Skip to main content
Erschienen in: Cognitive Computation 2/2009

01.06.2009

Artificial Cognitive Systems: From VLSI Networks of Spiking Neurons to Neuromorphic Cognition

verfasst von: Giacomo Indiveri, Elisabetta Chicca, Rodney J. Douglas

Erschienen in: Cognitive Computation | Ausgabe 2/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Neuromorphic engineering (NE) is an emerging research field that has been attempting to identify neural types of computational principles, by implementing biophysically realistic models of neural systems in Very Large Scale Integration (VLSI) technology. Remarkable progress has been made recently, and complex artificial neural sensory-motor systems can be built using this technology. Today, however, NE stands before a large conceptual challenge that must be met before there will be significant progress toward an age of genuinely intelligent neuromorphic machines. The challenge is to bridge the gap from reactive systems to ones that are cognitive in quality. In this paper, we describe recent advancements in NE, and present examples of neuromorphic circuits that can be used as tools to address this challenge. Specifically, we show how VLSI networks of spiking neurons with spike-based plasticity mechanisms and soft winner-take-all architectures represent important building blocks useful for implementing artificial neural systems able to exhibit basic cognitive abilities.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Abrahamsen J, Hafliger P, Lande T. A time domain winner-take-all network of integrate-and-fire neurons. In: 2004 IEEE international symposium on circuits and systems, vol. 5. 2004. p. V-361–4. Abrahamsen J, Hafliger P, Lande T. A time domain winner-take-all network of integrate-and-fire neurons. In: 2004 IEEE international symposium on circuits and systems, vol. 5. 2004. p. V-361–4.
3.
Zurück zum Zitat Amari S, Arbib MA. Competition and cooperation in neural nets. In: Metzler J, editor. Systems neuroscience. Academic Press; 1977. p. 119–65 Amari S, Arbib MA. Competition and cooperation in neural nets. In: Metzler J, editor. Systems neuroscience. Academic Press; 1977. p. 119–65
4.
Zurück zum Zitat Amit DJ, Fusi S. Dynamic learning in neural networks with material synapses. Neural Comput. 1994;6:957.CrossRef Amit DJ, Fusi S. Dynamic learning in neural networks with material synapses. Neural Comput. 1994;6:957.CrossRef
5.
Zurück zum Zitat Arthur J, Boahen K. Learning in silicon: timing is everything. In: Weiss Y, Schölkopf B, Platt J, editors. Advances in neural information processing systems, vol. 18. Cambridge, MA: MIT Press; 2006. p. 1–8. Arthur J, Boahen K. Learning in silicon: timing is everything. In: Weiss Y, Schölkopf B, Platt J, editors. Advances in neural information processing systems, vol. 18. Cambridge, MA: MIT Press; 2006. p. 1–8.
6.
Zurück zum Zitat Badoni D, Giulioni M, Dante V, Del Giudice P. An aVLSI recurrent network of spiking neurons with reconfigurable and plastic synapses. In: Proceedings of the IEEE international symposium on circuits and systems. IEEE; 2006. p. 1227–30. Badoni D, Giulioni M, Dante V, Del Giudice P. An aVLSI recurrent network of spiking neurons with reconfigurable and plastic synapses. In: Proceedings of the IEEE international symposium on circuits and systems. IEEE; 2006. p. 1227–30.
7.
Zurück zum Zitat Bartolozzi C, Indiveri G. Synaptic dynamics in analog VLSI. Neural Comput. 2007;19(10):2581–603.PubMedCrossRef Bartolozzi C, Indiveri G. Synaptic dynamics in analog VLSI. Neural Comput. 2007;19(10):2581–603.PubMedCrossRef
8.
Zurück zum Zitat Ben-Yishai R, Lev Bar-Or R, Sompolinsky H. Theory of orientation tuning in visual cortex. Proc Natl Acad Sci USA. 1995;92(9):3844–8.PubMedCrossRef Ben-Yishai R, Lev Bar-Or R, Sompolinsky H. Theory of orientation tuning in visual cortex. Proc Natl Acad Sci USA. 1995;92(9):3844–8.PubMedCrossRef
9.
