Skip to main content
Erschienen in: Flow, Turbulence and Combustion 2/2019

28.05.2019 | Original research

On the Measurement of Wall-Normal Velocity Derivative in a Turbulent Boundary Layer

verfasst von: Z. X. Qiao, S. J. Xu, Y. Zhou

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The wall-normal velocity derivative of ∂u/∂y is measured in a turbulent boundary layer, down to 2 wall units from the wall, using two parallel hot-wires. The momentum-thickness- and friction-velocity-based Reynolds numbers are 1450 and 584, respectively. The experimental results indicate that ∂u/∂y may be captured with an adequate accuracy given a separation (∆y) of 2 ~ 5 Kolmogorov length scales η between the two parallel hot-wires, slightly different from that (2η ~ 4η) required for a turbulent channel flow. The surrogate \( \overline{{\left(\Delta u/\Delta y\right)}^2} \) for \( \overline{{\left(\partial u/\partial y\right)}^2} \) displays a significant departure in the buffer layer from that in the turbulent channel flow, due to a difference in the large-scale coherent structures between the two flows. The skewness and kurtosis of ∂u/∂y differ markedly from their counterparts in a turbulent channel flow, which reflects a difference in the small-scale turbulent structures of the outer region between the two flows.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat George, W.K., Hussein, H.J.: Locally axisymmetric turbulence. J. Fluid Mech. 233, 1–23 (1991)CrossRefMATH George, W.K., Hussein, H.J.: Locally axisymmetric turbulence. J. Fluid Mech. 233, 1–23 (1991)CrossRefMATH
2.
Zurück zum Zitat Antonia, R.A., Kim, J., Browne, L.W.B.: Some characteristics of small-scale turbulence in a turbulent duct flow. J. Fluid Mech. 233, 369–388 (1991)CrossRefMATH Antonia, R.A., Kim, J., Browne, L.W.B.: Some characteristics of small-scale turbulence in a turbulent duct flow. J. Fluid Mech. 233, 369–388 (1991)CrossRefMATH
3.
Zurück zum Zitat Antonia, R.A., Browne, L.W.B., Chambers, A.J.: On the spectrum of the transverse derivative of the streamwise velocity in a turbulent flow. Phys. Fluids. 27, 2628–2631 (1984)CrossRefMATH Antonia, R.A., Browne, L.W.B., Chambers, A.J.: On the spectrum of the transverse derivative of the streamwise velocity in a turbulent flow. Phys. Fluids. 27, 2628–2631 (1984)CrossRefMATH
4.
Zurück zum Zitat Pao, Y.H.: Structure of turbulent velocity and scalar fields at large wavenumbers. Phys. Fluids. 8(6), 1063–1075 (1965)CrossRef Pao, Y.H.: Structure of turbulent velocity and scalar fields at large wavenumbers. Phys. Fluids. 8(6), 1063–1075 (1965)CrossRef
5.
Zurück zum Zitat Antonia, R.A., Zhu, Y., Kim, J.: On the measurement of lateral velocity derivatives in turbulent flows. Exps. Fluids. 15, 65–69 (1993)CrossRef Antonia, R.A., Zhu, Y., Kim, J.: On the measurement of lateral velocity derivatives in turbulent flows. Exps. Fluids. 15, 65–69 (1993)CrossRef
6.
Zurück zum Zitat Wyngaard, J.C.: Measurement of small-scale turbulence structure with hot wires. J. Sci. Instrum. (J. Phys. E). 1, 1105–1108 (1968)CrossRef Wyngaard, J.C.: Measurement of small-scale turbulence structure with hot wires. J. Sci. Instrum. (J. Phys. E). 1, 1105–1108 (1968)CrossRef
7.
Zurück zum Zitat Wyngaard, J.C.: Spatial resolution of the vorticity meter and other hot-wire arrays. J. Sci. Instrum. 2, 983–987 (1969)CrossRef Wyngaard, J.C.: Spatial resolution of the vorticity meter and other hot-wire arrays. J. Sci. Instrum. 2, 983–987 (1969)CrossRef
8.
