Skip to main content
Erschienen in: Cognitive Computation 2/2009

01.06.2009

On the Natural Hierarchical Composition of Cliques in Cell Assemblies

verfasst von: Thomas Wennekers

Erschienen in: Cognitive Computation | Ausgabe 2/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hebbian cell assemblies can be formalised as sets of tightly connected cells in auto- and hetero-associative memories. Direct evidence for such “cliques” has recently been obtained in multiple-unit recordings from rat hippocampal neurons. These experiments suggest a hierarchical organisation where cliques are embedded in each other such that larger cliques represent less specific stimulus conditions. We here suggest an interpretation stating that the firing patterns may not just reflect nested categories but a lattice of concepts about stimulus–response mappings in the sense of formal concept analysis, an applied branch of set theory. We present an implementation of formal concept lattices in bidirectional associative memories that in contrast to previous work satisfies Dale’s principle and uses balanced excitation and inhibition. Inhibitory cells have fixed, non-plastic synapses even if the model learns new concepts. As an extreme case a single global inhibitory cell is enough that controls the total level of activation. The excitatory cells can further learn incrementally using a Hebbian coincidence learning rule. Implications of the model for retrieval in auto-associative memories are further outlined. Overall the model is well suited for representing hierarchical compositional relationships between entities in the form of correlated patterns in technical cognitive systems and potentially the brain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We mainly follow Bělohlávek’s notation and definitions in [5] in the present work.
 
2
These entities may be features or objects or just anything, we do not make such distinctions in the auto-associative setup.
 
