Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 2/2020

13.03.2020 | Educational Paper

On three concepts in robust design optimization: absolute robustness, relative robustness, and less variance

verfasst von: Yoshihiro Kanno

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper provides a clear perspective on existing several different approaches to robust design optimization of structures. We primarily consider three approaches: the worst-case optimization, the discrepancy (i.e., the maximum gap between the objective values in a nominal case and a possibly occurring case) minimization, and the variance minimization. Some other formulations can also be linked with one of these three approaches. To investigate how the solutions derived by these three approaches differ from each other, we present two numerical examples. This direct comparison clarifies different features of these approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
It should be clear again that, in general, \(\hat {x}_{\text {b}}^{\prime }\) is different both from \(x^{*}_{\text {b}}\) and \(\hat {x}_{\text {b}}\).
 
2
Semidefinite programming (SDP) is the optimization of a linear objective function under a linear matrix inequality. Namely, it has the form
$$ \begin{array}{@{}rcl@{}} &&{\kern-.7pc} \text{{Minimize}} {\quad} \sum\limits_{i=1}^{m} b_{i} y_{i} \\ && {\kern-.7pc}\text{{subject~to}}\quad \sum\limits_{i=1}^{m} x_{i} A_{i} + C \succeq 0 , \end{array} $$
where \(A_{1},\dots ,A_{m}\), \(C \in \mathbb {R}^{n \times n}\) are constant symmetric matrices and \(b_{1},\dots ,b_{m} \in \mathbb {R}\) are constants.
 
3
The stiffness matrix of a truss satisfies K(x + y) = K(x) + K(y) for any x, yX. Therefore, for any λ ∈ [0, 1], we have
$$ \begin{array}{@{}rcl@{}} &&{\kern-.6pc}{\pi}(\lambda {\boldsymbol{x}} + (1-\lambda){\boldsymbol{y}};{\boldsymbol{q}} ) \\ &&{\kern-.7pc}= \sup_{{\boldsymbol{u}}} \left\{ 2 {\boldsymbol{q}}^{\top} {\boldsymbol{u}} - \left[ \lambda {\boldsymbol{u}}^{\top} K({\boldsymbol{x}}) {\boldsymbol{u}} + (1-\lambda) {\boldsymbol{u}}^{\top} K({\boldsymbol{y}}) {\boldsymbol{u}} \right] \right\} \\ &&{\kern-.7pc}\le \lambda \sup_{{\boldsymbol{u}}} \{ 2 {\boldsymbol{q}}^{\top} {\boldsymbol{u}} - {\boldsymbol{u}}^{\top} K({\boldsymbol{x}}) {\boldsymbol{u}} \} + (1-\lambda) \sup_{{\boldsymbol{u}}} \{ 2 {\boldsymbol{q}}^{\top} {\boldsymbol{u}} - {\boldsymbol{u}}^{\top} K({\boldsymbol{y}}) {\boldsymbol{u}} \} \\ &&{\kern-.7pc}= \lambda {\pi}({\boldsymbol{x}} ;{\boldsymbol{q}} ) + (1-\lambda) {\pi}({\boldsymbol{y}};{\boldsymbol{q}} ) , \end{array} $$
which shows the convexity of π(⋅; q). See, e.g., Kanno (2011, Proposition 3.1.2) for more accounts.
 
4
Using a vector-valued function as the objective function in (5a) means that this problem is a multi-objective optimization problem (particularly, problem (5a) is a bi-objective optimization problem). That is, we attempt to minimize both \({\pi }(\textit {\textbf {x}}; \tilde {\textit {\textbf {q}}})\) and πworst(x; α). We call xX a Pareto optimal solution of (5a) if there exists no \({\boldsymbol {x}}^{\prime } \in \mathbb {R}^{n}\)\(({\boldsymbol {x}}^{\prime } \not = {\boldsymbol {x}}^{*})\) satisfying \({\pi }({\boldsymbol {x}}^{\prime }; \tilde {{\boldsymbol {q}}}) \le {\pi }({\boldsymbol {x}}^{*}; \tilde {{\boldsymbol {q}}})\) and \({\pi }^{{\text {worst}}}({\boldsymbol {x}}^{\prime }; \alpha ) \le {\pi }^{{\text {worst}}}({\boldsymbol {x}}^{*}; \alpha )\). See, e.g., Boyd and Vandenberghe (2004, Section 4.7) and Chankong et al. (1985) for fundamentals of multi-objective optimization.
 