10.
Zurück zum Zitat Binzegger T, Douglas RJ, Martin K. A quantitative map of the circuit of cat primary visual cortex. J Neurosci. 2004;24(39):8441–53.PubMedCrossRef Binzegger T, Douglas RJ, Martin K. A quantitative map of the circuit of cat primary visual cortex. J Neurosci. 2004;24(39):8441–53.PubMedCrossRef
11.
Zurück zum Zitat Brader J, Senn W, Fusi S. Learning real world stimuli in a neural network with spike-driven synaptic dynamics. Neural Comput. 2007;19:2881–912.PubMedCrossRef Brader J, Senn W, Fusi S. Learning real world stimuli in a neural network with spike-driven synaptic dynamics. Neural Comput. 2007;19:2881–912.PubMedCrossRef
13.
Zurück zum Zitat Chan V, Liu SC, van Schaik A. AER EAR: a matched silicon cochlea pair with address event representation interface. IEEE Trans Circuit Syst I. 2006;54(1):48–59, Special issue on sensors. Chan V, Liu SC, van Schaik A. AER EAR: a matched silicon cochlea pair with address event representation interface. IEEE Trans Circuit Syst I. 2006;54(1):48–59, Special issue on sensors.
14.
Zurück zum Zitat Chicca E, Fusi S. Stochastic synaptic plasticity in deterministic a VLSI networks of spiking neurons. In: Rattay F, editor. Proceedings of the world congress on neuroinformatics, ARGESIM reports, 2001. Vienna: ARGESIM/ASIM Verlag; 2001. p. 468–77. Chicca E, Fusi S. Stochastic synaptic plasticity in deterministic a VLSI networks of spiking neurons. In: Rattay F, editor. Proceedings of the world congress on neuroinformatics, ARGESIM reports, 2001. Vienna: ARGESIM/ASIM Verlag; 2001. p. 468–77.
15.
Zurück zum Zitat Chicca E, Indiveri G, Douglas R. An event based VLSI network of integrate-and-fire neurons. In: Proceedings of IEEE international symposium on circuits and systems. IEEE; 2004. p. V-357–60. Chicca E, Indiveri G, Douglas R. An event based VLSI network of integrate-and-fire neurons. In: Proceedings of IEEE international symposium on circuits and systems. IEEE; 2004. p. V-357–60.
16.
Zurück zum Zitat Chicca E, Indiveri G, Douglas R. Context dependent amplification of both rate and event-correlation in a VLSI network of spiking neurons. In: Schölkopf B, Platt J, Hofmann T, editors. Advances in neural information processing systems, vol. 19. Neural Information Processing Systems Foundation. Cambridge, MA: MIT Press; 2007, in press. Chicca E, Indiveri G, Douglas R. Context dependent amplification of both rate and event-correlation in a VLSI network of spiking neurons. In: Schölkopf B, Platt J, Hofmann T, editors. Advances in neural information processing systems, vol. 19. Neural Information Processing Systems Foundation. Cambridge, MA: MIT Press; 2007, in press.
17.
Zurück zum Zitat Chicca E, Whatley AM, Dante V, Lichtsteiner P, Delbrück T, Del Giudice P, et al. A multi-chip pulse-based neuromorphic infrastructure and its application to a model of orientation selectivity. IEEE Trans Circuit Syst I Regular Paper. 2007;5(54):981–93.CrossRef Chicca E, Whatley AM, Dante V, Lichtsteiner P, Delbrück T, Del Giudice P, et al. A multi-chip pulse-based neuromorphic infrastructure and its application to a model of orientation selectivity. IEEE Trans Circuit Syst I Regular Paper. 2007;5(54):981–93.CrossRef
18.
Zurück zum Zitat Choi TYW, Merolla PA, Arthur JV, Boahen KA, Shi BE. Neuromorphic implementation of orientation hypercolumns. IEEE Trans Circuit Syst I. 2005;52(6):1049–60.CrossRef Choi TYW, Merolla PA, Arthur JV, Boahen KA, Shi BE. Neuromorphic implementation of orientation hypercolumns. IEEE Trans Circuit Syst I. 2005;52(6):1049–60.CrossRef
19.