Literatur
1.
2.
Zurück zum Zitat Amit DJ. Modeling brain function. Cambridge: Cambridge University Press; 1988. Amit DJ. Modeling brain function. Cambridge: Cambridge University Press; 1988.
3.
Zurück zum Zitat Amit DJ. The Hebbian paradigm reintegrated: local reverberations as internal representations. Behav Brain Sci. 1995;18:617–57.CrossRef Amit DJ. The Hebbian paradigm reintegrated: local reverberations as internal representations. Behav Brain Sci. 1995;18:617–57.CrossRef
4.
Zurück zum Zitat Bi G-q, Poo M-m. Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci. 2001;24:139–66.PubMedCrossRef Bi G-q, Poo M-m. Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci. 2001;24:139–66.PubMedCrossRef
5.
Zurück zum Zitat Bělohlávek R. Representation of concept lattices by bidirectional associative memories. Neural Comput. 2000;12:2279–90. Bělohlávek R. Representation of concept lattices by bidirectional associative memories. Neural Comput. 2000;12:2279–90.
6.
Zurück zum Zitat Braitenberg V. Cell assemblies in the cerebral cortex. In: Heim R, Palm G, editors. Theoretical approaches to complex systems. Berlin: Springer; 1978. p. 171–88. Braitenberg V. Cell assemblies in the cerebral cortex. In: Heim R, Palm G, editors. Theoretical approaches to complex systems. Berlin: Springer; 1978. p. 171–88.
7.
Zurück zum Zitat Braitenberg V, Schüz A. Anatomy of the cortex. Berlin: Springer-Verlag; 1991. Braitenberg V, Schüz A. Anatomy of the cortex. Berlin: Springer-Verlag; 1991.
8.
9.
Zurück zum Zitat Eccles JC, Fatt P, Koketsu K. Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J Physiol (Lond). 1954;126:52462. Eccles JC, Fatt P, Koketsu K. Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J Physiol (Lond). 1954;126:52462.
10.
Zurück zum Zitat Feldman J. Minimization of boolean complexity in human concept learning. Nature. 2000;407:630–3.PubMedCrossRef Feldman J. Minimization of boolean complexity in human concept learning. Nature. 2000;407:630–3.PubMedCrossRef
11.
Zurück zum Zitat Freedman DJ, Riesenhuber M, Poggio T, Miller EK. A comparison of primate prefrontal and inferior temporal cortices during visual categorization. J Neurosci. 2003;23:5235–46.PubMed Freedman DJ, Riesenhuber M, Poggio T, Miller EK. A comparison of primate prefrontal and inferior temporal cortices during visual categorization. J Neurosci. 2003;23:5235–46.PubMed
13.
Zurück zum Zitat Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern. 1980;36:193–202.PubMedCrossRef Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern. 1980;36:193–202.PubMedCrossRef
14.
Zurück zum Zitat Fukushima K. Restoring partly occluded patterns: a neural network model. Neural Netw. 2005;18:33–43.PubMedCrossRef Fukushima K. Restoring partly occluded patterns: a neural network model. Neural Netw. 2005;18:33–43.PubMedCrossRef
15.
Zurück zum Zitat Fukushima K, Myaki S. Neocognitron: a new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recognit 1982;15:455–69.CrossRef Fukushima K, Myaki S. Neocognitron: a new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recognit 1982;15:455–69.CrossRef
16.
Zurück zum Zitat Fusi S, Abbott LF. Limits on the memory storage capacity of bounded synapses. Nat Neurosci. 2007;10:485–93.PubMed Fusi S, Abbott LF. Limits on the memory storage capacity of bounded synapses. Nat Neurosci. 2007;10:485–93.PubMed
17.
Zurück zum Zitat Fusi S, Annunziato M, Badoni D, Salamon A, Amit DJ. Spike-driven synaptic plasticity: theory, simulation, VLSI implementation. Neural Comput. 2000;12:2227–58.PubMedCrossRef Fusi S, Annunziato M, Badoni D, Salamon A, Amit DJ. Spike-driven synaptic plasticity: theory, simulation, VLSI implementation. Neural Comput. 2000;12:2227–58.PubMedCrossRef
18.
Zurück zum Zitat Fusi S, Drew PJ, Abbott LF. Cascade models of synaptically stored memories. Neuron. 2005;45:599–611.PubMedCrossRef Fusi S, Drew PJ, Abbott LF. Cascade models of synaptically stored memories. Neuron. 2005;45:599–611.PubMedCrossRef
19.
Zurück zum Zitat Fuster JM. Memory in the cerebral cortex. An empirical approach to neural networks in the human and nonhuman primate. Cambridge, MA:MIT Press; 1994. Fuster JM. Memory in the cerebral cortex. An empirical approach to neural networks in the human and nonhuman primate. Cambridge, MA:MIT Press; 1994.
20.
Zurück zum Zitat Ganter B, Wille R. Formal concept analysis: mathematical foundations. Berlin: Springer-Verlag; 1999. Ganter B, Wille R. Formal concept analysis: mathematical foundations. Berlin: Springer-Verlag; 1999.
21.
