Skip to main content
Erschienen in: Experiments in Fluids 2/2014

01.02.2014 | Research Article

On the relationship between image intensity and velocity in a turbulent boundary layer seeded with smoke particles

verfasst von: M. Blake Melnick, Brian S. Thurow

Erschienen in: Experiments in Fluids | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Simultaneous particle image velocimetry (PIV) and flow visualization measurements were performed in a turbulent boundary layer in an effort to better quantify the relationship between the velocity field and the image intensity typically observed in a classical flow visualization experiment. The freestream flow was lightly seeded with smoke particles to facilitate PIV measurements, whereas the boundary layer was densely seeded with smoke through an upstream slit in the wall to facilitate both PIV and classical flow visualization measurements at Reynolds numbers, Re θ , ranging from 2,100 to 8,600. Measurements were taken with and without the slit covered as well as with and without smoke injection. The addition of a narrow slit in the wall produces a minor modification of the nominal turbulent boundary layer profile whose effect is reduced with downstream distance. The presence of dense smoke in the boundary layer had a minimal effect on the observed velocity field and the associated proper orthogonal decomposition (POD) modes. Analysis of instantaneous images shows that the edge of the turbulent boundary layer identified from flow visualization images generally matches the edge of the boundary layer determined from velocity and vorticity. The correlation between velocity deficit and smoke intensity was determined to be positive and relatively large (>0.7) indicating a moderate-to-strong relationship between the two. This notion was extended further through the use of a direct correlation approach and a complementary POD/linear stochastic estimation (LSE) approach to estimate the velocity field directly from flow visualization images. This exercise showed that, in many cases, velocity fields estimated from smoke intensity were similar to the actual velocity fields. The complementary POD/LSE approach proved better for these estimations, but not enough to suggest using this technique to approximate velocity measurements from a smoke intensity image. Instead, the correlations further validate the use of flow visualization techniques for determining the edge and large-scale shape of a turbulent boundary layer, specifically when quantitative velocity measurements, such as PIV, are not possible in a given experiment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adrian RJ (2007) Hairpin vortex organization in wall turbulence. Phys Fluids 19:041301CrossRef Adrian RJ (2007) Hairpin vortex organization in wall turbulence. Phys Fluids 19:041301CrossRef
Zurück zum Zitat Balakumar BJ, Adrian RJ (2007) Large- and very-large-scale motions in channel and boundary-layer flows. Philos Trans R Soc A 365:665–681CrossRefMATH Balakumar BJ, Adrian RJ (2007) Large- and very-large-scale motions in channel and boundary-layer flows. Philos Trans R Soc A 365:665–681CrossRefMATH
Zurück zum Zitat Brücker C, Hess D, Kitzhofer J (2013) Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM). Meas Sci Technol 24:024001CrossRef Brücker C, Hess D, Kitzhofer J (2013) Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM). Meas Sci Technol 24:024001CrossRef
Zurück zum Zitat Corrsin S, Kistler AL (1954, 1955) The free-stream boundaries of turbulent flows. NACA, TN-3133, TR-1244, pp 1033–1064 Corrsin S, Kistler AL (1954, 1955) The free-stream boundaries of turbulent flows. NACA, TN-3133, TR-1244, pp 1033–1064
