Skip to main content
Erschienen in: Wireless Networks 7/2016

01.10.2016

On the performance of cooperative cognitive networks with proactive relay selection

verfasst von: Khuong Ho-Van

Erschienen in: Wireless Networks | Ausgabe 7/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper provides a general outage analysis framework for cooperative cognitive networks with proactive relay selection over non-identical Rayleigh fading channels and under both maximum transmit power and interference power constraints. We firstly propose an exact closed-form outage probability expression, which is then exploited for determining the diversity order and coding gain for proactive relay selection scenarios as well as deriving system performance limits at either large maximum transmit power or large maximum interference power. The derived performance metrics bring several insights into system performance behavior without the need of time-consuming Monte-Carlo simulations. Various results confirm the validity of the proposed derivations and show that cooperative cognitive networks with proactive relay selection incur performance saturation and their performance depends considerably on the number of involved relays. In addition, cooperative cognitive networks are significantly better than dual-hop counterparts without any cost of system resources.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Due to the nature of regenerating the received information without noise enhancement, the DF relays are investigated in this paper and hence, literature survey relevant to the AF relays are not necessarily presented (e.g., [2]).
 
2
This means that \({\uplambda }_{tr}\) is the inverse of the fading power of the channel between the transmitter t and the receiver r, i.e., \({\uplambda }_{tr}=1/\mathcal {E}_{\left| h_{tr}\right| ^2}\{{\left| h_{tr} \right| ^2}\}\) where \(\mathcal {E}_X\{\cdot \}\) denotes the statistical expectation over the random variable X.
 
3
Some authors (e.g., [10]) also refer this scheme as the max-min relay selection.
 
4
Due to the nature of two-stage cooperative communications, the system capacity is given as \(C=\frac{1}{2}\log _2(1+\gamma _{SC})\). The capacity outage happens if \(C<U\) where U is the required transmission rate. Equivalently, the outage event happens if \(\gamma _{SC}<z\) where \(z=2^{2U}-1\), which shows the relation between the required transmission rate U and the SNR threshold z. For example, \(z=3,15\) corresponds \(U=1,2\) bps/Hz, respectively.
 