5
We adopt the constraint method (a.k.a. ε-constraint method) for scalarization of multi-objective optimization. Application of standard constraint method converts problem (5a) into problem (6a). See, e.g., Haimes et al. (1971), Haimes and Hall (1974), Cohon and Marks (1974), Hwang et al. (1980), Chankong et al. (1985) for details of the constraint method.
 
6
We make use of the equality
$$ \begin{array}{@{}rcl@{}} &&{\kern-.7pc}\sup\{ {\boldsymbol{x}}^{\top} {\boldsymbol{y}} \mid \| {\boldsymbol{x}} \|_{\infty} \le 1 \} = \sup\{ {\boldsymbol{x}}^{\top} {\boldsymbol{y}} \mid \| {\boldsymbol{x}} \|_{\infty} = 1 \} \\ &&~~~~~{\kern-.7pc}= \sum\limits_{i=1}^{n} \sup\{ x_{i} y_{i} \mid |x_{i}| = 1 \} = \| {\boldsymbol{y}} \|_{1} . \end{array} $$
Here, ∥⋅∥1 is called the dual norm of \(\| \cdot \|_{\infty }\).
 
7
Indeed, for any x, yX and for any λ ∈ [0, 1], we have
$$ \begin{array}{@{}rcl@{}} &&{\kern-.7pc}{\pi}^{{\text{worst}}}(\lambda {\boldsymbol{x}} + (1-\lambda) {\boldsymbol{y}} ;\alpha) \\ &&~~~~~~{\kern-.7pc}= \sup_{{\boldsymbol{q}} \in Q(\alpha)} \{ {\pi}(\lambda {\boldsymbol{x}} + (1-\lambda) {\boldsymbol{y}} ;{\boldsymbol{q}}) \} \\ &&~~~~~~{\kern-.7pc}\le \sup_{{\boldsymbol{q}} \in Q(\alpha)} \{ \lambda {\pi}({\boldsymbol{x}} ;{\boldsymbol{q}}) + (1-\lambda) {\pi}({\boldsymbol{y}} ;{\boldsymbol{q}}) \} \\ &&~~~~~~{\kern-.7pc}\le \lambda \sup_{{\boldsymbol{q}} \in Q(\alpha)} \{ {\pi}({\boldsymbol{x}} ;{\boldsymbol{q}}) \} + (1-\lambda) \sup_{{\boldsymbol{q}} \in Q(\alpha)} \{ {\pi}({\boldsymbol{y}} ;{\boldsymbol{q}}) \} \\ &&~~~~~~{\kern-.7pc}\le \lambda {\pi}^{{\text{worst}}}({\boldsymbol{x}} ;\alpha) + (1-\lambda) {\pi}^{{\text{worst}}}({\boldsymbol{y}} ;\alpha) , \end{array} $$
where the first inequality follows the convexity of π(⋅; q). See, e.g., Hiriart-Urruty and Lemaréchal (1993, Proposition IV.2.1.2) for more accounts.
 
8
See also Calafiore and Dabbene (2008, Proposition 2).
 
9
We have \(\sup \{ {\boldsymbol {x}}^{\top } {\boldsymbol {y}} \mid \| {\boldsymbol {x}} \|_{1} \le 1 \} = \| {\boldsymbol {y}} \|_{\infty }\), because dual of the dual norm is the norm itself; see, e.g., Hiriart-Urruty and Lemaréchal (1993, Proposition V.3.2.1).
 
10
DC decomposition of a DC function is not unique. For example, for any convex function \(f : \mathbb {R}^{n} \to \mathbb {R}\), we see that πdisc(⋅; α) can be decomposed as
$$ \begin{array}{@{}rcl@{}} {\pi}^{{\text{disc}}}({\boldsymbol{x}}; \alpha) = ({\pi}^{{\text{worst}}}({\boldsymbol{x}}; \alpha) + f({\boldsymbol{x}})) - ({\pi}({\boldsymbol{x}}; \tilde{{\boldsymbol{q}}}) + f({\boldsymbol{x}})) , \end{array} $$
which is also a DC decomposition of πdisc(⋅; α).
 