Zurück zum Zitat Delo C, Kelso R, Smits AJ (2004) Three-dimensional structure of a low Reynolds number turbulent boundary layer. J Fluid Mech 512:47–83CrossRefMATH Delo C, Kelso R, Smits AJ (2004) Three-dimensional structure of a low Reynolds number turbulent boundary layer. J Fluid Mech 512:47–83CrossRefMATH
Zurück zum Zitat Dennis DJC, Nickels TB (2008) On the limitations of Taylor’s hypothesis in constructing long structures in a turbulent boundary layer. J Fluid Mech 614:197–206CrossRefMATHMathSciNet Dennis DJC, Nickels TB (2008) On the limitations of Taylor’s hypothesis in constructing long structures in a turbulent boundary layer. J Fluid Mech 614:197–206CrossRefMATHMathSciNet
Zurück zum Zitat Dennis DJC, Nickels TB (2011) Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2. Long structures. J Fluid Mech 673:218–244CrossRefMATH Dennis DJC, Nickels TB (2011) Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2. Long structures. J Fluid Mech 673:218–244CrossRefMATH
Zurück zum Zitat Elsinga GE, Ganapathisubramani B (2013) Advances in 3D velocimetry. Meas Sci Technol 24:020301CrossRef Elsinga GE, Ganapathisubramani B (2013) Advances in 3D velocimetry. Meas Sci Technol 24:020301CrossRef
Zurück zum Zitat Goldstein JE, Smits AJ (1994) Flow visualization of the three-dimensional, time-evolving structure of a turbulent boundary layer. Phys Fluids 6:577–587CrossRef Goldstein JE, Smits AJ (1994) Flow visualization of the three-dimensional, time-evolving structure of a turbulent boundary layer. Phys Fluids 6:577–587CrossRef
Zurück zum Zitat Head MR, Bandyopadhyay P (1981) New aspects of turbulent boundary-layer structure. J Fluid Mech 107:297–338CrossRef Head MR, Bandyopadhyay P (1981) New aspects of turbulent boundary-layer structure. J Fluid Mech 107:297–338CrossRef
Zurück zum Zitat Holzner M, Liberzon A, Guala A, Tsinober A, Kinzelbach W (2006) Generalized detection of a turbulent front generated by an oscillating grid. Exp Fluids 41(5):711–719CrossRef Holzner M, Liberzon A, Guala A, Tsinober A, Kinzelbach W (2006) Generalized detection of a turbulent front generated by an oscillating grid. Exp Fluids 41(5):711–719CrossRef
Zurück zum Zitat Hussain AKMF (1981) Role of coherent structures in turbulent shear flows. Proc Indian Acad Sci (Engng Sci) 4:129–175 Hussain AKMF (1981) Role of coherent structures in turbulent shear flows. Proc Indian Acad Sci (Engng Sci) 4:129–175
Zurück zum Zitat Hutchins N, Hambleton WT, Marusic I (2005) Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers. J Fluid Mech 541:21–54CrossRefMATH Hutchins N, Hambleton WT, Marusic I (2005) Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers. J Fluid Mech 541:21–54CrossRefMATH
Zurück zum Zitat Kovasznay LSG, Kibens V, Blackwelder RF (1970) Large-scale motion in the intermittent region of a turbulent boundary layer. J Fluid Mech 126:315–333 Kovasznay LSG, Kibens V, Blackwelder RF (1970) Large-scale motion in the intermittent region of a turbulent boundary layer. J Fluid Mech 126:315–333
Zurück zum Zitat Lee JH, Sung HJ (2013) Comparison of very-large-scale motions of turbulent pipe and boundary layer simulations. Phys Fluids 25:045103CrossRef Lee JH, Sung HJ (2013) Comparison of very-large-scale motions of turbulent pipe and boundary layer simulations. Phys Fluids 25:045103CrossRef
Zurück zum Zitat Lumley JL (1967) The structure of inhomogeneous turbulent flows. In: Yaglom AM, Tatarsky VI (eds) Atmospheric turbulence and radio wave propogations. Nauka, Moscow, pp 166–178 Lumley JL (1967) The structure of inhomogeneous turbulent flows. In: Yaglom AM, Tatarsky VI (eds) Atmospheric turbulence and radio wave propogations. Nauka, Moscow, pp 166–178
Zurück zum Zitat Marusic I (2001) On the role of large-scale structures in wall turbulence. Phys Fluids 13:735–743CrossRef Marusic I (2001) On the role of large-scale structures in wall turbulence. Phys Fluids 13:735–743CrossRef