Zurück zum Zitat Ng, H.C.H., Monty, J.P., Hutchins, N., Chong, M.S., Marusic, I.: Comparison of turbulent channel and pipe flows with varying Reynolds number. Exps. Fluids. 51(5), 1261–1281 (2011)CrossRef Ng, H.C.H., Monty, J.P., Hutchins, N., Chong, M.S., Marusic, I.: Comparison of turbulent channel and pipe flows with varying Reynolds number. Exps. Fluids. 51(5), 1261–1281 (2011)CrossRef
9.
Zurück zum Zitat Monty, J.P., Stewart, J.A., Williams, R.C., Chong, M.S.: Large-scale features in turbulent pipe and channel flows. J. Fluid Mech. 589, 147–156, (2007) Monty, J.P., Stewart, J.A., Williams, R.C., Chong, M.S.: Large-scale features in turbulent pipe and channel flows. J. Fluid Mech. 589, 147–156, (2007)
10.
Zurück zum Zitat Hutchins, N., Marusic, I.: Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 1–28 (2007)CrossRefMATH Hutchins, N., Marusic, I.: Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 1–28 (2007)CrossRefMATH
11.
Zurück zum Zitat Buschmann, M.H., Indinger, T., Gad-el-Hak, M.: Near-wall behavior of turbulent wall-bounded flows. Int. J. Heat and Fluid Flow. 30(5), 993–1006 (2009)CrossRef Buschmann, M.H., Indinger, T., Gad-el-Hak, M.: Near-wall behavior of turbulent wall-bounded flows. Int. J. Heat and Fluid Flow. 30(5), 993–1006 (2009)CrossRef
12.
Zurück zum Zitat Hoyas, S., Jiménez, J.: Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Phys. Fluids. 20(10), 101511 (2008)CrossRefMATH Hoyas, S., Jiménez, J.: Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Phys. Fluids. 20(10), 101511 (2008)CrossRefMATH
13.
Zurück zum Zitat Tardu, S.: Near wall dissipation revisited. Int. J. Heat and Fluid Flow. 67, 104–115 (2017)CrossRef Tardu, S.: Near wall dissipation revisited. Int. J. Heat and Fluid Flow. 67, 104–115 (2017)CrossRef
14.
Zurück zum Zitat Vreman, A.W., Kuerten, J.G.: Statistics of spatial derivatives of velocity and pressure in turbulent channel flow. Phys. Fluids. 26(8), 085103 (2014)CrossRef Vreman, A.W., Kuerten, J.G.: Statistics of spatial derivatives of velocity and pressure in turbulent channel flow. Phys. Fluids. 26(8), 085103 (2014)CrossRef
15.
Zurück zum Zitat Pumir, A., Xu, H., Siggia, E.D.: Small-scale anisotropy in turbulent boundary layers. J. Fluid Mech. 804, 5–23 (2016)MathSciNetCrossRef Pumir, A., Xu, H., Siggia, E.D.: Small-scale anisotropy in turbulent boundary layers. J. Fluid Mech. 804, 5–23 (2016)MathSciNetCrossRef
16.
Zurück zum Zitat Djenidi, L., Antonia, R.A., Talluru, M.K., Abe, H.: Skewness and flatness factors of the longitudinal velocity derivative in wall-bounded flows. Phys. Rev. Fluids. 2(6), 064608 (2017)CrossRef Djenidi, L., Antonia, R.A., Talluru, M.K., Abe, H.: Skewness and flatness factors of the longitudinal velocity derivative in wall-bounded flows. Phys. Rev. Fluids. 2(6), 064608 (2017)CrossRef
17.
Zurück zum Zitat Bai, H.L., Zhou, Y., Zhang, W.G., Xu, S.J., Wang, Y., Antonia, R.A.: Active control of turbulent boundary layer based on local surface perturbation. J. Fluid Mech. 750(3), 316–354 (2014)CrossRef Bai, H.L., Zhou, Y., Zhang, W.G., Xu, S.J., Wang, Y., Antonia, R.A.: Active control of turbulent boundary layer based on local surface perturbation. J. Fluid Mech. 750(3), 316–354 (2014)CrossRef
18.
Zurück zum Zitat Bai, H.L., Zhou, Y., Zhang, W.G., Antonia, R.A.: Streamwise vortices and velocity streaks in a locally drag-reduced turbulent boundary layer. Flow Turbul. Combust. 100, 391–416 (2018)CrossRef Bai, H.L., Zhou, Y., Zhang, W.G., Antonia, R.A.: Streamwise vortices and velocity streaks in a locally drag-reduced turbulent boundary layer. Flow Turbul. Combust. 100, 391–416 (2018)CrossRef
19.