5
The Monte-Carlo simulation is well-known, e.g. [31], and hence, a description of how it is conducted is omitted.
 
Literatur
1.
Zurück zum Zitat Lee, J., Wang, H., Andrews, J. G., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 10(2), 390–395.CrossRef Lee, J., Wang, H., Andrews, J. G., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 10(2), 390–395.CrossRef
2.
Zurück zum Zitat Xia, M., & Aissa, S. (2013). Underlay cooperative AF relaying in cellular networks: Performance and challenges. IEEE Communications Magazine, 51(12), 170–176.CrossRef Xia, M., & Aissa, S. (2013). Underlay cooperative AF relaying in cellular networks: Performance and challenges. IEEE Communications Magazine, 51(12), 170–176.CrossRef
3.
Zurück zum Zitat Zhang, Z., Zhang, W., & Tellambura, C. (2009). OFDMA uplink frequency offset estimation via cooperative relaying. IEEE Transactions on Wireless Communications, 8(9), 4450–4456.CrossRef Zhang, Z., Zhang, W., & Tellambura, C. (2009). OFDMA uplink frequency offset estimation via cooperative relaying. IEEE Transactions on Wireless Communications, 8(9), 4450–4456.CrossRef
4.
Zurück zum Zitat Nabar, R. U., Bolcskei, H., & Kneubuhler, F. W. (2004). Fading relay channels: Performance limits and space–time signal design. IEEE Journal on Selected Areas in Communications, 22(6), 1099–1109.CrossRef Nabar, R. U., Bolcskei, H., & Kneubuhler, F. W. (2004). Fading relay channels: Performance limits and space–time signal design. IEEE Journal on Selected Areas in Communications, 22(6), 1099–1109.CrossRef
5.
Zurück zum Zitat Zhuang, W., & Ismail, M. (2012). Cooperation in wireless communication networks. IEEE Wireless Communications, 19(2), 10–20.CrossRef Zhuang, W., & Ismail, M. (2012). Cooperation in wireless communication networks. IEEE Wireless Communications, 19(2), 10–20.CrossRef
6.
Zurück zum Zitat Zhang, Z., Zhang, W., & Tellambura, C. (2009). Cooperative OFDM channel estimation in the presence of frequency offsets. IEEE Transactions on Vehicular Technology, 58(7), 3447–3459.CrossRef Zhang, Z., Zhang, W., & Tellambura, C. (2009). Cooperative OFDM channel estimation in the presence of frequency offsets. IEEE Transactions on Vehicular Technology, 58(7), 3447–3459.CrossRef
7.
Zurück zum Zitat Laneman, J. N., & Wornell, G. W. (2003). Distributed spacetime-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory, 49(10), 2415–2425.MathSciNetCrossRefMATH Laneman, J. N., & Wornell, G. W. (2003). Distributed spacetime-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory, 49(10), 2415–2425.MathSciNetCrossRefMATH
8.
Zurück zum Zitat Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.MathSciNetCrossRefMATH Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.MathSciNetCrossRefMATH
9.
Zurück zum Zitat Yeoh, P. L., Elkashlan, M., Chen, Z., & Collings, I. B. (2011). SER of multiple amplify-and-forward relays with selection diversity. IEEE Transactions on Communications, 59(8), 2078–2083.CrossRef Yeoh, P. L., Elkashlan, M., Chen, Z., & Collings, I. B. (2011). SER of multiple amplify-and-forward relays with selection diversity. IEEE Transactions on Communications, 59(8), 2078–2083.CrossRef
10.
Zurück zum Zitat Bletsas, A., Khisti, A., Reed, D. P., & Lippman, A. (2006). Simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications, 24(3), 659–672.CrossRef Bletsas, A., Khisti, A., Reed, D. P., & Lippman, A. (2006). Simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications, 24(3), 659–672.CrossRef
11.
Zurück zum Zitat Yan, Z., Zhang, X., & Wang, W. (2011). Exact outage performance of cognitive relay networks with maximum transmit power limits. IEEE Communications Letters, 15(12), 1317–1319.MathSciNetCrossRef Yan, Z., Zhang, X., & Wang, W. (2011). Exact outage performance of cognitive relay networks with maximum transmit power limits. IEEE Communications Letters, 15(12), 1317–1319.MathSciNetCrossRef
12.
Zurück zum Zitat Sun, H., & Naraghi-Pour, M. (2014). Decode-and-forward relay selection with imperfect CSI in cognitive relay networks. In Proceedings of IEEE military communications conference, Baltimore, Maryland, USA, pp. 416–421, Oct. 6–8. Sun, H., & Naraghi-Pour, M. (2014). Decode-and-forward relay selection with imperfect CSI in cognitive relay networks. In Proceedings of IEEE military communications conference, Baltimore, Maryland, USA, pp. 416–421, Oct. 6–8.
