Skip to main content
Erschienen in: Experiments in Fluids 10/2018

01.10.2018 | Research Article

One degree-of-freedom vortex-induced vibrations at constant Reynolds number and mass-damping

verfasst von: Graham Riches, Chris Morton

Erschienen in: Experiments in Fluids | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Free vibration experiments of a circular cylinder undergoing vortex-induced vibrations are performed using a cyber–physical system. Amplitude, force and frequency response measurements for four cases of constant mass-damping (\(m^*\zeta\)) at a constant Reynolds number (\({Re} = U_\infty D/\nu\)) of 4000 are presented and compared to the literature values. The results show that mass ratio (\(m^*\)) is the dominant parameter governing the response in the initial branch, while \(m^*\zeta\) governs the amplitude response in the lower branch and desynchronization regions. In the upper branch, the Reynolds number and \(m^*\zeta\) both strongly affect the amplitude response. Following a decomposition of the total hydrodynamic force into added mass and circulatory components, it is shown that the circulatory force is strongly related to \(m^*\) in the initial branch, and \(m^*\zeta\) in the upper and lower branches. The total force is found to be insensitive to changes in \(m^*\) and \(m^*\zeta\) in the lower branch and desynchronization regions. An analysis of the extent of amplitude modulations is performed by comparing the amplitude response calculated by the highest \(10\%\) of peaks method and the mean of all peaks method. The results indicate that lower structural damping values lead to larger modulations in the initial and upper branch regions regardless of \(m^*\).

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
It should be noted that the Griffin plots in the aforementioned works refer only to the maximum amplitude attained in an entire VIV amplitude response and do not necessarily collapse all response data in each of the individual branches.
 