11
Indeed, with the first-order approximation of \({\pi }(\tilde {{\boldsymbol {q}}}+{\boldsymbol {\zeta }})\), (18) follows
$$ \begin{array}{@{}rcl@{}} {\mathrm{E}}[{\pi}(\tilde{{\boldsymbol{q}}}+{\boldsymbol{\zeta}})] \simeq {\mathrm{E}}[ {\pi}(\tilde{{\boldsymbol{q}}}) + \nabla{\pi}(\tilde{{\boldsymbol{q}}})^{\top} {\boldsymbol{\zeta}} ] = {\pi}(\tilde{{\boldsymbol{q}}}) + \nabla{\pi}(\tilde{{\boldsymbol{q}}})^{\top} {\mathrm{E}}[{\boldsymbol{\zeta}}] \end{array} $$
and (20) follows
$$ \begin{array}{@{}rcl@{}} &&{\kern-.7pc}{\text{Var}}[{\pi}(\tilde{{\boldsymbol{q}}}+{\boldsymbol{\zeta}})] \\ &&{\kern-.7pc}~~~~~~~= {\mathrm{E}} \left[ ({\pi}(\tilde{{\boldsymbol{q}}}+{\boldsymbol{\zeta}}) - {\mathrm{E}}[{\pi}(\tilde{{\boldsymbol{q}}}+{\boldsymbol{\zeta}})])^{2} \right] \\ &&{\kern-.7pc}~~~~~~~\simeq {\mathrm{E}} \left[ ({\pi}(\tilde{{\boldsymbol{q}}}) + \nabla{\pi}(\tilde{{\boldsymbol{q}}})^{\top} {\boldsymbol{\zeta}} - {\pi}(\tilde{{\boldsymbol{q}}}))^{2} \right] \\ &&{\kern-.7pc}~~~~~~~= {\mathrm{E}}\left[ \nabla{\pi}(\tilde{{\boldsymbol{q}}})^{\top} ({\boldsymbol{\zeta}} {\boldsymbol{\zeta}}^{\top}) \nabla{\pi}(\tilde{{\boldsymbol{q}}}) \right] \\ &&{\kern-.7pc}~~~~~~~= \nabla{\pi}(\tilde{{\boldsymbol{q}}})^{\top} {\mathrm{E}}\left[ {\boldsymbol{\zeta}} {\boldsymbol{\zeta}}^{\top} \right] \nabla{\pi}(\tilde{{\boldsymbol{q}}}) . \end{array} $$
Here, the explicit dependency of π on x has been suppressed for notational simplicity.
 
12
It is clear that \(\max \limits \{ {\pi }(\textit {\textbf {x}};\textit {\textbf {q}}) \mid \textit {\textbf {q}} \in Q(\alpha ) \}\), as well as \(\min \limits \{ {\pi }({\boldsymbol {x}};{\boldsymbol {q}}) \mid {\boldsymbol {q}} \in Q(\alpha ) \}\), is attained at a point on the boundary of Q(α).
 
13
For α = 10kN, there exists almost no difference between the solution with minimal nominal-case compliance and the solution with minimal worst-case compliance.
 
14
In the following we assume without loss of generality that the original design optimization problem is formulated as a minimization problem, as the case in the previous sections.
 