Zurück zum Zitat Harris KD, Csicsvari J, Hirase H, Dragoi G, Buzsaki G. Organization of cell assemblies in the hippocampus. Nature. 2003;424:552–5.PubMedCrossRef Harris KD, Csicsvari J, Hirase H, Dragoi G, Buzsaki G. Organization of cell assemblies in the hippocampus. Nature. 2003;424:552–5.PubMedCrossRef
22.
Zurück zum Zitat Hebb D. The organization of behavior. New York: Wiley; 1949. Hebb D. The organization of behavior. New York: Wiley; 1949.
23.
Zurück zum Zitat Hertz J, Krogh A, Palmer RG. Introduction to the theory of neural computation. Redwood city: Addison Wesley; 1991. Hertz J, Krogh A, Palmer RG. Introduction to the theory of neural computation. Redwood city: Addison Wesley; 1991.
24.
Zurück zum Zitat Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. PNAS. 1982;79:2554–8.PubMedCrossRef Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. PNAS. 1982;79:2554–8.PubMedCrossRef
25.
Zurück zum Zitat Indiveri G. Synaptic plasticity and spike-based computation in VLSI networks of integrate-and-fire neurons. Neural Inf Process—Lett Rev. 2007;11:135–46. Indiveri G. Synaptic plasticity and spike-based computation in VLSI networks of integrate-and-fire neurons. Neural Inf Process—Lett Rev. 2007;11:135–46.
26.
Zurück zum Zitat Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20:1254–1259CrossRef Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20:1254–1259CrossRef
27.
Zurück zum Zitat Kiani R, Esteky H, Mirpour K, Tanaka K. Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. J Neurophysiol. 2007;97(6):4296–309. Kiani R, Esteky H, Mirpour K, Tanaka K. Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. J Neurophysiol. 2007;97(6):4296–309.
28.
Zurück zum Zitat Kirk U. The neural basis of object-context relationships on aesthetic judgment. PLoS ONE. 2008;3:e3754.PubMedCrossRef Kirk U. The neural basis of object-context relationships on aesthetic judgment. PLoS ONE. 2008;3:e3754.PubMedCrossRef
29.
Zurück zum Zitat Knoblauch A, Markert H, Palm GG. An associative cortical model of language understanding and action planning. In: Mira J, Alvarez JR, editors. Proceedings of IWINAC 2005, First International Work-Conference on the Interplay between natural and artificial computation, Las Palmas de Gran Canaria, Spain. vol. 3562, Lecture notes in computer science. Berlin, New York: Springer; 2005. p. 405–14. Knoblauch A, Markert H, Palm GG. An associative cortical model of language understanding and action planning. In: Mira J, Alvarez JR, editors. Proceedings of IWINAC 2005, First International Work-Conference on the Interplay between natural and artificial computation, Las Palmas de Gran Canaria, Spain. vol. 3562, Lecture notes in computer science. Berlin, New York: Springer; 2005. p. 405–14.
30.
Zurück zum Zitat Knoblauch A, Kupper R, Gewaltig M-O, Körner U, Körner E. A cell assembly based model for the cortical microcircuitry. Neurocomputing. 2007;70:1838–42.CrossRef Knoblauch A, Kupper R, Gewaltig M-O, Körner U, Körner E. A cell assembly based model for the cortical microcircuitry. Neurocomputing. 2007;70:1838–42.CrossRef
31.
Zurück zum Zitat Kosko B. Bidirectional associative memory. IEEE Trans Syst Man Cybern. 1988;18:49–60.CrossRef Kosko B. Bidirectional associative memory. IEEE Trans Syst Man Cybern. 1988;18:49–60.CrossRef
32.
Zurück zum Zitat Lin L, Osan R, Shoham S, Jin W, Zuo W, Tsien JZ. Identification of network-level coding units for real-time representation of episodic experiences in the hippocampus. Proc Natl Acad Sci USA. 2005;102:6125–30.PubMedCrossRef Lin L, Osan R, Shoham S, Jin W, Zuo W, Tsien JZ. Identification of network-level coding units for real-time representation of episodic experiences in the hippocampus. Proc Natl Acad Sci USA. 2005;102:6125–30.PubMedCrossRef
33.
Zurück zum Zitat Lin L, Osan R, Tsien JZ. Organizing principles of real-time memory encoding: neural clique assemblies and universal neural codes. Trends Neurosci. 2006;29:48–57.PubMedCrossRef Lin L, Osan R, Tsien JZ. Organizing principles of real-time memory encoding: neural clique assemblies and universal neural codes. Trends Neurosci. 2006;29:48–57.PubMedCrossRef
34.
Zurück zum Zitat Logothetis NK, Sheinberg DL. Visual object recognition. Annu Rev Neurosci. 1996;19:577–621.PubMedCrossRef Logothetis NK, Sheinberg DL. Visual object recognition. Annu Rev Neurosci. 1996;19:577–621.PubMedCrossRef
35.
Zurück zum Zitat Martinovic J, Gruber T, Müller MM. Coding of visual object features and feature conjunctions in the human brain. PLoS One. 2008;3:3781.CrossRef Martinovic J, Gruber T, Müller MM. Coding of visual object features and feature conjunctions in the human brain. PLoS One. 2008;3:3781.CrossRef