13.
Zurück zum Zitat Liping, L., Zhang, P., Zhang, G., & Qin, J. (2011). Outage performance for cognitive relay networks with underlay spectrum sharing. IEEE Communications Letters, 15(7), 710–712.CrossRef Liping, L., Zhang, P., Zhang, G., & Qin, J. (2011). Outage performance for cognitive relay networks with underlay spectrum sharing. IEEE Communications Letters, 15(7), 710–712.CrossRef
14.
Zurück zum Zitat Si, J., Li, Z., Chen, X., Hao, B. J., & Liu, Z. J. (2011). On the performance of cognitive relay networks under primary user’s outage constraint. IEEE Communications Letters, 15(4), 422–424.CrossRef Si, J., Li, Z., Chen, X., Hao, B. J., & Liu, Z. J. (2011). On the performance of cognitive relay networks under primary user’s outage constraint. IEEE Communications Letters, 15(4), 422–424.CrossRef
15.
Zurück zum Zitat Zhang, X., Yan, Z., Gao, Y., & Wang, W. (2013). On the study of outage performance for cognitive relay networks (CRN) with the Nth best-relay selection in Rayleigh-fading channels. IEEE Wireless Communications Letters, 2(1), 110–113.CrossRef Zhang, X., Yan, Z., Gao, Y., & Wang, W. (2013). On the study of outage performance for cognitive relay networks (CRN) with the Nth best-relay selection in Rayleigh-fading channels. IEEE Wireless Communications Letters, 2(1), 110–113.CrossRef
16.
Zurück zum Zitat Ding, H., Ge, J., da Costa, D. B., & Jiang, Z. (2011). Asymptotic analysis of cooperative diversity systems with relay selection in a spectrum-sharing scenario. IEEE Transactions on Vehicular Technology, 60, 457–472.CrossRef Ding, H., Ge, J., da Costa, D. B., & Jiang, Z. (2011). Asymptotic analysis of cooperative diversity systems with relay selection in a spectrum-sharing scenario. IEEE Transactions on Vehicular Technology, 60, 457–472.CrossRef
17.
Zurück zum Zitat Zhang, X., Xing, J., Yan, Z., Gao, Y., & Wang, W. (2013). Outage performance study of cognitive relay networks with imperfect channel knowledge. IEEE Communications Letters, 17(1), 27–30.CrossRef Zhang, X., Xing, J., Yan, Z., Gao, Y., & Wang, W. (2013). Outage performance study of cognitive relay networks with imperfect channel knowledge. IEEE Communications Letters, 17(1), 27–30.CrossRef
18.
Zurück zum Zitat Giang, N.H., Bao, V.N.Q., & Le, H.N. (2013). Cognitive underlay communications with imperfect CSI: Network design and performance analysis. In Proceedings of IEEE ATC, HoChiMinh City, Vietnam, pp. 18–22, 15–17. Giang, N.H., Bao, V.N.Q., & Le, H.N. (2013). Cognitive underlay communications with imperfect CSI: Network design and performance analysis. In Proceedings of IEEE ATC, HoChiMinh City, Vietnam, pp. 18–22, 15–17.
19.
Zurück zum Zitat Thanh, T. L., Bao, V. N. Q., & An, B. (2013). On the performance of outage probability in underlay cognitive radio with imperfect CSI. In Proceedings of IEEE ATC, HoChiMinh City, Vietnam, pp. 125–130, 15–17. Thanh, T. L., Bao, V. N. Q., & An, B. (2013). On the performance of outage probability in underlay cognitive radio with imperfect CSI. In Proceedings of IEEE ATC, HoChiMinh City, Vietnam, pp. 125–130, 15–17.
20.
Zurück zum Zitat Wu, Q., Zhang, Z., & Wang, J. (2013). Outage analysis of cognitive relay networks with relay selection under imperfect CSI environment. IEEE Communications Letters, 17(7), 1297–1300.MathSciNetCrossRef Wu, Q., Zhang, Z., & Wang, J. (2013). Outage analysis of cognitive relay networks with relay selection under imperfect CSI environment. IEEE Communications Letters, 17(7), 1297–1300.MathSciNetCrossRef
21.
Zurück zum Zitat Si, J., Li, Z., Huang, H., Chen, J., & Gao, R. (2012). Capacity analysis of cognitive relay networks with the PU’s interference. IEEE Communications Letters, 16(12), 2020–2023.CrossRef Si, J., Li, Z., Huang, H., Chen, J., & Gao, R. (2012). Capacity analysis of cognitive relay networks with the PU’s interference. IEEE Communications Letters, 16(12), 2020–2023.CrossRef
22.
