Skip to main content
Erschienen in: Experimental Mechanics 7/2020

15.06.2020 | Research paper

On the New Shear Constraint for Plane-Stress Orthotropic Plasticity Modeling of Sheet Metals

verfasst von: W. Tong, M. Alharbi, J. Sheng

Erschienen in: Experimental Mechanics | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Background

A shear constraint was very recently proposed by Abedini et al. (Int. J. Solids and Structures 151: 118–134 2018) to evaluate and calibrate advanced non-quadratic anisotropic yield criteria and to eliminate what they called non-physical numerical artifacts in those criteria.

Objective

This investigation points out that such a shear constraint is in fact unnecessary for plane-stress orthotropic plasticity in general.

Methods

Using the well-known Hill’s 1948 quadratic and Gotoh’s 1977 quartic yield functions for orthotropic sheet metals in plane stress, it is shown analytically that pure shear stressing and pure shear straining loading conditions are not equivalent except for very special cases. By conducting a series of shearing experiments on an aluminum sheet metal, the actual test results are shown not to provide any unequivocal supporting evidence at all to the newly proposed shear constraint.

Results

The so-called non-physical numerical artifacts of the non-equivalence in pure shear stressing and pure shear straining of a sheet metal are in fact the intrinsic features of an anisotropic material in general.

Conclusions

The newly proposed shear constraint should thus not be accepted to be universally applicable at all for anisotropic plasticity modeling of sheet metals. Such a proposed constraint itself shall be regarded as a provisional simplifying assumption of reduced anisotropy only for some particular sheet metals under consideration.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Per the 2D coordinate transformation of stress tensor, one has \( \sigma _{x} = \sigma _{1} \text {cos}^{2}\theta +\sigma _{2} \sin \limits ^{2}\theta \), \( \sigma _{y} = \sigma _{1} \sin \limits ^{2}\theta +\sigma _{2} \text {cos}^{2}\theta \), \( \tau _{xy} =(\sigma _{1}-\sigma _{2})\sin \limits \theta \text {cos}\theta \).
 
2
So for simplicity, the superscript ‘p’ will be dropped in the rest of the manuscript for components of plastic strain increments
 