Literatur
Zurück zum Zitat Alefeld G, Mayer G (2000) Interval analysis: theory and applications. J Comput Appl Math 121:421–464MathSciNetMATH Alefeld G, Mayer G (2000) Interval analysis: theory and applications. J Comput Appl Math 121:421–464MathSciNetMATH
Zurück zum Zitat Asadpoure A, Tootkaboni M, Guest JK (2011) Robust topology optimization of structures with uncertainties in stiffness—application to truss structures. Comput Struct 89:1131–1141 Asadpoure A, Tootkaboni M, Guest JK (2011) Robust topology optimization of structures with uncertainties in stiffness—application to truss structures. Comput Struct 89:1131–1141
Zurück zum Zitat Ben-Haim Y (1994) Fatigue lifetime with load uncertainty represented by convex model. J Eng Mech (ASCE) 120:445–462 Ben-Haim Y (1994) Fatigue lifetime with load uncertainty represented by convex model. J Eng Mech (ASCE) 120:445–462
Zurück zum Zitat Ben-Haim Y (1995) A non-probabilistic measure of reliability of linear systems based on expansion of convex models. Struct Saf 17:91–109 Ben-Haim Y (1995) A non-probabilistic measure of reliability of linear systems based on expansion of convex models. Struct Saf 17:91–109
Zurück zum Zitat Ben-Haim Y, Elishakoff I (1990) Convex models of uncertainty in applied mechanics. Elsevier, New YorkMATH Ben-Haim Y, Elishakoff I (1990) Convex models of uncertainty in applied mechanics. Elsevier, New YorkMATH
Zurück zum Zitat Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, PrincetonMATH Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, PrincetonMATH
Zurück zum Zitat Beyer H-G, Sendhoff B (2007) Robust optimization—a comprehensive survey. Comput Methods Appl Mech Eng 196:3190–3218MathSciNetMATH Beyer H-G, Sendhoff B (2007) Robust optimization—a comprehensive survey. Comput Methods Appl Mech Eng 196:3190–3218MathSciNetMATH
Zurück zum Zitat Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, CambridgeMATH Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, CambridgeMATH
Zurück zum Zitat Calafiore GC, Dabbene F (2008) Optimization under uncertainty with applications to design of truss structures. Struct Multidiscip Optim 35:189–200MathSciNetMATH Calafiore GC, Dabbene F (2008) Optimization under uncertainty with applications to design of truss structures. Struct Multidiscip Optim 35:189–200MathSciNetMATH
Zurück zum Zitat Chankong V, Haimes YY, Thadathil J, Zionts S (1985) Multiple criteria optimization; a state of the art review. In: Haimes YY, Chankong V (eds) Decision making with multiple objectives. Springer, Berlin, pp 36–90 Chankong V, Haimes YY, Thadathil J, Zionts S (1985) Multiple criteria optimization; a state of the art review. In: Haimes YY, Chankong V (eds) Decision making with multiple objectives. Springer, Berlin, pp 36–90
Zurück zum Zitat Chen W, Allen JK, Tsui K-L, Mistree F (1996) A procedure for robust design: minimizing variations caused by noise factors and control factors. J Mech Des 118:478–485 Chen W, Allen JK, Tsui K-L, Mistree F (1996) A procedure for robust design: minimizing variations caused by noise factors and control factors. J Mech Des 118:478–485
Zurück zum Zitat Chen W, Fu W, Biggers SB, Latour RA (2000) An affordable approach for robust design of thick laminated composite structure. Optim Eng 1:305–322MATH Chen W, Fu W, Biggers SB, Latour RA (2000) An affordable approach for robust design of thick laminated composite structure. Optim Eng 1:305–322MATH
Zurück zum Zitat Chen S, Lian H, Yang X (2002) Interval static displacement analysis for structures with interval parameters. Int J Numer Methods Eng 53:393–407MATH Chen S, Lian H, Yang X (2002) Interval static displacement analysis for structures with interval parameters. Int J Numer Methods Eng 53:393–407MATH
Zurück zum Zitat Cherkaev E, Cherkaev A (2003) Principal compliance and robust optimal design. J Elast 72:71–98MathSciNetMATH Cherkaev E, Cherkaev A (2003) Principal compliance and robust optimal design. J Elast 72:71–98MathSciNetMATH
Zurück zum Zitat Cherkaev E, Cherkaev A (2008) Minimax optimization problem of structural design. Comput Struct 86:1426–1435MATH Cherkaev E, Cherkaev A (2008) Minimax optimization problem of structural design. Comput Struct 86:1426–1435MATH
Zurück zum Zitat Choi JH, Lee WH, Park JJ, Youn BD (2008) A study on robust design optimization of layered plate bonding process considering uncertainties. Struct Multidiscip Optim 35:531–540 Choi JH, Lee WH, Park JJ, Youn BD (2008) A study on robust design optimization of layered plate bonding process considering uncertainties. Struct Multidiscip Optim 35:531–540
