Skip to main content

2016 | OriginalPaper | Buchkapitel

One-Dimensional Carbon Nanostructures: Low-Temperature Chemical Vapor Synthesis and Applications

verfasst von : Yao Ma, Nianjun Yang, Xin Jiang

Erschienen in: Carbon Nanoparticles and Nanostructures

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chemical vapor deposition (CVD) is a powerful method to synthesize various carbon nanostructures (e.g., carbon nanotubes). A conventional CVD process has to be carried out at the temperatures over 600 °C. To extend the applications of carbon nanostructures, for example in the semiconductor industry, low-temperature synthesis processes are thus always pursued. In this chapter we review the CVD growth of carbon nanostructures at low temperatures (<450 °C). These growth processes are discussed in detail with respect to the applied catalyst system, carbon source, reaction atmosphere, catalyst faces, morphology control as well as unique structural characteristics of grown products. For the low-temperature CVD growth, catalytic reaction occurring on the low index faces of a metal catalyst is a crucial issue, and the growth is rate-limited by surface diffusion. Instead of the classical Vapor-Liquid-Solid (VLS) growth mechanism, the growth mechanism at low temperatures is interpreted with a novel Vapor-Facet-Solid (VFS) mechanism. Due to their unique features, the synthesized carbon nanostructures are promising to be applied for interconnects in large-scale integrated circuits, field emission, microwave adsorption, and as the anode material of lithium ion secondary battery, etc.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat J. Hone, M.C. Llaguno, N.M. Nemes, A.T. Johnson, J.E. Fischer, D.A. Walters, M.J. Casavant, J. Schmidt, R.E. Smalley, Electrical and thermal transport properties of magnetically aligned single walt carbon nanotube films. Appl. Phys. Lett. 77(5), 666–668 (2000). doi:10.1063/1.127079 CrossRef J. Hone, M.C. Llaguno, N.M. Nemes, A.T. Johnson, J.E. Fischer, D.A. Walters, M.J. Casavant, J. Schmidt, R.E. Smalley, Electrical and thermal transport properties of magnetically aligned single walt carbon nanotube films. Appl. Phys. Lett. 77(5), 666–668 (2000). doi:10.​1063/​1.​127079 CrossRef
5.
Zurück zum Zitat J.L. Hutchison, N.A. Kiselev, E.P. Krinichnaya, A.V. Krestinin, R.O. Loutfy, A.P. Morawsky, V.E. Muradyan, E.D. Obraztsova, J. Sloan, S.V. Terekhov, D.N. Zakharov, Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 39(5), 761–770 (2001). doi:10.1016/s0008-6223(00)00187-1 CrossRef J.L. Hutchison, N.A. Kiselev, E.P. Krinichnaya, A.V. Krestinin, R.O. Loutfy, A.P. Morawsky, V.E. Muradyan, E.D. Obraztsova, J. Sloan, S.V. Terekhov, D.N. Zakharov, Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 39(5), 761–770 (2001). doi:10.​1016/​s0008-6223(00)00187-1 CrossRef
7.
Zurück zum Zitat C.D. Scott, S. Arepalli, P. Nikolaev, R.E. Smalley, Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A Mater. Sci. Process. 72(5), 573–580 (2001). doi:10.1007/s003390100761 CrossRef C.D. Scott, S. Arepalli, P. Nikolaev, R.E. Smalley, Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A Mater. Sci. Process. 72(5), 573–580 (2001). doi:10.​1007/​s003390100761 CrossRef
8.
Zurück zum Zitat Y. Zhang, S. Iijima, Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature. Appl. Phys. Lett. 75(20), 3087–3089 (1999). doi:10.1063/1.125239 CrossRef Y. Zhang, S. Iijima, Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature. Appl. Phys. Lett. 75(20), 3087–3089 (1999). doi:10.​1063/​1.​125239 CrossRef
10.
Zurück zum Zitat J.H. Xia, X. Jiang, C.L. Jia, C. Dong, Hexahedral nanocementites catalyzing the growth of carbon nanohelices. Appl. Phys. Lett. 92(6), 063121 (2008). doi:10.1063/1.2842410 CrossRef J.H. Xia, X. Jiang, C.L. Jia, C. Dong, Hexahedral nanocementites catalyzing the growth of carbon nanohelices. Appl. Phys. Lett. 92(6), 063121 (2008). doi:10.​1063/​1.​2842410 CrossRef
11.
Zurück zum Zitat S. Motojima, Q.Q. Chen, Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition. J. Appl. Phys. 85(7), 3919–3921 (1999). doi:10.1063/1.369765 CrossRef S. Motojima, Q.Q. Chen, Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition. J. Appl. Phys. 85(7), 3919–3921 (1999). doi:10.​1063/​1.​369765 CrossRef
13.
Zurück zum Zitat X.S. Qi, W. Zhong, Y. Deng, C.T. Au, Y.W. Du, Characterization and magnetic properties of helical carbon nanotubes and carbon nanobelts synthesized in acetylene decomposition over Fe–Cu nanoparticles at 450 °C. J. Phys. Chem. C 113(36), 15934–15940 (2009). doi:10.1021/jp905387v CrossRef X.S. Qi, W. Zhong, Y. Deng, C.T. Au, Y.W. Du, Characterization and magnetic properties of helical carbon nanotubes and carbon nanobelts synthesized in acetylene decomposition over Fe–Cu nanoparticles at 450 °C. J. Phys. Chem. C 113(36), 15934–15940 (2009). doi:10.​1021/​jp905387v CrossRef