Literatur
1.
Zurück zum Zitat ASTM B831-19 (2019) Standard Test Method for Shear Testing of Thin Aluminum Alloy Products. ASTM International, West Conshohocken, PA, www.astm.org ASTM B831-19 (2019) Standard Test Method for Shear Testing of Thin Aluminum Alloy Products. ASTM International, West Conshohocken, PA, www.​astm.​org
2.
Zurück zum Zitat Abedini A, Butcher C, Rahmaan T, Worswick M (2018) Evaluation and calibration of anisotropic yield criteria in shear loading: Constraints to eliminate numerical artefacts. Int. J. Solids and Structures 151:118–134CrossRef Abedini A, Butcher C, Rahmaan T, Worswick M (2018) Evaluation and calibration of anisotropic yield criteria in shear loading: Constraints to eliminate numerical artefacts. Int. J. Solids and Structures 151:118–134CrossRef
3.
Zurück zum Zitat Bae DH, Ghosh AK (2003) A planar simple shear test and flow behavior in a superplastic Al-Mg alloy. Metall. Mater. Trans. 34A:2465–2471CrossRef Bae DH, Ghosh AK (2003) A planar simple shear test and flow behavior in a superplastic Al-Mg alloy. Metall. Mater. Trans. 34A:2465–2471CrossRef
4.
Zurück zum Zitat Balawender T (2005) A comparison of a tensile test with a planar simple shear test in sheet metals. Scientific Bulletin Series C 19:1–6 Balawender T (2005) A comparison of a tensile test with a planar simple shear test in sheet metals. Scientific Bulletin Series C 19:1–6
5.
Zurück zum Zitat Barlat F, Kim DJ (2016) Advanced constitutive modeling and application to industrial forming processes. MATEC Web of Conferences (NUMIFORM2016) 80:15013CrossRef Barlat F, Kim DJ (2016) Advanced constitutive modeling and application to industrial forming processes. MATEC Web of Conferences (NUMIFORM2016) 80:15013CrossRef
6.
Zurück zum Zitat Barlat F, Maeda Y, Chung K, Yanagawa M, Brem JC, Hayashida Y, Lege DJ, Matsui K, Murtha SJ, Hattori S, Becker RC, Makosey S (1997) Yield function development for aluminum alloy sheets. J. Mech. Phys. Solids 45(11/12):1727–1763CrossRef Barlat F, Maeda Y, Chung K, Yanagawa M, Brem JC, Hayashida Y, Lege DJ, Matsui K, Murtha SJ, Hattori S, Becker RC, Makosey S (1997) Yield function development for aluminum alloy sheets. J. Mech. Phys. Solids 45(11/12):1727–1763CrossRef
7.
Zurück zum Zitat Blaber J, Adair B, Antoniou A (2015) Ncorr: Open-source 2D digital image correlation Matlab software. Exp Mech 55(6):1105–1122CrossRef Blaber J, Adair B, Antoniou A (2015) Ncorr: Open-source 2D digital image correlation Matlab software. Exp Mech 55(6):1105–1122CrossRef
8.
Zurück zum Zitat Bouvier S, Haddadi H, Levee P, Teodosiu C (2006) Simple shear tests: Experimental techniques and characterization of the plastic anisotropy of rolled sheets at large strains. J. Mater. Proc. Tech. 172:96–103CrossRef Bouvier S, Haddadi H, Levee P, Teodosiu C (2006) Simple shear tests: Experimental techniques and characterization of the plastic anisotropy of rolled sheets at large strains. J. Mater. Proc. Tech. 172:96–103CrossRef
9.
Zurück zum Zitat Drucker DC (1959) A definition of stable inelastic material. ASME. J. Appl. Mech. 26:101–106MathSciNetMATH Drucker DC (1959) A definition of stable inelastic material. ASME. J. Appl. Mech. 26:101–106MathSciNetMATH
10.
Zurück zum Zitat Gardner KA, Seidt JD, Isakov M, Gilat A (2014) Characterization of sheet metals in shear over a wide range of strain rates. Dynamic Behavior of Materials 1:313–317 Gardner KA, Seidt JD, Isakov M, Gilat A (2014) Characterization of sheet metals in shear over a wide range of strain rates. Dynamic Behavior of Materials 1:313–317
11.
Zurück zum Zitat Gotoh M (1977) A theory of plastic anisotropy based on a yield function of fourth order (plane stress state) I & II. Int. J. Mech. Sci. 19:505–520CrossRef Gotoh M (1977) A theory of plastic anisotropy based on a yield function of fourth order (plane stress state) I & II. Int. J. Mech. Sci. 19:505–520CrossRef
12.
Zurück zum Zitat Guner A, Zillmann B, Lampke T, Tekkaya AE (2014) In-situ measurement of loading stresses with X-ray diffraction for yield locus determination. Int J Automot Technol 15:303–316CrossRef Guner A, Zillmann B, Lampke T, Tekkaya AE (2014) In-situ measurement of loading stresses with X-ray diffraction for yield locus determination. Int J Automot Technol 15:303–316CrossRef
13.