Zurück zum Zitat Cohon JL, Marks DH (1974) A review and evaluation of multiobjective programing techniques. Water Resour Res 11:208–220 Cohon JL, Marks DH (1974) A review and evaluation of multiobjective programing techniques. Water Resour Res 11:208–220
Zurück zum Zitat Collobert R, Sinz F, Weston J, Bottou L (2006) Large scale transductive SVMs. J Mach Learn Res 7:1687–1712MathSciNetMATH Collobert R, Sinz F, Weston J, Bottou L (2006) Large scale transductive SVMs. J Mach Learn Res 7:1687–1712MathSciNetMATH
Zurück zum Zitat Cornuéjols G, Pena J, Tütüncü R (2018) Optimization methods in finance, 2nd edn. Cambridge University Press, CambridgeMATH Cornuéjols G, Pena J, Tütüncü R (2018) Optimization methods in finance, 2nd edn. Cambridge University Press, CambridgeMATH
Zurück zum Zitat da Silva GA, Cardoso EL, Beck AT (2019) Non-probabilistic robust continuum topology optimization with stress constraints. Struct Multidiscip Optim 59:1181–1197MathSciNet da Silva GA, Cardoso EL, Beck AT (2019) Non-probabilistic robust continuum topology optimization with stress constraints. Struct Multidiscip Optim 59:1181–1197MathSciNet
Zurück zum Zitat de Gournay F, Allaire G, Jouve F (2008) Shape and topology optimization of the robust compliance via the level set method. ESAIM: Control Optim Calc Var 14:43–70MathSciNetMATH de Gournay F, Allaire G, Jouve F (2008) Shape and topology optimization of the robust compliance via the level set method. ESAIM: Control Optim Calc Var 14:43–70MathSciNetMATH
Zurück zum Zitat Ganzerli S, Pantelides CP (1999) Load and resistance convex models for optimum design. Struct Optim 17:259–268 Ganzerli S, Pantelides CP (1999) Load and resistance convex models for optimum design. Struct Optim 17:259–268
Zurück zum Zitat Grant M, Boyd S (2008) Graph implementations for nonsmooth convex programs. In: Blondel V, Boyd S, Kimura H (eds) Recent advances in learning and control (a tribute to M. Vidyasagar). Springer, pp 95–110 Grant M, Boyd S (2008) Graph implementations for nonsmooth convex programs. In: Blondel V, Boyd S, Kimura H (eds) Recent advances in learning and control (a tribute to M. Vidyasagar). Springer, pp 95–110
Zurück zum Zitat Haimes YY, Hall WA (1974) Multiobjectives in water resource systems analysis: the surrogate worth trade off method. Water Resour Res 10:615–624 Haimes YY, Hall WA (1974) Multiobjectives in water resource systems analysis: the surrogate worth trade off method. Water Resour Res 10:615–624
Zurück zum Zitat Haimes YY, Lasdon LS, Wismer DA (1971) On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans Syst Man Cybern 1:296–297MathSciNetMATH Haimes YY, Lasdon LS, Wismer DA (1971) On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans Syst Man Cybern 1:296–297MathSciNetMATH
Zurück zum Zitat Han JS, Kwak BM (2004) Robust optimization using a gradient index: MEMS applications. Struct Multidiscip Optim 27:469–478 Han JS, Kwak BM (2004) Robust optimization using a gradient index: MEMS applications. Struct Multidiscip Optim 27:469–478
Zurück zum Zitat Hashimoto D, Kanno Y (2015) A semidefinite programming approach to robust truss topology optimization under uncertainty in locations of nodes. Struct Multidiscip Optim 51:439–461MathSciNet Hashimoto D, Kanno Y (2015) A semidefinite programming approach to robust truss topology optimization under uncertainty in locations of nodes. Struct Multidiscip Optim 51:439–461MathSciNet
Zurück zum Zitat Hiriart-Urruty J-B, Lemaréchal C (1993) Convex analysis and minimization algorithms, vol I. Springer, BerlinMATH Hiriart-Urruty J-B, Lemaréchal C (1993) Convex analysis and minimization algorithms, vol I. Springer, BerlinMATH
Zurück zum Zitat Holmberg E, Thore C-J, Klarbring A (2015) Worst-case topology optimization of self-weight loaded structures using semi-definite programming. Struct Multidiscip Optim 52:915–928MathSciNet Holmberg E, Thore C-J, Klarbring A (2015) Worst-case topology optimization of self-weight loaded structures using semi-definite programming. Struct Multidiscip Optim 52:915–928MathSciNet
Zurück zum Zitat Huan Z, Zhenghong G, Fang X, Yidian Z (2019) Review of robust aerodynamic design optimization for air vehicles. Arch Comput Methods Eng 26:685–732MathSciNet Huan Z, Zhenghong G, Fang X, Yidian Z (2019) Review of robust aerodynamic design optimization for air vehicles. Arch Comput Methods Eng 26:685–732MathSciNet