Zurück zum Zitat Qiao, Z.X., Zhou, Y., Wu, Z.: Turbulent boundary layer under the control of different schemes. Proc. R. Soc. A. 473, 20170038 (2017)MathSciNetCrossRefMATH Qiao, Z.X., Zhou, Y., Wu, Z.: Turbulent boundary layer under the control of different schemes. Proc. R. Soc. A. 473, 20170038 (2017)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Spalart, P.R.: Direct simulation of a turbulent boundary layer up to Reθ = 1410. J. Fluid Mech. 187, 61–98 (1988)CrossRefMATH Spalart, P.R.: Direct simulation of a turbulent boundary layer up to Reθ = 1410. J. Fluid Mech. 187, 61–98 (1988)CrossRefMATH
22.
Zurück zum Zitat Hutchins, N., Choi, K.S.: Accurate measurements of local skin friction coefficient using hot-wire anemometry. Prog. Aerosp. Sci. 38, 421–446 (2002)CrossRef Hutchins, N., Choi, K.S.: Accurate measurements of local skin friction coefficient using hot-wire anemometry. Prog. Aerosp. Sci. 38, 421–446 (2002)CrossRef
23.
Zurück zum Zitat Chin, C., Ooi, A., Marusic, I., Blackburn, H.M.: The influence of pipe length on turbulence statistics computed from DNS data. Phys. Fluids. 22, 115107 (2010)CrossRef Chin, C., Ooi, A., Marusic, I., Blackburn, H.M.: The influence of pipe length on turbulence statistics computed from DNS data. Phys. Fluids. 22, 115107 (2010)CrossRef
24.
Zurück zum Zitat Mathis, R., Hutchins, N., Marusic, I.: Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311–337 (2009)CrossRefMATH Mathis, R., Hutchins, N., Marusic, I.: Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311–337 (2009)CrossRefMATH
25.
Zurück zum Zitat Tardu, S.: Near wall turbulence control by local time periodical blowing. Exp. Thermal Fluid Sci. 16(1), 41–53 (1998)CrossRef Tardu, S.: Near wall turbulence control by local time periodical blowing. Exp. Thermal Fluid Sci. 16(1), 41–53 (1998)CrossRef
26.
Zurück zum Zitat Rathnasingham, R., Breuer, K.S.: Active control of turbulent boundary layers. J. Fluid Mech. 495, 209–233 (2003)CrossRefMATH Rathnasingham, R., Breuer, K.S.: Active control of turbulent boundary layers. J. Fluid Mech. 495, 209–233 (2003)CrossRefMATH
27.
Zurück zum Zitat Murlis, J., Tsai, H.M., Bradshaw, P.: The structure of turbulent boundary layers at low Reynolds numbers. J. Fluid Mech. 122, 13–56 (1982)CrossRef Murlis, J., Tsai, H.M., Bradshaw, P.: The structure of turbulent boundary layers at low Reynolds numbers. J. Fluid Mech. 122, 13–56 (1982)CrossRef
28.
Zurück zum Zitat Simpson, R.L., Strickland, J.H., Barr, P.W.: Features of a separating turbulent boundary layer in the vicinity of separation. J. Fluid Mech. 79, 553–594 (1977)CrossRef Simpson, R.L., Strickland, J.H., Barr, P.W.: Features of a separating turbulent boundary layer in the vicinity of separation. J. Fluid Mech. 79, 553–594 (1977)CrossRef
29.
Zurück zum Zitat Abe, H., Kawamura, H., Matsuo, Y.: Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence. J. Fluids Eng. 123(2), 382–393 (2001)CrossRef Abe, H., Kawamura, H., Matsuo, Y.: Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence. J. Fluids Eng. 123(2), 382–393 (2001)CrossRef
30.
Zurück zum Zitat Purtell, L.P., Klebanoff, P.S., Buckley, F.T.: Turbulent boundary layer at low Reynolds number. Phys. Fluids. 24(5), 802–811 (1981)CrossRef Purtell, L.P., Klebanoff, P.S., Buckley, F.T.: Turbulent boundary layer at low Reynolds number. Phys. Fluids. 24(5), 802–811 (1981)CrossRef
31.
