311–320 (2015)CrossRef P. Rodriguez-Calvillo, J.M. Cabrera, Microstructure and mechanical properties of a commercially pure Ti processed by warm equal channel angular pressing. Mater. Sci. Eng. A 625, 311–320 (2015)CrossRef
34.
Zurück zum Zitat D. Singh, R. Jayaganthan, P. Nageswara Rao, A. Kumar, D. Venketeswarlu, Effect of initial grain size on microstructure and mechanical behavior of cryorolled AA 5083. Mater. Today Proc. 4, 7609–7617 (2017)CrossRef D. Singh, R. Jayaganthan, P. Nageswara Rao, A. Kumar, D. Venketeswarlu, Effect of initial grain size on microstructure and mechanical behavior of cryorolled AA 5083. Mater. Today Proc. 4, 7609–7617 (2017)CrossRef
35.
Zurück zum Zitat G. Morris David, I. Gutierrez-Urrutia, M.A. Munoz-Morris, Analysis of strengthening mechanisms in a severely-plastically-deformed Al–Mg–Si alloy with submicron grain size. J. Mater. Sci. 42, 1439–1443 (2007)CrossRef G. Morris David, I. Gutierrez-Urrutia, M.A. Munoz-Morris, Analysis of strengthening mechanisms in a severely-plastically-deformed Al–Mg–Si alloy with submicron grain size. J. Mater. Sci. 42, 1439–1443 (2007)CrossRef
36.
Zurück zum Zitat A. Chidambaram, S. Balasivanandha Prabu, K.A. Padmanabhan, Microstructure and mechanical properties of AA6061–5wt.% TiB2 in-situ metal matrix composite subjected to equal channel angular pressing. Mater. Sci. Eng. A 759, 762–769 (2019)CrossRef A. Chidambaram, S. Balasivanandha Prabu, K.A. Padmanabhan, Microstructure and mechanical properties of AA6061–5wt.% TiB2 in-situ metal matrix composite subjected to equal channel angular pressing. Mater. Sci. Eng. A 759, 762–769 (2019)CrossRef
37.
Zurück zum Zitat O. Sitdikov, E. Avtokratova, T. Sakai, K. Tsuzaki, Ultrafine-grain structure formation in an Al–Mg–Sc alloy during warm ECAP. Metall. Mater. Trans. A 44, 1087–1100 (2013)CrossRef O. Sitdikov, E. Avtokratova, T. Sakai, K. Tsuzaki, Ultrafine-grain structure formation in an Al–Mg–Sc alloy during warm ECAP. Metall. Mater. Trans. A 44, 1087–1100 (2013)CrossRef
38.
Zurück zum Zitat W. Guo, Q.D. Wang, B. Ye, M.P. Liu, T. Peng, X.T. Liu, H. Zhou, Enhanced microstructure homogeneity and mechanical properties of AZ31 magnesium alloy by repetitive upsetting. Mater. Sci. Eng. A 540, 115–122 (2012)CrossRef W. Guo, Q.D. Wang, B. Ye, M.P. Liu, T. Peng, X.T. Liu, H. Zhou, Enhanced microstructure homogeneity and mechanical properties of AZ31 magnesium alloy by repetitive upsetting. Mater. Sci. Eng. A 540, 115–122 (2012)CrossRef
39.
Zurück zum Zitat A.L.D.M. Costa, A.C.D.C. Reis, L. Kestens, M.S. Andrade, Ultra grain refinement and hardening of IF-steel during accumulative roll-bonding. Mater. Sci. Eng. A 406, 279–285 (2005)CrossRef A.L.D.M. Costa, A.C.D.C. Reis, L. Kestens, M.S. Andrade, Ultra grain refinement and hardening of IF-steel during accumulative roll-bonding. Mater. Sci. Eng. A 406, 279–285 (2005)CrossRef
40.
Zurück zum Zitat K.T. Park, H.J. Kwon, W.J. Kim, Y.S. Kim, Microstructural characteristics and thermal stability of ultrafine grained 6061 Al alloy fabricated by accumulative roll bonding process. Mater. Sci. Eng. A 316(1–2), 145–152 (2001)CrossRef K.T. Park, H.J. Kwon, W.J. Kim, Y.S. Kim, Microstructural characteristics and thermal stability of ultrafine grained 6061 Al alloy fabricated by accumulative roll bonding process. Mater. Sci. Eng. A 316(1–2), 145–152 (2001)CrossRef
41.