Zurück zum Zitat Hwang CL, Paidy SR, Yoon K, Masud ASM (1980) Mathematical programming with multiple objectives: a tutorial. Comput Oper Res 7:5–31 Hwang CL, Paidy SR, Yoon K, Masud ASM (1980) Mathematical programming with multiple objectives: a tutorial. Comput Oper Res 7:5–31
Zurück zum Zitat Ito M, Kogiso N, Hasegawa T (2018) A consideration on robust design optimization problem through formulation of multiobjective optimization. J Adv Mech Des Syst Manuf 12:18–00076 Ito M, Kogiso N, Hasegawa T (2018) A consideration on robust design optimization problem through formulation of multiobjective optimization. J Adv Mech Des Syst Manuf 12:18–00076
Zurück zum Zitat Kanno Y (2011) Nonsmooth mechanics and convex optimization. CRC Press, Boca RatonMATH Kanno Y (2011) Nonsmooth mechanics and convex optimization. CRC Press, Boca RatonMATH
Zurück zum Zitat Kanno Y (2015) A note on formulations of robust compliance optimization under uncertain loads. J Struct Construct Eng (Trans AIJ) 80:601–607 Kanno Y (2015) A note on formulations of robust compliance optimization under uncertain loads. J Struct Construct Eng (Trans AIJ) 80:601–607
Zurück zum Zitat Kanno Y (2018) Robust truss topology optimization via semidefinite programming with complementarity constraints: a difference-of-convex programming approach. Comput Optim Appl 71:403–433MathSciNetMATH Kanno Y (2018) Robust truss topology optimization via semidefinite programming with complementarity constraints: a difference-of-convex programming approach. Comput Optim Appl 71:403–433MathSciNetMATH
Zurück zum Zitat Kanno Y (2019) A data-driven approach to non-parametric reliability-based design optimization of structures with uncertain load. Struct Multidiscip Optim 60:83–97MathSciNet Kanno Y (2019) A data-driven approach to non-parametric reliability-based design optimization of structures with uncertain load. Struct Multidiscip Optim 60:83–97MathSciNet
Zurück zum Zitat Keshavarzzadeh V, Fernandez F, Tortorelli DA (2017) Topology optimization under uncertainty via non-intrusive polynomial chaos expansion. Comput Methods Appl Mech Eng 318:120–147MathSciNetMATH Keshavarzzadeh V, Fernandez F, Tortorelli DA (2017) Topology optimization under uncertainty via non-intrusive polynomial chaos expansion. Comput Methods Appl Mech Eng 318:120–147MathSciNetMATH
Zurück zum Zitat Kim N-K, Kim D-H, Kim D-W, Kim H-G, Lowther DA, Sykulski JK (2010) Robust optimization utilizing the second-order design sensitivity information. IEEE Trans Magn 46:3117–3120 Kim N-K, Kim D-H, Kim D-W, Kim H-G, Lowther DA, Sykulski JK (2010) Robust optimization utilizing the second-order design sensitivity information. IEEE Trans Magn 46:3117–3120
Zurück zum Zitat Kitayama S, Yamazaki K (2014) Sequential approximate robust design optimization using radial basis function network. Int J Mech Mater Des 10:313–328 Kitayama S, Yamazaki K (2014) Sequential approximate robust design optimization using radial basis function network. Int J Mech Mater Des 10:313–328
Zurück zum Zitat Kogiso N, Ahn W-J, Nishiwaki S, Izui K, Yoshimura M (2008) Robust topology optimization for compliant mechanisms considering uncertainty of applied loads. J Adv Mech Des Syst Manuf 2:96–107 Kogiso N, Ahn W-J, Nishiwaki S, Izui K, Yoshimura M (2008) Robust topology optimization for compliant mechanisms considering uncertainty of applied loads. J Adv Mech Des Syst Manuf 2:96–107
Zurück zum Zitat Kriegesmann B, Lüdeker JK (2019) Robust compliance topology optimization using the first-order second-moment method. Struct Multidiscip Optim 60:269–286MathSciNet Kriegesmann B, Lüdeker JK (2019) Robust compliance topology optimization using the first-order second-moment method. Struct Multidiscip Optim 60:269–286MathSciNet
Zurück zum Zitat Lee K-H, Park G-J (2006) A global robust optimization using kriging based approximation model. JSME Int J Ser C Mech Syst Mach Element Manuf 49:779–788 Lee K-H, Park G-J (2006) A global robust optimization using kriging based approximation model. JSME Int J Ser C Mech Syst Mach Element Manuf 49:779–788
Zurück zum Zitat Le Thi HA, Pham Dinh T (2005) The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann Oper Res 133:23–46MathSciNetMATH Le Thi HA, Pham Dinh T (2005) The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann Oper Res 133:23–46MathSciNetMATH
