Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

On the Push&Pull Protocol for Rumour Spreading

verfasst von : Hüseyin Acan, Andrea Collevecchio, Abbas Mehrabian, Nick Wormald

Erschienen in: Extended Abstracts Summer 2015

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The asynchronous push&pull protocol, a randomized distributed algorithm for spreading a rumour in a graph G, is defined as follows. Independent exponential clocks of rate 1 are associated with the vertices of G, one to each vertex. Initially, one vertex of G knows the rumour. Whenever the clock of a vertex x rings, it calls a random neighbour y: if x knows the rumour and y does not, then x tells y the rumour (a push operation), and if x does not know the rumour and y knows it, y tells x the rumour (a pull operation). The average spread time of G is the expected time it takes for all vertices to know the rumour, and the guaranteed spread time of G is the smallest time t such that with probability at least 1 − 1∕n, after time t all vertices know the rumour. The synchronous variant of this protocol, in which each clock rings precisely at times 1, 2, , has been studied extensively.
We prove the following results for any n-vertex graph: in either version, the average spread time is at most linear even if only the pull operation is used, and the guaranteed spread time is within a logarithmic factor of the average spread time, so it is O(nlogn). In the asynchronous version, both the average and guaranteed spread times are \(\Omega (\log n)\). We give examples of graphs illustrating that these bounds are best possible up to constant factors.
We also prove the first theoretical relationships between the guaranteed spread times in the two versions. Firstly, in all graphs the guaranteed spread time in the asynchronous version is within an O(logn) factor of that in the synchronous version, and this is tight. Next, we find examples of graphs whose asynchronous spread times are logarithmic, but the synchronous versions are polynomially large. Finally, we show for any graph that the ratio of the synchronous spread time to the asynchronous spread time is \(O\big(n^{2/3}\big)\).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Amini, M. Draief, and M. Lelarge, “Flooding in weighted sparse random graphs”, SIAM J. Discrete Math. 27 (1) (2013), 1–26. H. Amini, M. Draief, and M. Lelarge, “Flooding in weighted sparse random graphs”, SIAM J. Discrete Math. 27 (1) (2013), 1–26.
2.
Zurück zum Zitat N. Berger, C. Borgs, J.T. Chayes, and A.Saberi, “On the spread of viruses on the Internet”, Proc. 16-th Symp. Discrete Algorithms (SODA) (2005), 301–310. N. Berger, C. Borgs, J.T. Chayes, and A.Saberi, “On the spread of viruses on the Internet”, Proc. 16-th Symp. Discrete Algorithms (SODA) (2005), 301–310.
3.
Zurück zum Zitat B. Bollobás and Y. Kohayakawa, “On Richardson’s model on the hypercube”, Combinatorics, geometry and probability (1993), 129–137. Cambridge Univ. Press, Cambridge, 1997. B. Bollobás and Y. Kohayakawa, “On Richardson’s model on the hypercube”, Combinatorics, geometry and probability (1993), 129–137. Cambridge Univ. Press, Cambridge, 1997.
4.
Zurück zum Zitat S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms”, IEEE Transactions on Information Theory 52 (6) (2006), 2508–2530. S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms”, IEEE Transactions on Information Theory 52 (6) (2006), 2508–2530.
5.
Zurück zum Zitat A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for replicated database maintenance”, Proc. 6-th Symp. Principles of Distributed Computing (PODC) (1987), 1–12. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for replicated database maintenance”, Proc. 6-th Symp. Principles of Distributed Computing (PODC) (1987), 1–12.
6.
Zurück zum Zitat B. Doerr, M. Fouz, and T. Friedrich, “Social networks spread rumors in sublogarithmic time”, Proc. 43-th Symp. Theory of Computing (STOC) (2011), 21–30. B. Doerr, M. Fouz, and T. Friedrich, “Social networks spread rumors in sublogarithmic time”, Proc. 43-th Symp. Theory of Computing (STOC) (2011), 21–30.
7.
Zurück zum Zitat B. Doerr, M. Fouz, and T. Friedrich, “Asynchronous rumor spreading in preferential attachment graphs”, Proc. 13-th Scandinavian Workshop Algorithm Theory (SWAT) (2012), 307–315. B. Doerr, M. Fouz, and T. Friedrich, “Asynchronous rumor spreading in preferential attachment graphs”, Proc. 13-th Scandinavian Workshop Algorithm Theory (SWAT) (2012), 307–315.
8.
Zurück zum Zitat B. Doerr, M. Fouz, and T. Friedrich, “Experimental analysis of rumor spreading in social networks”, Design and analysis of algorithms, volume 7659 of Lecture Notes in Comput. Sci., 159–173. Springer, Heidelberg, 2012. B. Doerr, M. Fouz, and T. Friedrich, “Experimental analysis of rumor spreading in social networks”, Design and analysis of algorithms, volume 7659 of Lecture Notes in Comput. Sci., 159–173. Springer, Heidelberg, 2012.
9.
Zurück zum Zitat R. Durrett, “Stochastic growth models: recent results and open problems”, Mathematical approaches to problems in resource management and epidemiology (Ithaca, NY, 1987), volume 81 of Lecture Notes in Biomath. 308–312. Springer, Berlin, 1989. R. Durrett, “Stochastic growth models: recent results and open problems”, Mathematical approaches to problems in resource management and epidemiology (Ithaca, NY, 1987), volume 81 of Lecture Notes in Biomath. 308–312. Springer, Berlin, 1989.