36.
Zurück zum Zitat Miyashita Y, Chang HS. Neural correlate of pictorial short term memory. Nature. 1988;331:68–70.PubMedCrossRef Miyashita Y, Chang HS. Neural correlate of pictorial short term memory. Nature. 1988;331:68–70.PubMedCrossRef
37.
Zurück zum Zitat Nosofsky RM, Gluck MA, Palmeri TJ, McKinley SC, Clautier P. Comparing models of rule-based classification learning: a replication and extension of Shepard, Hovland and Jenkins (1961). Mem Cognit. 1994;22:352–69.PubMed Nosofsky RM, Gluck MA, Palmeri TJ, McKinley SC, Clautier P. Comparing models of rule-based classification learning: a replication and extension of Shepard, Hovland and Jenkins (1961). Mem Cognit. 1994;22:352–69.PubMed
38.
Zurück zum Zitat Palm G. Neural assemblies: an alternative approach to artificial intelligence. Berlin: Springer-Verlag; 1982. Palm G. Neural assemblies: an alternative approach to artificial intelligence. Berlin: Springer-Verlag; 1982.
39.
Zurück zum Zitat Palm G. Memory capacities of local rules for synaptic modification. Concepts Neurosci. 1991;2:97–128. Palm G. Memory capacities of local rules for synaptic modification. Concepts Neurosci. 1991;2:97–128.
40.
Zurück zum Zitat Palm G, Sommer F. Information capacity in recurrent McCulloch-Pitts networks with sparsely coded memory states. Network. 1992;3:177ff.CrossRef Palm G, Sommer F. Information capacity in recurrent McCulloch-Pitts networks with sparsely coded memory states. Network. 1992;3:177ff.CrossRef
41.
Zurück zum Zitat Pulvermüller F. Constituents of a neurological theory of language. Concepts Neurosci. 1992;3:157–200. Pulvermüller F. Constituents of a neurological theory of language. Concepts Neurosci. 1992;3:157–200.
42.
Zurück zum Zitat Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I. Invariant visual representation by single neurons in the human brain. Nature. 2005;435:1102–7.PubMedCrossRef Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I. Invariant visual representation by single neurons in the human brain. Nature. 2005;435:1102–7.PubMedCrossRef
43.
Zurück zum Zitat Quiroga RQ, Kreimann G, Koch C, Fried I. Sparse but not ’grandmother-cell’ coding in the medial temporal lobe. Trends Cogn Sci. 2008(a);12:87–91.PubMedCrossRef Quiroga RQ, Kreimann G, Koch C, Fried I. Sparse but not ’grandmother-cell’ coding in the medial temporal lobe. Trends Cogn Sci. 2008(a);12:87–91.PubMedCrossRef
44.
Zurück zum Zitat Quiroga RQ, Mukamel R, Malach EA, Fried I. Human single-neuron responses at the threshold of conscious recognition. Proc Natl Acad Sci USA. 2008(b);105:3599–604.PubMedCrossRef Quiroga RQ, Mukamel R, Malach EA, Fried I. Human single-neuron responses at the threshold of conscious recognition. Proc Natl Acad Sci USA. 2008(b);105:3599–604.PubMedCrossRef
45.
Zurück zum Zitat Rajapakse R, Denham M. Fast access to concepts in concept lattices via bidirectional associative memories. Neural Comput. 2005;17:2291–300.PubMedCrossRef Rajapakse R, Denham M. Fast access to concepts in concept lattices via bidirectional associative memories. Neural Comput. 2005;17:2291–300.PubMedCrossRef
46.
Zurück zum Zitat Rao RPN, Ballard DH. Dynamic model of visual recognition predicts neural response properties in the visual cortex. Neural Comput. 1997;9:721–63.PubMedCrossRef Rao RPN, Ballard DH. Dynamic model of visual recognition predicts neural response properties in the visual cortex. Neural Comput. 1997;9:721–63.PubMedCrossRef
47.
48.
Zurück zum Zitat Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999;2(11):1019–25.PubMedCrossRef Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999;2(11):1019–25.PubMedCrossRef
49.
Zurück zum Zitat Saalmann YB, Pigarev IN, Vidyasagar TR. Neural mechanisms of visual attention: how top-down feedback highlights relevant locations. Science. 2007;316:1612–5.PubMedCrossRef Saalmann YB, Pigarev IN, Vidyasagar TR. Neural mechanisms of visual attention: how top-down feedback highlights relevant locations. Science. 2007;316:1612–5.PubMedCrossRef
50.
Zurück zum Zitat Schemmel J, Meier K, Mueller E. A new VLSI model of neural microcircuits including spike time dependent plasticity. In: Proceedings IJCNN. IEEE Press; 2007. p. 1711–6. Schemmel J, Meier K, Mueller E. A new VLSI model of neural microcircuits including spike time dependent plasticity. In: Proceedings IJCNN. IEEE Press; 2007. p. 1711–6.
51.