Zurück zum Zitat Culurciello E, Etienne-Cummings R, Boahen K. Arbitrated address-event representation digital image sensor. Electron Lett. 2001;37(24):1443–5.CrossRef Culurciello E, Etienne-Cummings R, Boahen K. Arbitrated address-event representation digital image sensor. Electron Lett. 2001;37(24):1443–5.CrossRef
20.
Zurück zum Zitat Dayan P, Abbott L. Theoretical neuroscience: computational and mathematical modeling of neural systems. Cambridge, MA: MIT Press; 2001. Dayan P, Abbott L. Theoretical neuroscience: computational and mathematical modeling of neural systems. Cambridge, MA: MIT Press; 2001.
21.
Zurück zum Zitat Deiss S, Douglas R, Whatley A. A pulse-coded communications infrastructure for neuromorphic systems. In: Maass W, Bishop CM. editors. Pulsed neural networks, chapter 6. Cambridge, MA: MIT Press; 1998. p. 157–78. Deiss S, Douglas R, Whatley A. A pulse-coded communications infrastructure for neuromorphic systems. In: Maass W, Bishop CM. editors. Pulsed neural networks, chapter 6. Cambridge, MA: MIT Press; 1998. p. 157–78.
22.
Zurück zum Zitat Deneve S. Bayesian spiking neurons 1: inference. Neural Comput. 2007;20(1):91–117.CrossRef Deneve S. Bayesian spiking neurons 1: inference. Neural Comput. 2007;20(1):91–117.CrossRef
23.
Zurück zum Zitat Deneve S, Latham P, Pouget A. Efficient computation and cue integration with noisy population codes. Nat Neurosci. 2001;4(8):826–31.PubMedCrossRef Deneve S, Latham P, Pouget A. Efficient computation and cue integration with noisy population codes. Nat Neurosci. 2001;4(8):826–31.PubMedCrossRef
24.
Zurück zum Zitat DeYong MR, Findley RL, Fields C. The design, fabrication, and test of a new VLSI hybrid analog-digital neural processing element. IEEE Trans Neural Netw. 1992;3(3):363–74.PubMedCrossRef DeYong MR, Findley RL, Fields C. The design, fabrication, and test of a new VLSI hybrid analog-digital neural processing element. IEEE Trans Neural Netw. 1992;3(3):363–74.PubMedCrossRef
25.
Zurück zum Zitat Douglas R, Mahowald M. Silicon neurons. In: M. Arbib, editor. The handbook of brain theory and neural networks. Boston, MA: MIT Press; 1995. p. 282–9. Douglas R, Mahowald M. Silicon neurons. In: M. Arbib, editor. The handbook of brain theory and neural networks. Boston, MA: MIT Press; 1995. p. 282–9.
26.
Zurück zum Zitat Douglas R, Mahowald M, Martin K. Hybrid analog-digital architectures for neuromorphic systems. In: Proceedings of IEEE world congress on computational intelligence, vol. 3. IEEE; 1994. p. 1848–53. Douglas R, Mahowald M, Martin K. Hybrid analog-digital architectures for neuromorphic systems. In: Proceedings of IEEE world congress on computational intelligence, vol. 3. IEEE; 1994. p. 1848–53.
27.
Zurück zum Zitat Douglas R, Mahowald M, Mead C. Neuromorphic analogue VLSI. Annu Rev Neurosci. 1995;18:255–81.PubMedCrossRef Douglas R, Mahowald M, Mead C. Neuromorphic analogue VLSI. Annu Rev Neurosci. 1995;18:255–81.PubMedCrossRef
28.
Zurück zum Zitat Douglas R, Martin K. Neural circuits of the neocortex. Annl Rev Neurosci. 2004;27:419–51.CrossRef Douglas R, Martin K. Neural circuits of the neocortex. Annl Rev Neurosci. 2004;27:419–51.CrossRef
29.