10.
Zurück zum Zitat U. Feige, D. Peleg, P. Raghavan, and E. Upfal, “Randomized broadcast in networks”, Random Struct. Algorithms 1 (4) (1990), 447–460. U. Feige, D. Peleg, P. Raghavan, and E. Upfal, “Randomized broadcast in networks”, Random Struct. Algorithms 1 (4) (1990), 447–460.
11.
Zurück zum Zitat J.A. Fill and R. Pemantle, “Percolation, first-passage percolation and covering times for Richardson’s model on the n-cube”, Ann. Appl. Probab. 3 (2) (1993), 593–629. J.A. Fill and R. Pemantle, “Percolation, first-passage percolation and covering times for Richardson’s model on the n-cube”, Ann. Appl. Probab. 3 (2) (1993), 593–629.
12.
Zurück zum Zitat N. Fountoulakis and K. Panagiotou, “Rumor spreading on random regular graphs and expanders”, Proc. 14-th Intl. Workshop on Randomization and Comput. (RANDOM) (2010), 560–573. N. Fountoulakis and K. Panagiotou, “Rumor spreading on random regular graphs and expanders”, Proc. 14-th Intl. Workshop on Randomization and Comput. (RANDOM) (2010), 560–573.
13.
Zurück zum Zitat N. Fountoulakis, K. Panagiotou, and T. Sauerwald, “Ultra-fast rumor spreading in social networks”, Proc. 23-th Symp. Discrete Algorithms (SODA) (2012), 1642–1660. N. Fountoulakis, K. Panagiotou, and T. Sauerwald, “Ultra-fast rumor spreading in social networks”, Proc. 23-th Symp. Discrete Algorithms (SODA) (2012), 1642–1660.
14.
Zurück zum Zitat T. Friedrich, T. Sauerwald, and A. Stauffer, “Diameter and broadcast time of random geometric graphs in arbitrary dimensions”, Algorithmica 67 (1) (2013), 65–88. T. Friedrich, T. Sauerwald, and A. Stauffer, “Diameter and broadcast time of random geometric graphs in arbitrary dimensions”, Algorithmica 67 (1) (2013), 65–88.
15.
Zurück zum Zitat G. Giakkoupis, “Tight bounds for rumor spreading in graphs of a given conductance”, 28-th International Symposium on Theoretical Aspects of Computer Science (STACS 2011) 9 (2011), 57–68. G. Giakkoupis, “Tight bounds for rumor spreading in graphs of a given conductance”, 28-th International Symposium on Theoretical Aspects of Computer Science (STACS 2011) 9 (2011), 57–68.
16.
Zurück zum Zitat G. Giakkoupis, “Tight bounds for rumor spreading with vertex expansion”, Proc. 25-th Symp. Discrete Algorithms (SODA) (2014), 801–815. G. Giakkoupis, “Tight bounds for rumor spreading with vertex expansion”, Proc. 25-th Symp. Discrete Algorithms (SODA) (2014), 801–815.
17.
Zurück zum Zitat M. Harchol-Balter, F. Thomson-Leighton, and D. Lewin, “Resource discovery in distributed networks”, Proc. 18-th Symp. Principles of Distributed Computing (PODC) (1999), 229–237. M. Harchol-Balter, F. Thomson-Leighton, and D. Lewin, “Resource discovery in distributed networks”, Proc. 18-th Symp. Principles of Distributed Computing (PODC) (1999), 229–237.
18.
Zurück zum Zitat S.M. Hedetniemi, S.T. Hedetniemi, and A.L. Liestman, “A survey of gossiping and broadcasting in communication networks”, Networks 18 (4) (1988), 319–349. S.M. Hedetniemi, S.T. Hedetniemi, and A.L. Liestman, “A survey of gossiping and broadcasting in communication networks”, Networks 18 (4) (1988), 319–349.
19.
Zurück zum Zitat C.D. Howard, “Models of first-passage percolation”, Probability on discrete structures 110 of Encyclopaedia Math. Sci. 125–173. Springer, Berlin, 2004. C.D. Howard, “Models of first-passage percolation”, Probability on discrete structures 110 of Encyclopaedia Math. Sci. 125–173. Springer, Berlin, 2004.
20.
Zurück zum Zitat S. Janson, “One, two and three times logn∕n for paths in a complete graph with random weights”, Combin. Probab. Comput. 8 (4) (1999), 347–361. S. Janson, “One, two and three times lognn for paths in a complete graph with random weights”, Combin. Probab. Comput. 8 (4) (1999), 347–361.
21.
Zurück zum Zitat R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking, “Randomized Rumor Spreading”, Proc. 41-st Symp. Foundations of Computer Science (FOCS) (2000), 565–574. R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking, “Randomized Rumor Spreading”, Proc. 41-st Symp. Foundations of Computer Science (FOCS) (2000), 565–574.
22.
Zurück zum Zitat D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate information”, Proc. 44-th Symp. Foundations of Computer Science (FOCS) (2003), 482–491. D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate information”, Proc. 44-th Symp. Foundations of Computer Science (FOCS) (2003), 482–491.
23.
Zurück zum Zitat K. Panagiotou and L. Speidel, “Asynchronous rumor spreading on random graphs”, in L. Cai, S.W. Cheng, and T.W. Lam, editors, Algorithms and Computation 8283, of Lecture Notes in Computer Science, 424–434. Springer Berlin Heidelberg, 2013. K. Panagiotou and L. Speidel, “Asynchronous rumor spreading on random graphs”, in L. Cai, S.W. Cheng, and T.W. Lam, editors, Algorithms and Computation 8283, of Lecture Notes in Computer Science, 424–434. Springer Berlin Heidelberg, 2013.
Metadaten
Titel
On the Push&Pull Protocol for Rumour Spreading
verfasst von
Hüseyin Acan
Andrea Collevecchio
Abbas Mehrabian
Nick Wormald
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-51753-7_1