Zurück zum Zitat Bao, V. N. Q., & Duong, T. Q. (2012). Exact outage probability of cognitive underlay DF relay networks with best relay selection. IEICE Transactions on Communications, E95–B(6), 2169–2173.CrossRef Bao, V. N. Q., & Duong, T. Q. (2012). Exact outage probability of cognitive underlay DF relay networks with best relay selection. IEICE Transactions on Communications, E95–B(6), 2169–2173.CrossRef
23.
Zurück zum Zitat Mokari, N., Parsaeefard, S., Saeedi, H., Azmi, P., & Hossain, E. (2015). Secure robust ergodic uplink resource allocation in relay assisted cognitive radio networks. IEEE Transactions on Signal Processing, 63(2), 291–304.MathSciNetCrossRef Mokari, N., Parsaeefard, S., Saeedi, H., Azmi, P., & Hossain, E. (2015). Secure robust ergodic uplink resource allocation in relay assisted cognitive radio networks. IEEE Transactions on Signal Processing, 63(2), 291–304.MathSciNetCrossRef
24.
Zurück zum Zitat Chen, Y., Ge, J., & Bu, Q. (2014). Outage and diversity analysis of cognitive relay networks with direct link under interference constraints over Nakagami-m fading. In Proceedings of IEEE CIT, Xian, Shaanxi, China, 11–13, pp. 88–93. Chen, Y., Ge, J., & Bu, Q. (2014). Outage and diversity analysis of cognitive relay networks with direct link under interference constraints over Nakagami-m fading. In Proceedings of IEEE CIT, Xian, Shaanxi, China, 11–13, pp. 88–93.
25.
Zurück zum Zitat Hanif, M., Yang, H. C., & Alouini, M. S. (2015). Receive antenna selection for underlay cognitive radio with instantaneous interference constraint. IEEE Signal Processing Letters, 22(6), 738–742.CrossRef Hanif, M., Yang, H. C., & Alouini, M. S. (2015). Receive antenna selection for underlay cognitive radio with instantaneous interference constraint. IEEE Signal Processing Letters, 22(6), 738–742.CrossRef
26.
Zurück zum Zitat Vucetic, B., & Yuan, J. (2003). Space–time coding. New Jersey: Wiley.CrossRef Vucetic, B., & Yuan, J. (2003). Space–time coding. New Jersey: Wiley.CrossRef
27.
Zurück zum Zitat Papoulis, A., & Pillai, S. U. (2002). Probability, random variables, and stochastic processes (4th ed.). New York: McGraw-Hill. Papoulis, A., & Pillai, S. U. (2002). Probability, random variables, and stochastic processes (4th ed.). New York: McGraw-Hill.
28.
Zurück zum Zitat Ibrahim, A. S., Sadek, A. K., Su, W., & Liu, K. J. R. (2006). Relay selection in multi-node cooperative communications: When to cooperate and whom to cooperate with?. In Proceedings of IEEE GlobeCom, pp. 1–5. Ibrahim, A. S., Sadek, A. K., Su, W., & Liu, K. J. R. (2006). Relay selection in multi-node cooperative communications: When to cooperate and whom to cooperate with?. In Proceedings of IEEE GlobeCom, pp. 1–5.
29.
Zurück zum Zitat Duong, T. Q., da Costa, D. B., Elkashlan, M., & Bao, V. N. Q. (2012). Cognitive amplify-and-forward relay networks over Nakagami-m fading. IEEE Transactions on Vehicular Technology, 61(5), 2368–2374.CrossRef Duong, T. Q., da Costa, D. B., Elkashlan, M., & Bao, V. N. Q. (2012). Cognitive amplify-and-forward relay networks over Nakagami-m fading. IEEE Transactions on Vehicular Technology, 61(5), 2368–2374.CrossRef
30.
Zurück zum Zitat Duong, T. Q., da Costa, D. B., Tsiftsis, T. A., Zhong, C., & Nallanathan, A. (2012). Outage and diversity of cognitive relaying systems under spectrum sharing environments in Nakagami-m fading. IEEE Communications Letters, 16(12), 2075–2078.CrossRef Duong, T. Q., da Costa, D. B., Tsiftsis, T. A., Zhong, C., & Nallanathan, A. (2012). Outage and diversity of cognitive relaying systems under spectrum sharing environments in Nakagami-m fading. IEEE Communications Letters, 16(12), 2075–2078.CrossRef
31.
Zurück zum Zitat Thomopoulos, N. T. (2013). Essentials of Monte Carlo simulation: Statistical methods for building simulation models. New York: Springer.CrossRef Thomopoulos, N. T. (2013). Essentials of Monte Carlo simulation: Statistical methods for building simulation models. New York: Springer.CrossRef
Metadaten
Titel
On the performance of cooperative cognitive networks with proactive relay selection
verfasst von
Khuong Ho-Van
Publikationsdatum
01.10.2016
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 7/2016
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-015-1090-1

Weitere Artikel der Ausgabe 7/2016

Wireless Networks 7/2016 Zur Ausgabe

Neuer Inhalt