Zurück zum Zitat Wu, X., Moin, P.: Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630, 5–41 (2009)MathSciNetCrossRefMATH Wu, X., Moin, P.: Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630, 5–41 (2009)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Jiménez, J., Hoyas, S., Simens, M.P., Mizuno, Y.: Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid Mech. 657, 335–360 (2010)CrossRefMATH Jiménez, J., Hoyas, S., Simens, M.P., Mizuno, Y.: Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid Mech. 657, 335–360 (2010)CrossRefMATH
33.
Zurück zum Zitat Chin, C., Monty, J.P., Ooi, A.: Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layers. Int. J. Heat and Fluid Flow. 45, 33–40 (2014)CrossRef Chin, C., Monty, J.P., Ooi, A.: Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layers. Int. J. Heat and Fluid Flow. 45, 33–40 (2014)CrossRef
34.
Zurück zum Zitat Kreplin, H.P., Eckelmann, H.: Behavior of the three fluctuating velocity components in the wall region of a turbulent channel flow. Phys. Fluids. 22(7), 1233–1239 (1979)CrossRef Kreplin, H.P., Eckelmann, H.: Behavior of the three fluctuating velocity components in the wall region of a turbulent channel flow. Phys. Fluids. 22(7), 1233–1239 (1979)CrossRef
35.
Zurück zum Zitat Tang, S.L., Antonia, R.A., Djenidi, A.L., Zhou, Y.: Transport equation for the isotropic turbulent energy dissipation rate in the far-wake of a circular cylinder. J. Fluid Mech. 784, 109–129 (2015)MathSciNetCrossRefMATH Tang, S.L., Antonia, R.A., Djenidi, A.L., Zhou, Y.: Transport equation for the isotropic turbulent energy dissipation rate in the far-wake of a circular cylinder. J. Fluid Mech. 784, 109–129 (2015)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Browne, L.W.B., Antonia, R.A., Rajagopalan, S.: The spatial derivative of temperature in a turbulent flow and Taylor’s hypothesis. Phys. Fluids. 26(5), 1222–1227 (1983)CrossRef Browne, L.W.B., Antonia, R.A., Rajagopalan, S.: The spatial derivative of temperature in a turbulent flow and Taylor’s hypothesis. Phys. Fluids. 26(5), 1222–1227 (1983)CrossRef
37.
Zurück zum Zitat Kim, J., Hussain, F.: Propagation velocity of perturbations in turbulent channel flow. Phys. Fluids. 5, 695–706 (1993)CrossRef Kim, J., Hussain, F.: Propagation velocity of perturbations in turbulent channel flow. Phys. Fluids. 5, 695–706 (1993)CrossRef
38.
Zurück zum Zitat Geng, C., He, G., Wang, Y., Xu, C., Lozano-Durán, A., Wallace, J.M.: Taylor’s hypothesis in turbulent channel flow considered using a transport equation analysis. Phys. Fluids. 27, 025111 (2015)CrossRef Geng, C., He, G., Wang, Y., Xu, C., Lozano-Durán, A., Wallace, J.M.: Taylor’s hypothesis in turbulent channel flow considered using a transport equation analysis. Phys. Fluids. 27, 025111 (2015)CrossRef
39.
Zurück zum Zitat Krogstad, P.Å., Kaspersen, J.H., Rimestad, S.: Convection velocities in a turbulent boundary layer. Phys. Fluids. 10(04), 949–957 (1998)CrossRef Krogstad, P.Å., Kaspersen, J.H., Rimestad, S.: Convection velocities in a turbulent boundary layer. Phys. Fluids. 10(04), 949–957 (1998)CrossRef
40.
Zurück zum Zitat Kamruzzaman, M., Djenidi, L., Antonia, R.A., Talluru, K.M.: Scale-by-scale energy budget in a turbulent boundary layer over a rough wall. Int. J. Heat and Fluid Flow. 55, 2–8 (2015)CrossRef Kamruzzaman, M., Djenidi, L., Antonia, R.A., Talluru, K.M.: Scale-by-scale energy budget in a turbulent boundary layer over a rough wall. Int. J. Heat and Fluid Flow. 55, 2–8 (2015)CrossRef
41.