Zurück zum Zitat Marusic I, McKeon BJ, Monkewitx PA, Nagib HM, Smits AJ, Sreenivasan KR (2010) Wall-bounded turbulent flows at high Reynolds number: recent advances and key issues. Phys Fluids 22:065103CrossRef Marusic I, McKeon BJ, Monkewitx PA, Nagib HM, Smits AJ, Sreenivasan KR (2010) Wall-bounded turbulent flows at high Reynolds number: recent advances and key issues. Phys Fluids 22:065103CrossRef
Zurück zum Zitat Panton RL (2001) Overview of the self-sustaining mechanisms of wall turbulence. Prog Aerosp Sci 37:341–383CrossRef Panton RL (2001) Overview of the self-sustaining mechanisms of wall turbulence. Prog Aerosp Sci 37:341–383CrossRef
Zurück zum Zitat Prasad RR, Sreenivasan KR (1989) Scalar interfaces in digital images of turbulent flows. Exp Fluids 7:259–264CrossRef Prasad RR, Sreenivasan KR (1989) Scalar interfaces in digital images of turbulent flows. Exp Fluids 7:259–264CrossRef
Zurück zum Zitat Praturi AK, Brodkey RS (1978) A stereoscopic visual study of coherent structures in turbulent shear flow. J Fluid Mech 89:251–272CrossRef Praturi AK, Brodkey RS (1978) A stereoscopic visual study of coherent structures in turbulent shear flow. J Fluid Mech 89:251–272CrossRef
Zurück zum Zitat Robinson SK (1991) Coherent motions in the turbulent boundary layer. Ann Rev Fluid Mech 23:601–639CrossRef Robinson SK (1991) Coherent motions in the turbulent boundary layer. Ann Rev Fluid Mech 23:601–639CrossRef
Zurück zum Zitat Sirovich L (1977) Turbulence and the dynamics of coherent structures. Part I: coherent structures. Q Appl Math 45:561–571MathSciNet Sirovich L (1977) Turbulence and the dynamics of coherent structures. Part I: coherent structures. Q Appl Math 45:561–571MathSciNet
Zurück zum Zitat Smits AJ, Delo C (2002) Self-sustaining mechanisms of wall turbulence. In: Coherent structures in complex systems, lecture notes in physics. Springer, pp. 17–38 Smits AJ, Delo C (2002) Self-sustaining mechanisms of wall turbulence. In: Coherent structures in complex systems, lecture notes in physics. Springer, pp. 17–38
Zurück zum Zitat Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond A 164:476–490CrossRef Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond A 164:476–490CrossRef
Zurück zum Zitat van Doorne CWH, Westerweel J (2007) Measurement of laminar, transitional and turbulent pipe flow using Stereoscopic-PIV. Exp Fluids 42:259–279CrossRef van Doorne CWH, Westerweel J (2007) Measurement of laminar, transitional and turbulent pipe flow using Stereoscopic-PIV. Exp Fluids 42:259–279CrossRef
Zurück zum Zitat van Dyke M (1982) An album of fluid motion. The Parabolic Press, Stantord van Dyke M (1982) An album of fluid motion. The Parabolic Press, Stantord
Zurück zum Zitat Westerweel J, Hoffmann T, Fukushima C, Hunt JCR (2002) The turbulent/non-turbulent interface at the outer boundary layer of a self-similar turbulent jet. Exp Fluids 33:873–878CrossRef Westerweel J, Hoffmann T, Fukushima C, Hunt JCR (2002) The turbulent/non-turbulent interface at the outer boundary layer of a self-similar turbulent jet. Exp Fluids 33:873–878CrossRef
Zurück zum Zitat Westerweel J, Elsinga GE, Adrian RJ (2013) Particle image velocimetry for complex and turbulent flows. Annu Rev Fluid Mech 45:409–436CrossRefMathSciNet Westerweel J, Elsinga GE, Adrian RJ (2013) Particle image velocimetry for complex and turbulent flows. Annu Rev Fluid Mech 45:409–436CrossRefMathSciNet
Metadaten
Titel
On the relationship between image intensity and velocity in a turbulent boundary layer seeded with smoke particles
verfasst von
M. Blake Melnick
Brian S. Thurow
Publikationsdatum
01.02.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 2/2014
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-014-1681-0

Weitere Artikel der Ausgabe 2/2014

Experiments in Fluids 2/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.