Zurück zum Zitat Hibbeler R (2014) Mechanics of materials, Ninth Edition. Prentice Hall, New York Hibbeler R (2014) Mechanics of materials, Ninth Edition. Prentice Hall, New York
14.
Zurück zum Zitat Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc. Royal Soc, London n193:281–297MathSciNetMATH Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc. Royal Soc, London n193:281–297MathSciNetMATH
15.
Zurück zum Zitat Hill R (1950) The mathematical theory of plasticity. Clarendon Press, OxfordMATH Hill R (1950) The mathematical theory of plasticity. Clarendon Press, OxfordMATH
16.
Zurück zum Zitat Hill R (1958) A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 6:236–249CrossRef Hill R (1958) A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 6:236–249CrossRef
17.
18.
19.
Zurück zum Zitat Hill R (1990) Constitutive modeling of orthotropic plasticity in sheet metals. J. Mech. Phys. Solids 38:403–417CrossRef Hill R (1990) Constitutive modeling of orthotropic plasticity in sheet metals. J. Mech. Phys. Solids 38:403–417CrossRef
20.
Zurück zum Zitat Hu W (2003) Characterized behaviors and corresponding yield criterion of anisotropic sheet metals. Mater Sci Eng A345:139–144CrossRef Hu W (2003) Characterized behaviors and corresponding yield criterion of anisotropic sheet metals. Mater Sci Eng A345:139–144CrossRef
21.
Zurück zum Zitat Hubnatter W, Merklein M (2008) Characterization of material behavior under pure shear condition. Int J Mater Form 1:233–236CrossRef Hubnatter W, Merklein M (2008) Characterization of material behavior under pure shear condition. Int J Mater Form 1:233–236CrossRef
22.
Zurück zum Zitat Kang J, Wilkinson DS, Wu PD, Bruhis M, Jain M, Embury JD, Mishra RK (2008) Constitutive behavior of AA5754 sheet materials at large strains. ASME Journal of Engineering Materials and Technology 130 031004–1–031004–5 Kang J, Wilkinson DS, Wu PD, Bruhis M, Jain M, Embury JD, Mishra RK (2008) Constitutive behavior of AA5754 sheet materials at large strains. ASME Journal of Engineering Materials and Technology 130 031004–1–031004–5
23.
Zurück zum Zitat Lubliner J (1990) Plasticity theory. Macmillan, New YorkMATH Lubliner J (1990) Plasticity theory. Macmillan, New YorkMATH
24.
Zurück zum Zitat Maugin GA (1992) The thermomechanics of plasticity and fracture. Cambridge University Press, Cambridge, UKCrossRef Maugin GA (1992) The thermomechanics of plasticity and fracture. Cambridge University Press, Cambridge, UKCrossRef
25.
Zurück zum Zitat Miyauchi K (1984) A proposal of a planar simple shear test in sheet metals. Sci. Papers Inst. Phys. Chem. Res. 78:27–40 Miyauchi K (1984) A proposal of a planar simple shear test in sheet metals. Sci. Papers Inst. Phys. Chem. Res. 78:27–40
26.
Zurück zum Zitat Ogden RW (1984) Non-Linear Elastic deformations. John Wiley & Sons, New YorkMATH Ogden RW (1984) Non-Linear Elastic deformations. John Wiley & Sons, New YorkMATH
27.
Zurück zum Zitat Pacheco AA, Batra RC (2008) Instabilities in shear and simple shear deformations of gold crystals. J. Mech. Phys. Solids 56:3116–3143CrossRef Pacheco AA, Batra RC (2008) Instabilities in shear and simple shear deformations of gold crystals. J. Mech. Phys. Solids 56:3116–3143CrossRef
28.
Zurück zum Zitat Pan B, Li K, Tong W (2013) Fast, robust and accurate digital image correlation calculation without redundant computation. Exp Mech 53:1277–1289CrossRef Pan B, Li K, Tong W (2013) Fast, robust and accurate digital image correlation calculation without redundant computation. Exp Mech 53:1277–1289CrossRef
29.
Zurück zum Zitat Peirs J, Verleysen P, Degrieck J (2012) Novel technique for static and dynamic shear testing of Ti6Al4V sheet. Exp Mech 52:729–741CrossRef Peirs J, Verleysen P, Degrieck J (2012) Novel technique for static and dynamic shear testing of Ti6Al4V sheet. Exp Mech 52:729–741CrossRef
30.
Zurück zum Zitat Rauch EF (1998) Plastic anisotropy of sheet metals determined by simple shear tests. Mater. Sci. Engng. A 241:179–183CrossRef Rauch EF (1998) Plastic anisotropy of sheet metals determined by simple shear tests. Mater. Sci. Engng. A 241:179–183CrossRef
31.
Zurück zum Zitat Tong W (2013) Formulation of Lucas–Kanade digital image correlation algorithms for non-contact deformation measurements: a review. Strain 49:313–334CrossRef Tong W (2013) Formulation of Lucas–Kanade digital image correlation algorithms for non-contact deformation measurements: a review. Strain 49:313–334CrossRef