Zurück zum Zitat F. Dalla Torre, R. Lapovok, J. Sandlin, P.F. Thomson, C.H.J. Davies, E.V. Pereloma, Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes. Acta Mater. 52, 4819–4832 (2004)CrossRef F. Dalla Torre, R. Lapovok, J. Sandlin, P.F. Thomson, C.H.J. Davies, E.V. Pereloma, Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes. Acta Mater. 52, 4819–4832 (2004)CrossRef
42.
Zurück zum Zitat S.N. Alhajeri, N. Gao, T.G. Langdon, Hardness homogeneity on longitudinal and transverse sections of an aluminum alloy processed by ECAP. Mater. Sci. Eng. A 528, 3833–3840 (2011)CrossRef S.N. Alhajeri, N. Gao, T.G. Langdon, Hardness homogeneity on longitudinal and transverse sections of an aluminum alloy processed by ECAP. Mater. Sci. Eng. A 528, 3833–3840 (2011)CrossRef
43.
Zurück zum Zitat V. Aferdita, M. Cabibbo, T.G. Langdon, A characterization of microstructure and microhardness on longitudinal planes of an Al–Mg–Si alloy processed by ECAP. Mater. Charact. 84, 126–133 (2013)CrossRef V. Aferdita, M. Cabibbo, T.G. Langdon, A characterization of microstructure and microhardness on longitudinal planes of an Al–Mg–Si alloy processed by ECAP. Mater. Charact. 84, 126–133 (2013)CrossRef
44.
Zurück zum Zitat S. Cheng, Y.H. Zhao, Y.T. Zhu, E. Ma, Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation. Acta Mater. 55, 5822–5832 (2007)CrossRef S. Cheng, Y.H. Zhao, Y.T. Zhu, E. Ma, Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation. Acta Mater. 55, 5822–5832 (2007)CrossRef
45.
Zurück zum Zitat Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, Y.T. Zhu, Simultaneously increasing the ductility and strength of nanostructured alloys. Adv. Mater. 18, 2280 (2006)CrossRef Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, Y.T. Zhu, Simultaneously increasing the ductility and strength of nanostructured alloys. Adv. Mater. 18, 2280 (2006)CrossRef
46.
Zurück zum Zitat S. Spriano, R. Doglione, Marcello Baricco, Texture, hardening and mechanical anisotropy in AA 8090-T851 plate. Mater. Sci. Eng. A 257, 134–138 (1998)CrossRef S. Spriano, R. Doglione, Marcello Baricco, Texture, hardening and mechanical anisotropy in AA 8090-T851 plate. Mater. Sci. Eng. A 257, 134–138 (1998)CrossRef
47.
Zurück zum Zitat H. Pirgazi, A. Akbarzadeh, R. Petrov, L. Kestens, Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding. Mater. Sci. Eng. A 497, 132–138 (2008)CrossRef H. Pirgazi, A. Akbarzadeh, R. Petrov, L. Kestens, Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding. Mater. Sci. Eng. A 497, 132–138 (2008)CrossRef
48.
Zurück zum Zitat Y.Z. Guo, Y.L. Li, Z. Pan, F.H. Zhou, Q. Wei, A numerical study of microstructure effect on adiabatic shear instability: application to nanostructured/ultrafine grained materials. Mech. Mater. 42, 1020–1029 (2010)CrossRef Y.Z. Guo, Y.L. Li, Z. Pan, F.H. Zhou, Q. Wei, A numerical study of microstructure effect on adiabatic shear instability: application to nanostructured/ultrafine grained materials. Mech. Mater. 42, 1020–1029 (2010)CrossRef
49.
Zurück zum Zitat A. Alam, D.D. Johnson, Structural properties and relative stability of (meta) stable ordered, partially ordered, and disordered Al–Li alloy phases. Phys. Rev. B Condens. Matter Mater. Phys. 85, 144202 (2012)CrossRef A. Alam, D.D. Johnson, Structural properties and relative stability of (meta) stable ordered, partially ordered, and disordered Al–Li alloy phases. Phys. Rev. B Condens. Matter Mater. Phys. 85, 144202 (2012)CrossRef
50.
