Skip to main content
Erschienen in: Optical and Quantum Electronics 5/2024

01.05.2024

On the solitonic structures for the fractional Schrödinger–Hirota equation

verfasst von: Fazal Badshah, Kalim U. Tariq, Mustafa Inc, Muhammad Zeeshan

Erschienen in: Optical and Quantum Electronics | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, the fractional Schrödinger–Hirota equation which is a generalization of the standard Schrödinger equation which, in particular, explain how soliton transmission behaves on fiber optic systems in physics when data is transmitted over long distances with a wide bandwidth. A collection of comprehensive soliton structures are developed to study the behaviour of the governing model with the aid of some efficient explicit strategies namely the \(\exp (-\psi (\zeta ))\)-expansion method and the Sardar sub-equation method. By transforming the original equation into a system of ordinary differential equations, it becomes possible to obtain explicit solutions with a high degree of accuracy. These solutions incorporate dark soliton and trigonometric function solutions, dark singular solition plane wave, singular solition, opposite singular solition, smooth, bell shaped, w-shaped periodic, bright, anti kink, singular bell shaped solitons and traveling wave structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdusalam, H.: On an improved complex tanh-function method. Int. J. Nonlinear Sci. Numer. Simul. 6(2), 99–106 (2005)MathSciNetCrossRef Abdusalam, H.: On an improved complex tanh-function method. Int. J. Nonlinear Sci. Numer. Simul. 6(2), 99–106 (2005)MathSciNetCrossRef
Zurück zum Zitat Akram, S., Ahmad, J., Rehman, S.U., Younas, T.: Stability analysis and dispersive optical solitons of fractional Schrödinger–Hirota equation. Opt. Quantum Electron. 55(8), 664 (2023)CrossRef Akram, S., Ahmad, J., Rehman, S.U., Younas, T.: Stability analysis and dispersive optical solitons of fractional Schrödinger–Hirota equation. Opt. Quantum Electron. 55(8), 664 (2023)CrossRef
Zurück zum Zitat Ala, V.: New exact solutions of space-time fractional Schrodinger–Hirota equation. Bull. Karaganda Uni. Math. Ser. 107(3) (2022) Ala, V.: New exact solutions of space-time fractional Schrodinger–Hirota equation. Bull. Karaganda Uni. Math. Ser. 107(3) (2022)
Zurück zum Zitat Ala, V., Shaikhova, G.: Analytical solutions of nonlinear beta fractional Schrödinger equation via sine–cosine method. Lobachevskii J. Math. 43(11), 3033–3038 (2022)MathSciNetCrossRef Ala, V., Shaikhova, G.: Analytical solutions of nonlinear beta fractional Schrödinger equation via sine–cosine method. Lobachevskii J. Math. 43(11), 3033–3038 (2022)MathSciNetCrossRef
Zurück zum Zitat Alhami, R., Alquran, M.: Extracted different types of optical lumps and breathers to the new generalized stochastic potential-kdv equation via using the Cole–Hopf transformation and Hirota bilinear method. Opt. Quantum Electron. 54(9), 553 (2022)CrossRef Alhami, R., Alquran, M.: Extracted different types of optical lumps and breathers to the new generalized stochastic potential-kdv equation via using the Cole–Hopf transformation and Hirota bilinear method. Opt. Quantum Electron. 54(9), 553 (2022)CrossRef