Zurück zum Zitat Fusi S. Hebbian spike-driven synaptic plasticity for learning patterns of mean firing rates. Biol Cybernet. 2002;87:459–70.CrossRef Fusi S. Hebbian spike-driven synaptic plasticity for learning patterns of mean firing rates. Biol Cybernet. 2002;87:459–70.CrossRef
30.
Zurück zum Zitat Fusi S, Abbott LF. Limits on the memory storage capacity of bounded synapses. Nat Neurosci. 2007;10:485–93.PubMed Fusi S, Abbott LF. Limits on the memory storage capacity of bounded synapses. Nat Neurosci. 2007;10:485–93.PubMed
31.
Zurück zum Zitat Fusi S, Annunziato M, Badoni D, Salamon A, Amit DJ. Spike–driven synaptic plasticity: theory, simulation, VLSI implementation. Neural Comput. 2000;12:2227–58.PubMedCrossRef Fusi S, Annunziato M, Badoni D, Salamon A, Amit DJ. Spike–driven synaptic plasticity: theory, simulation, VLSI implementation. Neural Comput. 2000;12:2227–58.PubMedCrossRef
32.
Zurück zum Zitat Giulioni M, Camilleri P, Dante V, Badoni D, Indiveri G, Braun J, et al. A VLSI network of spiking neurons with plastic fully configurable “stop-learning” synapses. In: Proceedings of IEEE international conference on electronics, circuits, and systems, ICECS 2008. IEEE; 2008. p. 678–81. Giulioni M, Camilleri P, Dante V, Badoni D, Indiveri G, Braun J, et al. A VLSI network of spiking neurons with plastic fully configurable “stop-learning” synapses. In: Proceedings of IEEE international conference on electronics, circuits, and systems, ICECS 2008. IEEE; 2008. p. 678–81.
33.
Zurück zum Zitat Gütig R, Sompolinsky H. The tempotron: a neuron that learns spike timing-based decisions. Nat Neurosci. 2006;9:420–28. doi:10.1038/nn1643. Gütig R, Sompolinsky H. The tempotron: a neuron that learns spike timing-based decisions. Nat Neurosci. 2006;9:420–28. doi:10.​1038/​nn1643.
34.
Zurück zum Zitat Häfliger P. Adaptive wta with an analog vlsi neuromorphic learning chip. IEEE Trans Neural Netw. 2007;18(2):551–72.PubMedCrossRef Häfliger P. Adaptive wta with an analog vlsi neuromorphic learning chip. IEEE Trans Neural Netw. 2007;18(2):551–72.PubMedCrossRef
35.
Zurück zum Zitat Hahnloser R, Sarpeshkar R, Mahowald M, Douglas R, Seung S. Digital selection and analog amplification co-exist in an electronic circuit inspired by neocortex. Nature. 2000;405(6789):947–51.PubMedCrossRef Hahnloser R, Sarpeshkar R, Mahowald M, Douglas R, Seung S. Digital selection and analog amplification co-exist in an electronic circuit inspired by neocortex. Nature. 2000;405(6789):947–51.PubMedCrossRef
36.
Zurück zum Zitat Hansel D, Sompolinsky H. Methods in neuronal modeling, chap. Modeling feature selectivity in local cortical circuits. Cambridge, MA: MIT Press; 1998. p. 499–567. Hansel D, Sompolinsky H. Methods in neuronal modeling, chap. Modeling feature selectivity in local cortical circuits. Cambridge, MA: MIT Press; 1998. p. 499–567.
37.
Zurück zum Zitat Hylander P, Meador J, Frie E. VLSI implementation of pulse coded winner take all networks. In: Proceedings of the 36th Midwest symposium on circuits and systems, vol. 1. 1993. p. 758–61. Hylander P, Meador J, Frie E. VLSI implementation of pulse coded winner take all networks. In: Proceedings of the 36th Midwest symposium on circuits and systems, vol. 1. 1993. p. 758–61.
38.