Zurück zum Zitat R. Wu, Z. Qu, M. Zhang, Effects of the addition of Y in Mg–8Li–(1, 3) Al alloy. Mater. Sci. Eng. A 516, 96–99 (2009)CrossRef R. Wu, Z. Qu, M. Zhang, Effects of the addition of Y in Mg–8Li–(1, 3) Al alloy. Mater. Sci. Eng. A 516, 96–99 (2009)CrossRef
51.
Zurück zum Zitat T. Wang, H. Zheng, R. Wu, J. Yang, X. Ma, M. Zhang, Preparation of fine-grained and high-strength Mg–8Li–3Al–1Zn alloy by accumulative roll bonding. Adv. Eng. Mater. 18, 304–311 (2016)CrossRef T. Wang, H. Zheng, R. Wu, J. Yang, X. Ma, M. Zhang, Preparation of fine-grained and high-strength Mg–8Li–3Al–1Zn alloy by accumulative roll bonding. Adv. Eng. Mater. 18, 304–311 (2016)CrossRef
52.
Zurück zum Zitat R. Jamaati, M.R. Toroghinejad, High-strength and highly-uniform composite produced by anodizing and accumulative roll bonding processes. Mater. Des. 31, 4816–4822 (2010)CrossRef R. Jamaati, M.R. Toroghinejad, High-strength and highly-uniform composite produced by anodizing and accumulative roll bonding processes. Mater. Des. 31, 4816–4822 (2010)CrossRef
53.
Zurück zum Zitat H.Y. Wu, G.Z. Zhou, Plastic anisotropy and strain-hardening behavior of Mg–6% Li–1% Zn alloy thin sheet at elevated temperatures. J. Mater. Sci. 44, 6182–6186 (2009)CrossRef H.Y. Wu, G.Z. Zhou, Plastic anisotropy and strain-hardening behavior of Mg–6% Li–1% Zn alloy thin sheet at elevated temperatures. J. Mater. Sci. 44, 6182–6186 (2009)CrossRef
54.
Zurück zum Zitat G. Nussbaum, P. Saintfort, G. Regazzoni, H. Gjestland, Strengthening mechanisms in the rapidly solidified AZ 91 magnesium alloy. Scr. Mater. 23, 1079–1084 (1989) G. Nussbaum, P. Saintfort, G. Regazzoni, H. Gjestland, Strengthening mechanisms in the rapidly solidified AZ 91 magnesium alloy. Scr. Mater. 23, 1079–1084 (1989)
55.
Zurück zum Zitat N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scr. Mater. 47, 893–899 (2002)CrossRef N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scr. Mater. 47, 893–899 (2002)CrossRef
56.
Zurück zum Zitat M. Shaarbaf, M.R. Toroghinejad, Nano-grained copper strip produced by accumulative roll bonding process. Mater. Sci. Eng. A 473, 28–33 (2008)CrossRef M. Shaarbaf, M.R. Toroghinejad, Nano-grained copper strip produced by accumulative roll bonding process. Mater. Sci. Eng. A 473, 28–33 (2008)CrossRef
57.
Zurück zum Zitat N. Thangapandian, S. Balasivanandha Prabu, Effect of combined repetitive corrugation and straightening and rolling on the microstructure and mechanical properties of pure aluminum. Metallogr. Microstruct. Anal. 6, 481–488 (2017)CrossRef N. Thangapandian, S. Balasivanandha Prabu, Effect of combined repetitive corrugation and straightening and rolling on the microstructure and mechanical properties of pure aluminum. Metallogr. Microstruct. Anal. 6, 481–488 (2017)CrossRef
58.
Zurück zum Zitat D.H. Kang, T.W. Kim, Mechanical behavior and microstructural evolution of commercially pure titanium in enhanced multipass equal channel angular pressing and cold extrusion. Mater. Des. 31, 54–60 (2010)CrossRef D.H. Kang, T.W. Kim, Mechanical behavior and microstructural evolution of commercially pure titanium in enhanced multipass equal channel angular pressing and cold extrusion. Mater. Des. 31, 54–60 (2010)CrossRef
59.
Zurück zum Zitat M.R. Rezaei, M.R. Toroghinejad, F. Ashrafizadeh, Effects of ARB and ageing processes on mechanical properties and microstructure of 6061 aluminum alloy. J. Mater. Proc. Technol. 211, 1184–1190 (2011)CrossRef M.R. Rezaei, M.R. Toroghinejad, F. Ashrafizadeh, Effects of ARB and ageing processes on mechanical properties and microstructure of 6061 aluminum alloy. J. Mater. Proc. Technol. 211, 1184–1190 (2011)CrossRef
60.