Zurück zum Zitat Le Thi HA, Pham Dinh T (2018) DC Programming and DCA: thirty years of developments. Math Program 169:5–68MathSciNetMATH Le Thi HA, Pham Dinh T (2018) DC Programming and DCA: thirty years of developments. Math Program 169:5–68MathSciNetMATH
Zurück zum Zitat Lipp T, Boyd S (2016) Variations and extension of the convex–concave procedure. Optim Eng 17:263–287MathSciNetMATH Lipp T, Boyd S (2016) Variations and extension of the convex–concave procedure. Optim Eng 17:263–287MathSciNetMATH
Zurück zum Zitat Luo Y, Kang Z, Luo Z, Li A (2009) Continuum topology optimization with non-probabilistic reliability constraints based on multi-ellipsoid convex model. Struct Multidiscip Optim 39:297–310MathSciNetMATH Luo Y, Kang Z, Luo Z, Li A (2009) Continuum topology optimization with non-probabilistic reliability constraints based on multi-ellipsoid convex model. Struct Multidiscip Optim 39:297–310MathSciNetMATH
Zurück zum Zitat Markowitz H (1952) Portfolio selection. J Financ 7:77–91 Markowitz H (1952) Portfolio selection. J Financ 7:77–91
Zurück zum Zitat Nakazawa Y, Kogiso N, Yamada T, Nishiwaki S (2016) Robust topology optimization of thin plate structure under concentrated load with uncertain load position. J Adv Mech Des Syst Manuf 10:16–00232 Nakazawa Y, Kogiso N, Yamada T, Nishiwaki S (2016) Robust topology optimization of thin plate structure under concentrated load with uncertain load position. J Adv Mech Des Syst Manuf 10:16–00232
Zurück zum Zitat Neumaier A, Pownuk A (2007) Linear systems with large uncertainties, with applications to truss structures. Reliab Comput 13:149–172MathSciNetMATH Neumaier A, Pownuk A (2007) Linear systems with large uncertainties, with applications to truss structures. Reliab Comput 13:149–172MathSciNetMATH
Zurück zum Zitat Pantelides CP, Ganzerli S (1998) Design of trusses under uncertain loads using convex models. J Struct Eng (ASCE) 124:318–329 Pantelides CP, Ganzerli S (1998) Design of trusses under uncertain loads using convex models. J Struct Eng (ASCE) 124:318–329
Zurück zum Zitat Park G-J, Lee T-H, Lee KH, Hwang K-H (2006) Robust design: an overview. AIAA J 44:181–191 Park G-J, Lee T-H, Lee KH, Hwang K-H (2006) Robust design: an overview. AIAA J 44:181–191
Zurück zum Zitat Rao SS, Cao L (2002) Optimum design of mechanical systems involving interval parameters. J Mech Des (ASME) 124:465–472 Rao SS, Cao L (2002) Optimum design of mechanical systems involving interval parameters. J Mech Des (ASME) 124:465–472
Zurück zum Zitat Shimoyama K, Lim JN, Jeong S, Obayashi S, Koishi M (2009) Practical implementation of robust design assisted by response surface approximation and visual data-mining. J Mech Des 131:061007 Shimoyama K, Lim JN, Jeong S, Obayashi S, Koishi M (2009) Practical implementation of robust design assisted by response surface approximation and visual data-mining. J Mech Des 131:061007
Zurück zum Zitat Shin YS, Grandhi RV (2001) A global structural optimization technique using an interval method. Struct Multidiscip Optim 22:351–36 Shin YS, Grandhi RV (2001) A global structural optimization technique using an interval method. Struct Multidiscip Optim 22:351–36
Zurück zum Zitat Sobieszczanski-Sobieski J, Morris A, van Tooren MJL (2015) Multidisciplinary design optimization supported by knowledge based engineering. Wiley, Chichester Sobieszczanski-Sobieski J, Morris A, van Tooren MJL (2015) Multidisciplinary design optimization supported by knowledge based engineering. Wiley, Chichester
Zurück zum Zitat Sriperumbudur BK, Lanckriet GRG (2009) On the convergence of the concave-convex procedure. Adv Neural Inf Process Syst 22:1759–1767 Sriperumbudur BK, Lanckriet GRG (2009) On the convergence of the concave-convex procedure. Adv Neural Inf Process Syst 22:1759–1767
Zurück zum Zitat Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Methods Softw 11–12:625–653MathSciNetMATH Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Methods Softw 11–12:625–653MathSciNetMATH
Zurück zum Zitat Su J, Renaud JE (1997) Automatic differentiation in robust optimization. AIAA J 35:1072–1079MATH Su J, Renaud JE (1997) Automatic differentiation in robust optimization. AIAA J 35:1072–1079MATH
Zurück zum Zitat Sun G, Song X, Baek S, Li Q (2014) Robust optimization of foam-filled thin-walled structure based on sequential Kriging metamodel. Struct Multidiscip Optim 49:897–913 Sun G, Song X, Baek S, Li Q (2014) Robust optimization of foam-filled thin-walled structure based on sequential Kriging metamodel. Struct Multidiscip Optim 49:897–913