Zurück zum Zitat Indiveri G, Chicca E, Douglas R. A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans Neural Netw. 2006;17(1):211–21.PubMedCrossRef Indiveri G, Chicca E, Douglas R. A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans Neural Netw. 2006;17(1):211–21.PubMedCrossRef
39.
Zurück zum Zitat Indiveri G, Fusi S. Spike-based learning in VLSI networks of integrate-and-fire neurons. In: Proceedings on IEEE international symposium on circuits and systems, ISCAS 2007. 2007. p. 3371–4. Indiveri G, Fusi S. Spike-based learning in VLSI networks of integrate-and-fire neurons. In: Proceedings on IEEE international symposium on circuits and systems, ISCAS 2007. 2007. p. 3371–4.
40.
Zurück zum Zitat Indiveri G, Mürer R, Kramer J. Active vision using an analog VLSI model of selective attention. IEEE Trans Circuit Syst II. 2001;48(5):492–500.CrossRef Indiveri G, Mürer R, Kramer J. Active vision using an analog VLSI model of selective attention. IEEE Trans Circuit Syst II. 2001;48(5):492–500.CrossRef
41.
Zurück zum Zitat Kandel ER, Schwartz J, Jessell TM. Principles of neural science. McGraw Hill; 2000. Kandel ER, Schwartz J, Jessell TM. Principles of neural science. McGraw Hill; 2000.
42.
Zurück zum Zitat Lazzaro J, Wawrzynek J, Mahowald M, Sivilotti M, Gillespie D. Silicon auditory processors as computer peripherals. IEEE Trans Neural Netw. 1993;4:523–8.PubMedCrossRef Lazzaro J, Wawrzynek J, Mahowald M, Sivilotti M, Gillespie D. Silicon auditory processors as computer peripherals. IEEE Trans Neural Netw. 1993;4:523–8.PubMedCrossRef
43.
Zurück zum Zitat Lichtsteiner P, Posch C, Delbruck T. An 128 × 128 120 dB 15μs-latency temporal contrast vision sensor. IEEE J Solid State Circuit. 43(2):566–76.CrossRef Lichtsteiner P, Posch C, Delbruck T. An 128 × 128 120 dB 15μs-latency temporal contrast vision sensor. IEEE J Solid State Circuit. 43(2):566–76.CrossRef
44.
Zurück zum Zitat Ma W, Beck J, Latham P, Pouget A. Bayesian inference with probabilistic population codes. Nat Neurosci. 2006;9(11):1432–8.PubMedCrossRef Ma W, Beck J, Latham P, Pouget A. Bayesian inference with probabilistic population codes. Nat Neurosci. 2006;9(11):1432–8.PubMedCrossRef
45.
Zurück zum Zitat Mallik U, Vogelstein R, Culurciello E, Etienne-Cummings R, Cauwenberghs G. A real-time spike-domain sensory information processing system. In: Proceedings of IEEE international symposium on circuits and systems, vol. 3. 2005. p. 1919–22. Mallik U, Vogelstein R, Culurciello E, Etienne-Cummings R, Cauwenberghs G. A real-time spike-domain sensory information processing system. In: Proceedings of IEEE international symposium on circuits and systems, vol. 3. 2005. p. 1919–22.
46.
Zurück zum Zitat Markram H, Lübke J, Frotscher M, Sakmann B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science. 1997;275:213–5.PubMedCrossRef Markram H, Lübke J, Frotscher M, Sakmann B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science. 1997;275:213–5.PubMedCrossRef
47.
Zurück zum Zitat Mead C. Analog VLSI and neural systems. Reading, MA: Addison-Wesley; 1989. Mead C. Analog VLSI and neural systems. Reading, MA: Addison-Wesley; 1989.
48.
Zurück zum Zitat Mead C. Neuromorphic electronic systems. Proc IEEE. 1990;78(10):1629–36.CrossRef Mead C. Neuromorphic electronic systems. Proc IEEE. 1990;78(10):1629–36.CrossRef
49.