Zurück zum Zitat H. Sheikh, E. Paimozd, S.M. Hashemi, Work hardening of Duratherm 600 cobalt superalloy using repetitive corrugation and straightening process. Russ. J. Non-Ferrous Met. 51, 59–61 (2010)CrossRef H. Sheikh, E. Paimozd, S.M. Hashemi, Work hardening of Duratherm 600 cobalt superalloy using repetitive corrugation and straightening process. Russ. J. Non-Ferrous Met. 51, 59–61 (2010)CrossRef
61.
Zurück zum Zitat R. Armstrong, I. Godd, R.M. Douthwaite, N.J. Petch, The plastic deformation of polycrystalline aggregates. Philos. Mag. 7, 45–58 (1962)CrossRef R. Armstrong, I. Godd, R.M. Douthwaite, N.J. Petch, The plastic deformation of polycrystalline aggregates. Philos. Mag. 7, 45–58 (1962)CrossRef
62.
Zurück zum Zitat D. Singh, P.N. Rao, R. Jayaganthan, Effect of deformation temperature on mechanical properties of ultrafine grained Al–Mg alloys processedby rolling. Mater. Des. 50, 646–655 (2013)CrossRef D. Singh, P.N. Rao, R. Jayaganthan, Effect of deformation temperature on mechanical properties of ultrafine grained Al–Mg alloys processedby rolling. Mater. Des. 50, 646–655 (2013)CrossRef
63.
Zurück zum Zitat V.S. Sarma, K. Sivaprasad, D. Sturm, M. Heilmaier, Microstructure and mechanical properties of ultra fine grained Cu–Zn and Cu–Al alloys produced by cryorolling and annealing. Mater. Sci. Eng. A 489, 253–258 (2008)CrossRef V.S. Sarma, K. Sivaprasad, D. Sturm, M. Heilmaier, Microstructure and mechanical properties of ultra fine grained Cu–Zn and Cu–Al alloys produced by cryorolling and annealing. Mater. Sci. Eng. A 489, 253–258 (2008)CrossRef
64.
Zurück zum Zitat J. Gubicza, N.Q. Chinh, Z. Horita, T.G. Langdon, Effect of Mg addition on microstructure and mechanical properties of aluminum. Mater. Sci. Eng. A 387, 55–59 (2004)CrossRef J. Gubicza, N.Q. Chinh, Z. Horita, T.G. Langdon, Effect of Mg addition on microstructure and mechanical properties of aluminum. Mater. Sci. Eng. A 387, 55–59 (2004)CrossRef
65.
Zurück zum Zitat G. Faraji, M.M. Mashhadi, A.R. Bushroa, A. Babaei, TEM analysis and determination of dislocation densities in nanostructured copper tube produced via parallel tubular channel angular pressing process. Mater. Sci. Eng. A 563, 193–198 (2013)CrossRef G. Faraji, M.M. Mashhadi, A.R. Bushroa, A. Babaei, TEM analysis and determination of dislocation densities in nanostructured copper tube produced via parallel tubular channel angular pressing process. Mater. Sci. Eng. A 563, 193–198 (2013)CrossRef
66.
Zurück zum Zitat W.J. Kim, S.I. Hong, Y.H. Kim, Enhancement of the strain hardening ability in ultrafine grained Mg alloys with high strength. Scr. Mater. 67, 689–692 (2012)CrossRef W.J. Kim, S.I. Hong, Y.H. Kim, Enhancement of the strain hardening ability in ultrafine grained Mg alloys with high strength. Scr. Mater. 67, 689–692 (2012)CrossRef
Metadaten
Titel
On the Influence of Temperature and Number of Passes on the Mechanical Properties of an Al–Mg Alloy Processed by Cyclic Expansion Extrusion
verfasst von
V. Babu
Balasivanandha Prabu Shanmugavel
K. A. Padmanabhan
Publikationsdatum
19.06.2020
Verlag
The Korean Institute of Metals and Materials
Erschienen in
Metals and Materials International / Ausgabe 8/2021
Print ISSN: 1598-9623
Elektronische ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-020-00781-y

Weitere Artikel der Ausgabe 8/2021

Metals and Materials International 8/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.