2
All data points from the current work are available as supplementary material.
 
Literatur
Zurück zum Zitat Bearman PW (1984) Vortex shedding from oscillating bluff bodies. Annu Rev Fluid Mech 16:195–222CrossRef Bearman PW (1984) Vortex shedding from oscillating bluff bodies. Annu Rev Fluid Mech 16:195–222CrossRef
Zurück zum Zitat Blevins R, Coughran CS (2009) Experimental investigation of vortex-induced vibration in one and two dimensions with variable mass, damping, and Reynolds number. J Fluids Eng 131:101202CrossRef Blevins R, Coughran CS (2009) Experimental investigation of vortex-induced vibration in one and two dimensions with variable mass, damping, and Reynolds number. J Fluids Eng 131:101202CrossRef
Zurück zum Zitat Carberry J (2002) Wake states of a submerged oscillating cylinder and of a cylinder beneath a free-surface. Ph.D. thesis, Department of Mechanical Engineering Monash University Carberry J (2002) Wake states of a submerged oscillating cylinder and of a cylinder beneath a free-surface. Ph.D. thesis, Department of Mechanical Engineering Monash University
Zurück zum Zitat Derakhshandeh J, Arjomandi M, Cazzolato B, Dally B (2015) Harnessing hydro-kinetic energy from wake-induced vibration using virtual mass spring damper system. Ocean Eng 108:115–128CrossRef Derakhshandeh J, Arjomandi M, Cazzolato B, Dally B (2015) Harnessing hydro-kinetic energy from wake-induced vibration using virtual mass spring damper system. Ocean Eng 108:115–128CrossRef
Zurück zum Zitat Evangelinos C, Karniadakis GE (1999) Dynamics and flow structures in the turbulent wake of rigid and flexible cylinders subject to vortex-induced vibrations. J Fluid Mech 400:91–124MathSciNetCrossRef Evangelinos C, Karniadakis GE (1999) Dynamics and flow structures in the turbulent wake of rigid and flexible cylinders subject to vortex-induced vibrations. J Fluid Mech 400:91–124MathSciNetCrossRef
Zurück zum Zitat Feng C (1968) The measurement of vortex induced effects in flow past stationary and oscillating circular and d-shaped bodies. Master’s thesis, The University of British Columbia Feng C (1968) The measurement of vortex induced effects in flow past stationary and oscillating circular and d-shaped bodies. Master’s thesis, The University of British Columbia
Zurück zum Zitat Govardhan R, Williamson CHK (2000) Modes of vortex formation and frequency response of a freely vibrating cylinder. J Fluid Mech 420:85–130MathSciNetCrossRef Govardhan R, Williamson CHK (2000) Modes of vortex formation and frequency response of a freely vibrating cylinder. J Fluid Mech 420:85–130MathSciNetCrossRef
Zurück zum Zitat Govardhan R, Williamson C (2006) Defining the ’modified griffin plot’ in vortex-induced vibration: revealing the effect of reynolds number using controlled damping. J Fluid Mech 561:147–180CrossRef Govardhan R, Williamson C (2006) Defining the ’modified griffin plot’ in vortex-induced vibration: revealing the effect of reynolds number using controlled damping. J Fluid Mech 561:147–180CrossRef
Zurück zum Zitat Hover F, Miller S, Triantafyllou M (1997) Vortex-induced vibration of marine cables: experiments using force-feedback. J Fluids Struct 11:307–326CrossRef Hover F, Miller S, Triantafyllou M (1997) Vortex-induced vibration of marine cables: experiments using force-feedback. J Fluids Struct 11:307–326CrossRef
Zurück zum Zitat Hover F, Techet A, Triantafyllou M (1998) Forces on oscillating uniform and tapered cylinders in crossflow. J Fluid Mech 11:307–326MathSciNetMATH Hover F, Techet A, Triantafyllou M (1998) Forces on oscillating uniform and tapered cylinders in crossflow. J Fluid Mech 11:307–326MathSciNetMATH
Zurück zum Zitat Khalak A, Williamson C (1996) Dynamics of a hydroelastic cylinder with very low mass and damping. J Fluids Struct 10:455–472CrossRef Khalak A, Williamson C (1996) Dynamics of a hydroelastic cylinder with very low mass and damping. J Fluids Struct 10:455–472CrossRef
Zurück zum Zitat Khalak A, Williamson CH (1997) Investigation of the relative effects of mass and damping in vortex-induced vibration of a circular cylinder. J Wind Eng 69:341–350 Khalak A, Williamson CH (1997) Investigation of the relative effects of mass and damping in vortex-induced vibration of a circular cylinder. J Wind Eng 69:341–350
Zurück zum Zitat Khalak A, Williamson C (1999) Motions, forces, and mode transitions in vortex-induced vibrations at low mass-damping. J Fluids Struct 13:813–851CrossRef Khalak A, Williamson C (1999) Motions, forces, and mode transitions in vortex-induced vibrations at low mass-damping. J Fluids Struct 13:813–851CrossRef
Zurück zum Zitat Klamo JT (2007) Effects of dampings and Reynolds nnumber on vortex-induced vibrations. Ph.D. thesis, California Institute of Technology Klamo JT (2007) Effects of dampings and Reynolds nnumber on vortex-induced vibrations. Ph.D. thesis, California Institute of Technology
Zurück zum Zitat Klamo J, Leonard A, Roshko A (2005) On the maximum amplitude for a freely vibrating cylinder in cross-flow. J Fluids Struct 21:429–434CrossRef Klamo J, Leonard A, Roshko A (2005) On the maximum amplitude for a freely vibrating cylinder in cross-flow. J Fluids Struct 21:429–434CrossRef
Zurück zum Zitat Klamo J, Leonard A, Roshko A (2006) The effects of damping on the amplitude and frequency response of a freely vibrating cylinder in cross-flow. J Fluids Struct 22:845–856CrossRef Klamo J, Leonard A, Roshko A (2006) The effects of damping on the amplitude and frequency response of a freely vibrating cylinder in cross-flow. J Fluids Struct 22:845–856CrossRef
Zurück zum Zitat Limacher E, Morton C, Wood D (2018) Generalized derivation of the added-mass and circulatory forces for viscous flows. Phys Rev Fluids 3:014701CrossRef Limacher E, Morton C, Wood D (2018) Generalized derivation of the added-mass and circulatory forces for viscous flows. Phys Rev Fluids 3:014701CrossRef
Zurück zum Zitat Mackowski AW, Williamson CH (2011) Developing a cyber-physical fluid dynamics facility for fluid-structure interaction studies. J Fluids Struct 27:748–757CrossRef Mackowski AW, Williamson CH (2011) Developing a cyber-physical fluid dynamics facility for fluid-structure interaction studies. J Fluids Struct 27:748–757CrossRef
Zurück zum Zitat Marble E, Morton C, Yarusevych S (2018) Vortex dynamics in the wake of a pivoted cylinder undergoing vortex-induced vibrations with elliptic trajectories. Exp Fluids 59:78CrossRef Marble E, Morton C, Yarusevych S (2018) Vortex dynamics in the wake of a pivoted cylinder undergoing vortex-induced vibrations with elliptic trajectories. Exp Fluids 59:78CrossRef
Zurück zum Zitat Onoue K, Song A, Strom B, Breuer KS (2015) Large amplitude flow-induced oscillations and energy harvesting using a cyber-physical pitching plate. J Fluids Struct 55:262–275CrossRef Onoue K, Song A, Strom B, Breuer KS (2015) Large amplitude flow-induced oscillations and energy harvesting using a cyber-physical pitching plate. J Fluids Struct 55:262–275CrossRef
Zurück zum Zitat Sarpkaya T (1979) Vortex-induced oscillations–a selective review. J Appl Mech 46:241–258CrossRef Sarpkaya T (1979) Vortex-induced oscillations–a selective review. J Appl Mech 46:241–258CrossRef
Zurück zum Zitat Shiels D, Leonard A, Roshko A (2001) Flow-induced vibration of a circular cylinder at limiting structural parameters. J Fluids Struct 15:3–21CrossRef Shiels D, Leonard A, Roshko A (2001) Flow-induced vibration of a circular cylinder at limiting structural parameters. J Fluids Struct 15:3–21CrossRef
Zurück zum Zitat Smogeli O, Hover FS, Triantafyllou MS (2003) Force-feedback control in vivo experiments. In: 22nd international conference on offshore mechanics and arctic engineering Smogeli O, Hover FS, Triantafyllou MS (2003) Force-feedback control in vivo experiments. In: 22nd international conference on offshore mechanics and arctic engineering
Zurück zum Zitat Sun H, Kim ES, Bernitsas MP, Bernitsas MM (2015) Virtual spring-damping system for flow-induced motion experiments. J Offshore Mech Arct Eng 137:061801CrossRef Sun H, Kim ES, Bernitsas MP, Bernitsas MM (2015) Virtual spring-damping system for flow-induced motion experiments. J Offshore Mech Arct Eng 137:061801CrossRef
Zurück zum Zitat Vandiver JK (2012) Damping parameters for flow-induced vibration. J Fluids Struct 35:105–119CrossRef Vandiver JK (2012) Damping parameters for flow-induced vibration. J Fluids Struct 35:105–119CrossRef
Metadaten
Titel
One degree-of-freedom vortex-induced vibrations at constant Reynolds number and mass-damping
verfasst von
Graham Riches
Chris Morton
Publikationsdatum
01.10.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 10/2018
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-018-2603-3

Weitere Artikel der Ausgabe 10/2018

Experiments in Fluids 10/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.