Zurück zum Zitat Merolla PA, Arthur JV, Shi BE, Boahen KA. Expandable networks for neuromorphic chips. IEEE Trans Circuit System I Fundam Theory Appl 2007;54(2):301–11.CrossRef Merolla PA, Arthur JV, Shi BE, Boahen KA. Expandable networks for neuromorphic chips. IEEE Trans Circuit System I Fundam Theory Appl 2007;54(2):301–11.CrossRef
50.
Zurück zum Zitat Mitra S, Fusi S, Indiveri G. Real-time classification of complex patterns using spike-based learning in neuromorphic VLSI. IEEE Trans Biomed Circuit Syst 2009;3(1), accepted Sept 2008, in press. Mitra S, Fusi S, Indiveri G. Real-time classification of complex patterns using spike-based learning in neuromorphic VLSI. IEEE Trans Biomed Circuit Syst 2009;3(1), accepted Sept 2008, in press.
51.
Zurück zum Zitat Oster M, Liu SC. A winner-take-all spiking network with spiking inputs. In: 11th IEEE international conference on electronics, circuits and systems (ICECS 2004). 2004. Oster M, Liu SC. A winner-take-all spiking network with spiking inputs. In: 11th IEEE international conference on electronics, circuits and systems (ICECS 2004). 2004.
52.
Zurück zum Zitat Ott T, Stoop R. The neurodynamics of belief-propagation on binary markov random fields. In: Saul LK, Weiss Y, Bottou L, editors. Advances in neural information processing systems, vol. 18. Cambridge, MA: MIT Press; 2006. p. 1057–64. Ott T, Stoop R. The neurodynamics of belief-propagation on binary markov random fields. In: Saul LK, Weiss Y, Bottou L, editors. Advances in neural information processing systems, vol. 18. Cambridge, MA: MIT Press; 2006. p. 1057–64.
53.
Zurück zum Zitat Bofill-i Petit A, Murray A. Learning temporal correlations in biologically-inspired aVLSI. In: Proceedings of IEEE international symposium on circuits and systems, vol. V. IEEE; 2003. p. 817–20. Bofill-i Petit A, Murray A. Learning temporal correlations in biologically-inspired aVLSI. In: Proceedings of IEEE international symposium on circuits and systems, vol. V. IEEE; 2003. p. 817–20.
54.
Zurück zum Zitat Bofill-i Petit A, Murray AF. Synchrony detection and amplification by silicon neurons with STDP synapses. IEEE Trans Neural Netw 2004;15(5):1296–304.PubMedCrossRef Bofill-i Petit A, Murray AF. Synchrony detection and amplification by silicon neurons with STDP synapses. IEEE Trans Neural Netw 2004;15(5):1296–304.PubMedCrossRef
55.
56.
Zurück zum Zitat Riis H, Hafliger P. Spike based learning with weak multi-level static memory. In: Proceedings of IEEE international symposium on circuits and systems. IEEE; 2004. p. 393–6. Riis H, Hafliger P. Spike based learning with weak multi-level static memory. In: Proceedings of IEEE international symposium on circuits and systems. IEEE; 2004. p. 393–6.
57.
Zurück zum Zitat Rutishauser U, Douglas R. State-dependent computation using coupled recurrent networks. Neural Comput. 2008; in press. Rutishauser U, Douglas R. State-dependent computation using coupled recurrent networks. Neural Comput. 2008; in press.
58.
Zurück zum Zitat van Schaik A. Building blocks for electronic spiking neural networks. Neural Netw. 2001;14(6–7):617–28.PubMedCrossRef van Schaik A. Building blocks for electronic spiking neural networks. Neural Netw. 2001;14(6–7):617–28.PubMedCrossRef
59.
Zurück zum Zitat Schemmel J, Fieres J, Meier K. Wafer-scale integration of analog neural networks. In: Proceedings of the IEEE international joint conference on neural networks. 2008, in press. Schemmel J, Fieres J, Meier K. Wafer-scale integration of analog neural networks. In: Proceedings of the IEEE international joint conference on neural networks. 2008, in press.
60.