Zurück zum Zitat Ali, M., Alquran, M., Salman, O.B.: A variety of new periodic solutions to the damped (2 + 1)-dimensional Schrodinger equation via the novel modified rational sine–cosine functions and the extended tanh–coth expansion methods. Results Phys. 37, 105462 (2022)CrossRef Ali, M., Alquran, M., Salman, O.B.: A variety of new periodic solutions to the damped (2 + 1)-dimensional Schrodinger equation via the novel modified rational sine–cosine functions and the extended tanh–coth expansion methods. Results Phys. 37, 105462 (2022)CrossRef
Zurück zum Zitat Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)MathSciNetCrossRefADS Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)MathSciNetCrossRefADS
Zurück zum Zitat Alquran, M.: New interesting optical solutions to the quadratic-cubic Schrodinger equation by using the Kudryashov-expansion method and the updated rational sine–cosine functions. Opt. Quantum Electron. 54(10), 666 (2022)CrossRef Alquran, M.: New interesting optical solutions to the quadratic-cubic Schrodinger equation by using the Kudryashov-expansion method and the updated rational sine–cosine functions. Opt. Quantum Electron. 54(10), 666 (2022)CrossRef
Zurück zum Zitat Alsharidi, A.K., Bekir, A.: Discovery of new exact wave solutions to the m-fractional complex three coupled Maccari’s system by sardar sub-equation scheme. Symmetry 15(8), 1567 (2023)CrossRefADS Alsharidi, A.K., Bekir, A.: Discovery of new exact wave solutions to the m-fractional complex three coupled Maccari’s system by sardar sub-equation scheme. Symmetry 15(8), 1567 (2023)CrossRefADS
Zurück zum Zitat Balcı, E., Öztürk, İ, Kartal, S.: Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative. Chaos Solitons Fractals 123, 43–51 (2019)MathSciNetCrossRefADS Balcı, E., Öztürk, İ, Kartal, S.: Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative. Chaos Solitons Fractals 123, 43–51 (2019)MathSciNetCrossRefADS
Zurück zum Zitat Bekir, A., Shehata, M.S., Zahran, E.H.: New perception of the exact solutions of the 3d-fractional Wazwaz–Benjamin–Bona–Mahony (3D-FWBBM) equation. J. Interdiscip. Math. 24(4), 867–880 (2021)CrossRef Bekir, A., Shehata, M.S., Zahran, E.H.: New perception of the exact solutions of the 3d-fractional Wazwaz–Benjamin–Bona–Mahony (3D-FWBBM) equation. J. Interdiscip. Math. 24(4), 867–880 (2021)CrossRef
Zurück zum Zitat Dehghan, M., Hamidi, A., Shakourifar, M.: The solution of coupled Burgers’ equations using Adomian–Pade technique. Appl. Math. Comput. 189(2), 1034–1047 (2007)MathSciNet Dehghan, M., Hamidi, A., Shakourifar, M.: The solution of coupled Burgers’ equations using Adomian–Pade technique. Appl. Math. Comput. 189(2), 1034–1047 (2007)MathSciNet
Zurück zum Zitat Du, Y., Yin, T., Pang, J.: The exact solutions of Schrödinger–Hirota equation based on the extended auxiliary equation method (2023) Du, Y., Yin, T., Pang, J.: The exact solutions of Schrödinger–Hirota equation based on the extended auxiliary equation method (2023)
Zurück zum Zitat Ferdous, F., Hafez, M., Ali, M.: Obliquely propagating wave solutions to conformable time fractional extended Zakharov–Kuzetsov equation via the generalized exp (- \(\phi \) (\(\xi \)))-expansion method. SeMA J. 76(1), 109–122 (2019)MathSciNetCrossRef Ferdous, F., Hafez, M., Ali, M.: Obliquely propagating wave solutions to conformable time fractional extended Zakharov–Kuzetsov equation via the generalized exp (- \(\phi \) (\(\xi \)))-expansion method. SeMA J. 76(1), 109–122 (2019)MathSciNetCrossRef