32.
Zurück zum Zitat Tong W (2016) Application of Gotoh’s orthotropic yield function for modeling advanced high-strength steel sheets. ASME Journal of Manufacturing Science and Engineering 138:094502–1CrossRef Tong W (2016) Application of Gotoh’s orthotropic yield function for modeling advanced high-strength steel sheets. ASME Journal of Manufacturing Science and Engineering 138:094502–1CrossRef
33.
Zurück zum Zitat Tong W (2016) Generalized fourth-order Hill’s 1979 yield function for modeling sheet metals in plane stress. Acta Mech 227(10):2719–2733MathSciNetCrossRef Tong W (2016) Generalized fourth-order Hill’s 1979 yield function for modeling sheet metals in plane stress. Acta Mech 227(10):2719–2733MathSciNetCrossRef
34.
Zurück zum Zitat Tong W (2018) Algebraic convexity conditions for Gotoh’s non-quadratic yield function. ASME Journal of Applied Mechanics 85:074501–1CrossRef Tong W (2018) Algebraic convexity conditions for Gotoh’s non-quadratic yield function. ASME Journal of Applied Mechanics 85:074501–1CrossRef
35.
Zurück zum Zitat Tong W (2018) An improved method of determining Gotoh’s nine material constants for a sheet metal with only seven or less experimental inputs. International Journal of Mechanical Sciences 140:394–406CrossRef Tong W (2018) An improved method of determining Gotoh’s nine material constants for a sheet metal with only seven or less experimental inputs. International Journal of Mechanical Sciences 140:394–406CrossRef
36.
Zurück zum Zitat Tong W (2018) On the certification of positive and convex Gotoh’s fourth-order yield function. J. Phys.: Conf. Ser. 1063:012093 Tong W (2018) On the certification of positive and convex Gotoh’s fourth-order yield function. J. Phys.: Conf. Ser. 1063:012093
37.
Zurück zum Zitat Tong W, Alharbi M (2017) Comparative evaluation of non-associated quadratic and associated quartic plasticity models for orthotropic sheet metals. Int. J. Solids and Structures 128:133–148CrossRef Tong W, Alharbi M (2017) Comparative evaluation of non-associated quadratic and associated quartic plasticity models for orthotropic sheet metals. Int. J. Solids and Structures 128:133–148CrossRef
38.
Zurück zum Zitat Tozawa N (1978) Plastic deformation behavior under the conditions of combined stress. In: Koistinen DP, Wang NM (eds) Mechanics of sheet metal forming, pp 81-110, Plenum Press, New York Tozawa N (1978) Plastic deformation behavior under the conditions of combined stress. In: Koistinen DP, Wang NM (eds) Mechanics of sheet metal forming, pp 81-110, Plenum Press, New York
39.
Zurück zum Zitat Vegter H, van den Boogaard AH (2006) A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states. Int J Plast 22:557–580CrossRef Vegter H, van den Boogaard AH (2006) A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states. Int J Plast 22:557–580CrossRef
40.
Zurück zum Zitat Wu H, Xu Z, Wang PT (1998) Torsion test of aluminum in the large strain range. Int. J. Plasticity 13:873–892CrossRef Wu H, Xu Z, Wang PT (1998) Torsion test of aluminum in the large strain range. Int. J. Plasticity 13:873–892CrossRef
41.
Zurück zum Zitat Yang G, Sheng J, Tong W, Carlson BE, Wang HP, Kovacevic R (2018) Tensile behavior of fusion-brazed aluminum alloy coach-peel joints fabricated by a dual-beam laser. Journal of Materials Processing Tech. 261:184–192CrossRef Yang G, Sheng J, Tong W, Carlson BE, Wang HP, Kovacevic R (2018) Tensile behavior of fusion-brazed aluminum alloy coach-peel joints fabricated by a dual-beam laser. Journal of Materials Processing Tech. 261:184–192CrossRef
42.
Zurück zum Zitat Yeoh OH (2001) Analysis of deformation and fracture of ‘pure shear’ rubber testpiece. Plastics, Rubber and Composites 30:389–397CrossRef Yeoh OH (2001) Analysis of deformation and fracture of ‘pure shear’ rubber testpiece. Plastics, Rubber and Composites 30:389–397CrossRef
Metadaten
Titel
On the New Shear Constraint for Plane-Stress Orthotropic Plasticity Modeling of Sheet Metals
verfasst von
W. Tong
M. Alharbi
J. Sheng
Publikationsdatum
15.06.2020
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 7/2020
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-020-00596-3

Weitere Artikel der Ausgabe 7/2020

Experimental Mechanics 7/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.