Zurück zum Zitat Oyewola, O., Djenidi, L., Antonia, R.A.: Response of mean turbulent energy dissipation rate and spectra to concentrated wall suction. Exp. Fluids. 44, 159–165 (2008)CrossRef Oyewola, O., Djenidi, L., Antonia, R.A.: Response of mean turbulent energy dissipation rate and spectra to concentrated wall suction. Exp. Fluids. 44, 159–165 (2008)CrossRef
42.
Zurück zum Zitat Abe, H., Antonia, R.A.: Scaling of normalized mean energy and scalar dissipation rates in a turbulent channel flow. Phys. Fluids. 23(5), 055104 (2011)CrossRef Abe, H., Antonia, R.A.: Scaling of normalized mean energy and scalar dissipation rates in a turbulent channel flow. Phys. Fluids. 23(5), 055104 (2011)CrossRef
43.
Zurück zum Zitat Trujillo, S., Bogard, D., Ball, K.: Turbulent boundary layer drag reduction using an oscillating wall. In: 4th Shear Flow Control Conference, vol. 1870, (1997) Trujillo, S., Bogard, D., Ball, K.: Turbulent boundary layer drag reduction using an oscillating wall. In: 4th Shear Flow Control Conference, vol. 1870, (1997)
44.
Zurück zum Zitat Antonia, R.A., Mi, J.: Corrections for velocity and temperature derivatives in turbulent flows. Exps. Fluids. 14, 203–208 (1993)CrossRef Antonia, R.A., Mi, J.: Corrections for velocity and temperature derivatives in turbulent flows. Exps. Fluids. 14, 203–208 (1993)CrossRef
45.
Zurück zum Zitat Stanislas, M., Perret, L., Foucaut, J.M.: Vortical structures in the turbulent boundary layer: a possible route to a universal representation. J. Fluid Mech. 602, 327–382, (2008) Stanislas, M., Perret, L., Foucaut, J.M.: Vortical structures in the turbulent boundary layer: a possible route to a universal representation. J. Fluid Mech. 602, 327–382, (2008)
46.
Zurück zum Zitat Yakhot, V., Bailey, S.C.C., Smits, A.J.: Scaling of global properties of turbulence and skin friction in pipe and channel flows. J. Fluid Mech. 652, 65–73 (2010)CrossRefMATH Yakhot, V., Bailey, S.C.C., Smits, A.J.: Scaling of global properties of turbulence and skin friction in pipe and channel flows. J. Fluid Mech. 652, 65–73 (2010)CrossRefMATH
47.
Zurück zum Zitat Bushnell, D.M., Mcginley, C.B.: Turbulence control in wall flows. Annu. Rev. Fluid Mech. 21(1), 1–20 (1989)CrossRefMATH Bushnell, D.M., Mcginley, C.B.: Turbulence control in wall flows. Annu. Rev. Fluid Mech. 21(1), 1–20 (1989)CrossRefMATH
48.
Zurück zum Zitat Ewing, D., Hussein, H.J., George, W.K.: Spatial resolution of parallel hot-wire probes for derivative measurements. Exp. Thermal Fluid Sci. 11(2), 155–173 (1995)CrossRef Ewing, D., Hussein, H.J., George, W.K.: Spatial resolution of parallel hot-wire probes for derivative measurements. Exp. Thermal Fluid Sci. 11(2), 155–173 (1995)CrossRef
49.
Zurück zum Zitat Balint, J.L., Wallace, J.M., Vukoslavčević, P.: The velocity and vorticity vector fields of a turbulent boundary layer. Part 2. Statistical properties. J. Fluid Mech. 228, 53–86 (1991) Balint, J.L., Wallace, J.M., Vukoslavčević, P.: The velocity and vorticity vector fields of a turbulent boundary layer. Part 2. Statistical properties. J. Fluid Mech. 228, 53–86 (1991)
50.
Zurück zum Zitat Honkan, A., Andreopoulos, Y.: Vorticity, strain-rate and dissipation characteristics in the near-wall region of turbulent boundary layers. J. Fluid Mech. 350, 29–96 (1997)MathSciNetCrossRef Honkan, A., Andreopoulos, Y.: Vorticity, strain-rate and dissipation characteristics in the near-wall region of turbulent boundary layers. J. Fluid Mech. 350, 29–96 (1997)MathSciNetCrossRef
51.