Zurück zum Zitat Shepard R, Hovland CL, Jenkins HM. Learning and memorization of classifications. Psychol Monogr Gen Appl. 1961;75:1–42. Shepard R, Hovland CL, Jenkins HM. Learning and memorization of classifications. Psychol Monogr Gen Appl. 1961;75:1–42.
52.
Zurück zum Zitat Sloman SA, Rips LJ. Similarity and symbols in human thinking. Cambridge, MA: MIT Press; 1998. Sloman SA, Rips LJ. Similarity and symbols in human thinking. Cambridge, MA: MIT Press; 1998.
54.
Zurück zum Zitat Tsunoda K, Yamane Y, Nishizaki M, Tanifuji M. Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nat Neurosci. 2001;4:832–8.PubMedCrossRef Tsunoda K, Yamane Y, Nishizaki M, Tanifuji M. Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nat Neurosci. 2001;4:832–8.PubMedCrossRef
55.
Zurück zum Zitat Wennekers T. Operational cell assemblies as a paradigm for brain-inspired future computing architectures. Neural Inf Process—Lett Rev. 2006;10:135–45. Wennekers T. Operational cell assemblies as a paradigm for brain-inspired future computing architectures. Neural Inf Process—Lett Rev. 2006;10:135–45.
56.
Zurück zum Zitat Wennekers T, Palm G. Cell assemblies, associative memory, and temporal structure in brain signals. In: Miller R, editors. Time and the brain. vol. 3, CABR—conceptual advances in brain research. Harwood Academic Publishers; 2000. p. 251–73. Wennekers T, Palm G. Cell assemblies, associative memory, and temporal structure in brain signals. In: Miller R, editors. Time and the brain. vol. 3, CABR—conceptual advances in brain research. Harwood Academic Publishers; 2000. p. 251–73.
57.
Zurück zum Zitat Wennekers T, Palm G. Modelling generic cognitive functions with operational Hebbian cell assemblies. In: Weiss ML, editors. Neural network research horizons. Nova Science Publishers; 2007. p. 225–94. Wennekers T, Palm G. Modelling generic cognitive functions with operational Hebbian cell assemblies. In: Weiss ML, editors. Neural network research horizons. Nova Science Publishers; 2007. p. 225–94.
58.
Zurück zum Zitat Wennekers T, Garagnani M, Pulvermüller F. Language models based on Hebbian cell assemblies. J Neurosci (Paris). 2006;100:16–30.CrossRef Wennekers T, Garagnani M, Pulvermüller F. Language models based on Hebbian cell assemblies. J Neurosci (Paris). 2006;100:16–30.CrossRef
59.
Zurück zum Zitat Wickelgren WA. Context-sensitive coding, associative memory, and serial order in (speech) behavior. Psychol Rev. 1969;76:1–15.CrossRef Wickelgren WA. Context-sensitive coding, associative memory, and serial order in (speech) behavior. Psychol Rev. 1969;76:1–15.CrossRef
60.
Zurück zum Zitat Wickelgren WA. Webs, cell assemblies, and chunking in neural nets. Concepts Neurosci. 1992;3:1–53. Wickelgren WA. Webs, cell assemblies, and chunking in neural nets. Concepts Neurosci. 1992;3:1–53.
61.
Zurück zum Zitat Wijekoon JHB, Dudek P. Compact silicon neuron circuit with spiking and bursting behaviour. Neural Netw. 2008;21:524–34.PubMed Wijekoon JHB, Dudek P. Compact silicon neuron circuit with spiking and bursting behaviour. Neural Netw. 2008;21:524–34.PubMed
62.
Zurück zum Zitat Wille R. Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival I, editor. Ordered sets. Dordrecht: Reidel; 1982. p. 445–70. Wille R. Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival I, editor. Ordered sets. Dordrecht: Reidel; 1982. p. 445–70.
63.
Zurück zum Zitat Willshaw DJ, Buneman OP, Longuet-Higgins HC. Non-holographic associative memory. Nature. 1969;222:960–2.PubMedCrossRef Willshaw DJ, Buneman OP, Longuet-Higgins HC. Non-holographic associative memory. Nature. 1969;222:960–2.PubMedCrossRef
64.
Zurück zum Zitat Wolff KE. A first course in formal concept analysis. In: Faulbaum F, editors. StatSoft ’93 Advances in statistical software. Gustav Fischer Verlag; 1993. p. 429–38. Wolff KE. A first course in formal concept analysis. In: Faulbaum F, editors. StatSoft ’93 Advances in statistical software. Gustav Fischer Verlag; 1993. p. 429–38.
65.
Zurück zum Zitat Yamashita Y, Tani J. Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment. PLoS Comput Biol 2008;4:e1000220PubMedCrossRef Yamashita Y, Tani J. Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment. PLoS Comput Biol 2008;4:e1000220PubMedCrossRef
Metadaten
Titel
On the Natural Hierarchical Composition of Cliques in Cell Assemblies
verfasst von
Thomas Wennekers
Publikationsdatum
01.06.2009
Verlag
Springer-Verlag
Erschienen in
Cognitive Computation / Ausgabe 2/2009
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-008-9004-5

Weitere Artikel der Ausgabe 2/2009

Cognitive Computation 2/2009 Zur Ausgabe

Premium Partner