Zurück zum Zitat Takezawa A, Nii S, Kitamura M, Kogiso N (2011) Topology optimization for worst load conditions based on the eigenvalue analysis of an aggregated linear system. Comput Methods Appl Mech Eng 200:2268–2281MathSciNetMATH Takezawa A, Nii S, Kitamura M, Kogiso N (2011) Topology optimization for worst load conditions based on the eigenvalue analysis of an aggregated linear system. Comput Methods Appl Mech Eng 200:2268–2281MathSciNetMATH
Zurück zum Zitat Tootkaboni M, Asadpoure A, Guest JK (2012) Topology optimization of continuum structures under uncertainty—a polynomial chaos approach. Comput Methods Appl Mech Eng 201–204:263– 275MathSciNetMATH Tootkaboni M, Asadpoure A, Guest JK (2012) Topology optimization of continuum structures under uncertainty—a polynomial chaos approach. Comput Methods Appl Mech Eng 201–204:263– 275MathSciNetMATH
Zurück zum Zitat Toyoda M, Kogiso N (2015) Robust multiobjective optimization method using satisficing trade-off method. J Mech Sci Technol 29:1361–1367 Toyoda M, Kogiso N (2015) Robust multiobjective optimization method using satisficing trade-off method. J Mech Sci Technol 29:1361–1367
Zurück zum Zitat Valdebenito MA, Schuëller GI (2010) A survey on approaches for reliability-based optimization. Struct Multidiscip Optim 42:645–663MathSciNetMATH Valdebenito MA, Schuëller GI (2010) A survey on approaches for reliability-based optimization. Struct Multidiscip Optim 42:645–663MathSciNetMATH
Zurück zum Zitat Yao W, Chen X, Luo W, van Tooren M, Guo J (2011) Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles. Prog Aerosp Sci 47:450–479 Yao W, Chen X, Luo W, van Tooren M, Guo J (2011) Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles. Prog Aerosp Sci 47:450–479
Zurück zum Zitat Yonekura K, Kanno Y (2010) Global optimization of robust truss topology via mixed integer semidefinite programming. Optim Eng 11:355–379MathSciNetMATH Yonekura K, Kanno Y (2010) Global optimization of robust truss topology via mixed integer semidefinite programming. Optim Eng 11:355–379MathSciNetMATH
Zurück zum Zitat Yuille AL, Rangarajan A (2003) The concave-convex procedure. Neural Comput 15:915–936MATH Yuille AL, Rangarajan A (2003) The concave-convex procedure. Neural Comput 15:915–936MATH
Zurück zum Zitat Zang C, Friswell MI, Mottershead JE (2005) A review of robust optimal design and its application in dynamics. Comput Struct 83:315–326 Zang C, Friswell MI, Mottershead JE (2005) A review of robust optimal design and its application in dynamics. Comput Struct 83:315–326
Zurück zum Zitat Zhang X, He J, Takezawa A, Kang Z (2018a) Robust topology optimization of phononic crystals with random field uncertainty. Int J Numer Methods Eng 115:1154–1173MathSciNet Zhang X, He J, Takezawa A, Kang Z (2018a) Robust topology optimization of phononic crystals with random field uncertainty. Int J Numer Methods Eng 115:1154–1173MathSciNet
Zurück zum Zitat Zhang W, Kang Z (2017) Robust shape and topology optimization considering geometric uncertainties with stochastic level set perturbation. Int J Numer Methods Eng 110:31–56MathSciNetMATH Zhang W, Kang Z (2017) Robust shape and topology optimization considering geometric uncertainties with stochastic level set perturbation. Int J Numer Methods Eng 110:31–56MathSciNetMATH
Zurück zum Zitat Zhang Y, Li X, Guo S (2018b) Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature. Fuzzy Optim Decis Making 17:125–158MathSciNetMATH Zhang Y, Li X, Guo S (2018b) Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature. Fuzzy Optim Decis Making 17:125–158MathSciNetMATH
Zurück zum Zitat Zhao Z, Han X, Jiang C, Zhou X (2010) A nonlinear interval-based optimization method with local-densifying approximation technique. Struct Multidiscip Optim 42:559–573 Zhao Z, Han X, Jiang C, Zhou X (2010) A nonlinear interval-based optimization method with local-densifying approximation technique. Struct Multidiscip Optim 42:559–573
Metadaten
Titel
On three concepts in robust design optimization: absolute robustness, relative robustness, and less variance
verfasst von
Yoshihiro Kanno
Publikationsdatum
13.03.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 2/2020
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-020-02503-9

Weitere Artikel der Ausgabe 2/2020

Structural and Multidisciplinary Optimization 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.