Zurück zum Zitat Batchelor, G.K.: The Theory of Homogeneous Turbulence. Cambridge University Press, Cambridge (1953)MATH Batchelor, G.K.: The Theory of Homogeneous Turbulence. Cambridge University Press, Cambridge (1953)MATH
52.
Zurück zum Zitat Mestayer, P.: Local isotropy and anisotropy in a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 125, 475–503 (1982)CrossRef Mestayer, P.: Local isotropy and anisotropy in a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 125, 475–503 (1982)CrossRef
53.
Zurück zum Zitat Saddoughi, S.G., Veeravalli, S.V.: Local isotropy in turbulent boundary layer at high Reynolds number. J. Fluid Mech. 268, 333–372 (1994)CrossRef Saddoughi, S.G., Veeravalli, S.V.: Local isotropy in turbulent boundary layer at high Reynolds number. J. Fluid Mech. 268, 333–372 (1994)CrossRef
54.
Zurück zum Zitat Johansson, A.V., Alfredsson, P.K., Kim, J.: Evolution and dynamics of shear-layer structures in near-wall turbulence. J. Fluid Mech. 224, 579–599 (1991)CrossRefMATH Johansson, A.V., Alfredsson, P.K., Kim, J.: Evolution and dynamics of shear-layer structures in near-wall turbulence. J. Fluid Mech. 224, 579–599 (1991)CrossRefMATH
55.
Zurück zum Zitat Djenidi, L., Antonia, R.A.: A spectral chart method for estimating the mean turbulent kinetic energy dissipation rate. Exps. Fluids. 53, 1005–1013 (2012)CrossRef Djenidi, L., Antonia, R.A.: A spectral chart method for estimating the mean turbulent kinetic energy dissipation rate. Exps. Fluids. 53, 1005–1013 (2012)CrossRef
56.
Zurück zum Zitat Eckelmann, H.: The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow. J. Fluid Mech. 65(3), 439–459 (1974)CrossRef Eckelmann, H.: The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow. J. Fluid Mech. 65(3), 439–459 (1974)CrossRef
57.
Zurück zum Zitat Abe, H., Antonia, R.A., Kawamura, H.: Correlation between small-scale velocity and scalar fluctuations in a turbulent channel flow. J. Fluid Mech. 627, 1–32 (2009)CrossRefMATH Abe, H., Antonia, R.A., Kawamura, H.: Correlation between small-scale velocity and scalar fluctuations in a turbulent channel flow. J. Fluid Mech. 627, 1–32 (2009)CrossRefMATH
58.
Zurück zum Zitat Tabachnick, B.G., Fidell, L.S.: Using Multivariate Statistics, 6th edn. Pearson, Boston, MA (2012) Tabachnick, B.G., Fidell, L.S.: Using Multivariate Statistics, 6th edn. Pearson, Boston, MA (2012)
59.
Zurück zum Zitat Hutchins, N., Nickels, T.B., Marusic, I., Chong, M.S.: Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103–136 (2009)CrossRefMATH Hutchins, N., Nickels, T.B., Marusic, I., Chong, M.S.: Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103–136 (2009)CrossRefMATH
60.
Zurück zum Zitat Smits, A.J., McKeon, B.J., Marusic, I.: High–Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353–375 (2011)CrossRefMATH Smits, A.J., McKeon, B.J., Marusic, I.: High–Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353–375 (2011)CrossRefMATH
61.
Zurück zum Zitat Jiménez, J., Hoyas, S.: Turbulent fluctuations above the buffer layer of wall-bounded flows. J. Fluid Mech. 611, 215–236, (2008) Jiménez, J., Hoyas, S.: Turbulent fluctuations above the buffer layer of wall-bounded flows. J. Fluid Mech. 611, 215–236, (2008)
Metadaten
Titel
On the Measurement of Wall-Normal Velocity Derivative in a Turbulent Boundary Layer
verfasst von
Z. X. Qiao
S. J. Xu
Y. Zhou
Publikationsdatum
28.05.2019
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 2/2019
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-019-00031-1

Weitere Artikel der Ausgabe 2/2019

Flow, Turbulence and Combustion 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.