Zurück zum Zitat Fokas, A.S.: A unified transform method for solving linear and certain nonlinear PDEs. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 453(1962), 1411–1443 (1997)MathSciNetCrossRefADS Fokas, A.S.: A unified transform method for solving linear and certain nonlinear PDEs. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 453(1962), 1411–1443 (1997)MathSciNetCrossRefADS
Zurück zum Zitat Gao, F., Chi, C.: Improvement on conformable fractional derivative and its applications in fractional differential equations. J. Funct. Spaces 2020, 1–10 (2020)MathSciNet Gao, F., Chi, C.: Improvement on conformable fractional derivative and its applications in fractional differential equations. J. Funct. Spaces 2020, 1–10 (2020)MathSciNet
Zurück zum Zitat Gurefe, Y.: The generalized Kudryashov method for the nonlinear fractional partial differential equations with the beta-derivative. Rev. Mex. de física 66(6), 771–781 (2020)MathSciNetCrossRef Gurefe, Y.: The generalized Kudryashov method for the nonlinear fractional partial differential equations with the beta-derivative. Rev. Mex. de física 66(6), 771–781 (2020)MathSciNetCrossRef
Zurück zum Zitat Hassan, S.M., Altwaty, A.A.: Solitons and other solutions to the extended Gerdjikov–Ivanov equation in DWDM system by the exp(-\(\phi (\zeta \)))-expansion method. Ric. di Mat. 1–14 (2022) Hassan, S.M., Altwaty, A.A.: Solitons and other solutions to the extended Gerdjikov–Ivanov equation in DWDM system by the exp(-\(\phi (\zeta \)))-expansion method. Ric. di Mat. 1–14 (2022)
Zurück zum Zitat Hirota, R.: The Direct Method in Soliton Theory, vol. 155. Cambridge University Press, Cambridge (2004)CrossRef Hirota, R.: The Direct Method in Soliton Theory, vol. 155. Cambridge University Press, Cambridge (2004)CrossRef
Zurück zum Zitat Jaradat, I., Alquran, M.: Construction of solitary two-wave solutions for a new two-mode version of the Zakharov–Kuznetsov equation. Mathematics 8(7), 1127 (2020)CrossRef Jaradat, I., Alquran, M.: Construction of solitary two-wave solutions for a new two-mode version of the Zakharov–Kuznetsov equation. Mathematics 8(7), 1127 (2020)CrossRef
Zurück zum Zitat Jaradat, I., Alquran, M.: A variety of physical structures to the generalized equal-width equation derived from Wazwaz–Benjamin–Bona–Mahony model. J. Ocean Eng. Sci. 7(3), 244–247 (2022)CrossRef Jaradat, I., Alquran, M.: A variety of physical structures to the generalized equal-width equation derived from Wazwaz–Benjamin–Bona–Mahony model. J. Ocean Eng. Sci. 7(3), 244–247 (2022)CrossRef
Zurück zum Zitat Kudryashov, N.A.: A note on the g’/g-expansion method. Appl. Math. Comput. 217(4), 1755–1758 (2010)MathSciNet Kudryashov, N.A.: A note on the g’/g-expansion method. Appl. Math. Comput. 217(4), 1755–1758 (2010)MathSciNet
Zurück zum Zitat Li, C., Zeng, F.: Finite difference methods for fractional differential equations. International Journal of Bifurcation and Chaos 22(04), 1230014 (2012)MathSciNetCrossRefADS Li, C., Zeng, F.: Finite difference methods for fractional differential equations. International Journal of Bifurcation and Chaos 22(04), 1230014 (2012)MathSciNetCrossRefADS
Zurück zum Zitat Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)MathSciNetCrossRefADS Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)MathSciNetCrossRefADS