Zurück zum Zitat Serrano-Gotarredona R, Oster M, Lichtsteiner P, Linares-Barranco A, Paz-Vicente R, Gómez-Rodríguez F, et al. AER building blocks for multi-layer multi-chip neuromorphic vision systems. In: Becker S, Thrun S, Obermayer K, editors. Advances in neural information processing systems, vol. 15. Cambridge, MA: MIT Press; 2005. Serrano-Gotarredona R, Oster M, Lichtsteiner P, Linares-Barranco A, Paz-Vicente R, Gómez-Rodríguez F, et al. AER building blocks for multi-layer multi-chip neuromorphic vision systems. In: Becker S, Thrun S, Obermayer K, editors. Advances in neural information processing systems, vol. 15. Cambridge, MA: MIT Press; 2005.
61.
Zurück zum Zitat Somers DC, Nelson SB, Sur M. An emergent model of orientation selectivity in cat visual cortical simple cells. J Neurosci. 1995;15:5448–65.PubMed Somers DC, Nelson SB, Sur M. An emergent model of orientation selectivity in cat visual cortical simple cells. J Neurosci. 1995;15:5448–65.PubMed
62.
Zurück zum Zitat Steimer A, Maass W, Douglas R. Belief-propagation in networks of spiking neurons. Neural Comput. 2009, submitted. Steimer A, Maass W, Douglas R. Belief-propagation in networks of spiking neurons. Neural Comput. 2009, submitted.
65.
Zurück zum Zitat van Vreeswijk C, Sompolinsky H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science. 1996;274(5293):1724–6.PubMedCrossRef van Vreeswijk C, Sompolinsky H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science. 1996;274(5293):1724–6.PubMedCrossRef
66.
Zurück zum Zitat Wijekoon J, Dudek P. Compact silicon neuron circuit with spiking and bursting behaviour. Neural Netw. 2008;21(2–3):524–34.PubMed Wijekoon J, Dudek P. Compact silicon neuron circuit with spiking and bursting behaviour. Neural Netw. 2008;21(2–3):524–34.PubMed
67.
Zurück zum Zitat Wilimzig C, Schneider S, Schöner G. The time course of saccadic decision making: dynamic field theory. Neural Netw. 2006;19:1059–74.PubMedCrossRef Wilimzig C, Schneider S, Schöner G. The time course of saccadic decision making: dynamic field theory. Neural Netw. 2006;19:1059–74.PubMedCrossRef
68.
Zurück zum Zitat Yang Z, Murray A, Worgotter F, Cameron K, Boonsobhak V. A neuromorphic depth-from-motion vision model with stdp adaptation. IEEE Trans Neural Netw. 2006;17(2):482–95.PubMedCrossRef Yang Z, Murray A, Worgotter F, Cameron K, Boonsobhak V. A neuromorphic depth-from-motion vision model with stdp adaptation. IEEE Trans Neural Netw. 2006;17(2):482–95.PubMedCrossRef
69.
Zurück zum Zitat Yu A, Dayan P. Inference,attention, and decision in a Bayesian neural architecture. In: Saul LK, Weiss Y, Bottou L, editors. Advances in neural information processing systems, vol. 17. Cambridge, MA: MIT Press; 2005. p. 1577–84. Yu A, Dayan P. Inference,attention, and decision in a Bayesian neural architecture. In: Saul LK, Weiss Y, Bottou L, editors. Advances in neural information processing systems, vol. 17. Cambridge, MA: MIT Press; 2005. p. 1577–84.
Metadaten
Titel
Artificial Cognitive Systems: From VLSI Networks of Spiking Neurons to Neuromorphic Cognition
verfasst von
Giacomo Indiveri
Elisabetta Chicca
Rodney J. Douglas
Publikationsdatum
01.06.2009
Verlag
Springer-Verlag
Erschienen in
Cognitive Computation / Ausgabe 2/2009
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-008-9003-6

Weitere Artikel der Ausgabe 2/2009

Cognitive Computation 2/2009 Zur Ausgabe

Premium Partner