Zurück zum Zitat Ozdemir, N., Secer, A., Ozisik, M., Bayram, M.: Perturbation of dispersive optical solitons with Schrödinger–Hirota equation with Kerr law and spatio-temporal dispersion. Optik 265, 169545 (2022)CrossRefADS Ozdemir, N., Secer, A., Ozisik, M., Bayram, M.: Perturbation of dispersive optical solitons with Schrödinger–Hirota equation with Kerr law and spatio-temporal dispersion. Optik 265, 169545 (2022)CrossRefADS
Zurück zum Zitat Podlubny, I.: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Math. Sci. Eng. 198, 340 (1999) Podlubny, I.: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Math. Sci. Eng. 198, 340 (1999)
Zurück zum Zitat Rezazadeh, H., Inc, M., Baleanu, D.: New solitary wave solutions for variants of (3+ 1)-dimensional Wazwaz–Benjamin–Bona–Mahony equations. Front. Phys. 8, 332 (2020)CrossRef Rezazadeh, H., Inc, M., Baleanu, D.: New solitary wave solutions for variants of (3+ 1)-dimensional Wazwaz–Benjamin–Bona–Mahony equations. Front. Phys. 8, 332 (2020)CrossRef
Zurück zum Zitat Sulaiman, T.A., Bulut, H., Atas, S.S.: Optical solitons to the fractional Schrdinger–Hirota equation. Appl. Math. Nonlinear Sci. 4(2), 535–542 (2019)MathSciNetCrossRef Sulaiman, T.A., Bulut, H., Atas, S.S.: Optical solitons to the fractional Schrdinger–Hirota equation. Appl. Math. Nonlinear Sci. 4(2), 535–542 (2019)MathSciNetCrossRef
Zurück zum Zitat Wazwaz, A.-M., El-Tantawy, S.: Solving the (3 + 1)-dimensional KP–Boussinesq and BKP–Boussinesq equations by the simplified Hirota’s method. Nonlinear Dyn. 88(4), 3017–3021 (2017)MathSciNetCrossRef Wazwaz, A.-M., El-Tantawy, S.: Solving the (3 + 1)-dimensional KP–Boussinesq and BKP–Boussinesq equations by the simplified Hirota’s method. Nonlinear Dyn. 88(4), 3017–3021 (2017)MathSciNetCrossRef
Zurück zum Zitat Wu, G.-Z., Yu, L.-J., Wang, Y.-Y.: Fractional optical solitons of the space-time fractional nonlinear Schrödinger equation. Optik 207, 164405 (2020)CrossRefADS Wu, G.-Z., Yu, L.-J., Wang, Y.-Y.: Fractional optical solitons of the space-time fractional nonlinear Schrödinger equation. Optik 207, 164405 (2020)CrossRefADS
Zurück zum Zitat Zhang, H.: Extended Jacobi elliptic function expansion method and its applications. Commun. Nonlinear Sci. Numer. Simul. 12(5), 627–635 (2007)MathSciNetCrossRefADS Zhang, H.: Extended Jacobi elliptic function expansion method and its applications. Commun. Nonlinear Sci. Numer. Simul. 12(5), 627–635 (2007)MathSciNetCrossRefADS
Zurück zum Zitat Zhang, S., Xia, T.: A further improved tanh-function method exactly solving the (2 + 1)-dimensional dispersive long wave equations. Appl. Math. E-Notes 8, 58–66 (2008)MathSciNet Zhang, S., Xia, T.: A further improved tanh-function method exactly solving the (2 + 1)-dimensional dispersive long wave equations. Appl. Math. E-Notes 8, 58–66 (2008)MathSciNet
Zurück zum Zitat Zhao, D., Luo, M.: General conformable fractional derivative and its physical interpretation. Calcolo 54, 903–917 (2017)MathSciNetCrossRef Zhao, D., Luo, M.: General conformable fractional derivative and its physical interpretation. Calcolo 54, 903–917 (2017)MathSciNetCrossRef
Metadaten
Titel
On the solitonic structures for the fractional Schrödinger–Hirota equation
verfasst von
Fazal Badshah
Kalim U. Tariq
Mustafa Inc
Muhammad Zeeshan
Publikationsdatum
01.05.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 5/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-024-06447-y

Weitere Artikel der Ausgabe 5/2024

Optical and Quantum Electronics 5/2024 Zur Ausgabe

Neuer Inhalt