14.
Zurück zum Zitat A.M. Cassell, J.A. Raymakers, J. Kong, H.J. Dai, Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 103(31), 6484–6492 (1999). doi:10.1021/jp990957s CrossRef A.M. Cassell, J.A. Raymakers, J. Kong, H.J. Dai, Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 103(31), 6484–6492 (1999). doi:10.​1021/​jp990957s CrossRef
15.
Zurück zum Zitat E. Couteau, K. Hernadi, J.W. Seo, L. Thien-Nga, C. Miko, R. Gaal, L. Forro, CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production. Chem. Phys. Lett. 378(1–2), 9–17 (2003). doi:10.1016/s0009-2614(03)01218-1 CrossRef E. Couteau, K. Hernadi, J.W. Seo, L. Thien-Nga, C. Miko, R. Gaal, L. Forro, CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production. Chem. Phys. Lett. 378(1–2), 9–17 (2003). doi:10.​1016/​s0009-2614(03)01218-1 CrossRef
18.
Zurück zum Zitat A. de Lucas, P.B. Garcia, A. Garrido, A. Romero, J.L. Valverde, Catalytic synthesis of carbon nanofibers with different graphene plane alignments using Ni deposited on iron pillared clays. Appl. Catal. A Gen. 301(1), 123–132 (2006). doi:10.1016/j.apcata.2005.11.026 CrossRef A. de Lucas, P.B. Garcia, A. Garrido, A. Romero, J.L. Valverde, Catalytic synthesis of carbon nanofibers with different graphene plane alignments using Ni deposited on iron pillared clays. Appl. Catal. A Gen. 301(1), 123–132 (2006). doi:10.​1016/​j.​apcata.​2005.​11.​026 CrossRef
19.
Zurück zum Zitat H. Cui, O. Zhou, B.R. Stoner, Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. J. Appl. Phys. 88(10), 6072–6074 (2000). doi:10.1063/1.1320024 CrossRef H. Cui, O. Zhou, B.R. Stoner, Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. J. Appl. Phys. 88(10), 6072–6074 (2000). doi:10.​1063/​1.​1320024 CrossRef
20.
Zurück zum Zitat C.J. Lee, J. Park, Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition. Appl. Phys. Lett. 77(21), 3397–3399 (2000). doi:10.1063/1.1320851 CrossRef C.J. Lee, J. Park, Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition. Appl. Phys. Lett. 77(21), 3397–3399 (2000). doi:10.​1063/​1.​1320851 CrossRef
22.
Zurück zum Zitat M. Lin, J.P.Y. Tan, C. Boothroyd, K.P. Loh, E.S. Tok, Y.L. Foo, Dynamical observation of bamboo-like carbon nanotube growth. Nano Lett. 7(8), 2234–2238 (2007). doi:10.1021/nl070681x CrossRef M. Lin, J.P.Y. Tan, C. Boothroyd, K.P. Loh, E.S. Tok, Y.L. Foo, Dynamical observation of bamboo-like carbon nanotube growth. Nano Lett. 7(8), 2234–2238 (2007). doi:10.​1021/​nl070681x CrossRef
24.
25.
Zurück zum Zitat M.J. de Andrede, M.D. Lima, C.P. Bergmann, G.D. Ramminger, N.M. Balzaretti, T.M.H. Costa, M.R. Gallas, Carbon nanotube/silica composites obtained by sol-gel and high-pressure techniques. Nanotechnology 19(26), 265607 (2008). doi:10.1088/0957-4484/19/26/265607 CrossRef M.J. de Andrede, M.D. Lima, C.P. Bergmann, G.D. Ramminger, N.M. Balzaretti, T.M.H. Costa, M.R. Gallas, Carbon nanotube/silica composites obtained by sol-gel and high-pressure techniques. Nanotechnology 19(26), 265607 (2008). doi:10.​1088/​0957-4484/​19/​26/​265607 CrossRef
26.
Zurück zum Zitat R.R. Bacsa, C. Laurent, A. Peigney, W.S. Bacsa, T. Vaugien, A. Rousset, High specific surface area carbon nanotubes from catalytic chemical vapor deposition process. Chem. Phys. Lett. 323(5–6), 566–571 (2000). doi:10.1016/s0009-2614(00)00558-3 CrossRef R.R. Bacsa, C. Laurent, A. Peigney, W.S. Bacsa, T. Vaugien, A. Rousset, High specific surface area carbon nanotubes from catalytic chemical vapor deposition process. Chem. Phys. Lett. 323(5–6), 566–571 (2000). doi:10.​1016/​s0009-2614(00)00558-3 CrossRef
27.
Zurück zum Zitat J.P. Pinheiro, M.C. Schouler, P. Gadelle, Nanotubes and nanofilaments from carbon monoxide disproportionation over Co/MgO catalysts I. Growth versus catalyst state. Carbon 41(15), 2949–2959 (2003). doi:10.1016/s0008-6223(03)00410-x CrossRef J.P. Pinheiro, M.C. Schouler, P. Gadelle, Nanotubes and nanofilaments from carbon monoxide disproportionation over Co/MgO catalysts I. Growth versus catalyst state. Carbon 41(15), 2949–2959 (2003). doi:10.​1016/​s0008-6223(03)00410-x CrossRef
28.
Zurück zum Zitat Y.M. Li, W. Kim, Y.G. Zhang, M. Rolandi, D.W. Wang, H.J. Dai, Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 105(46), 11424–11431 (2001). doi:10.1021/jp012085b CrossRef Y.M. Li, W. Kim, Y.G. Zhang, M. Rolandi, D.W. Wang, H.J. Dai, Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 105(46), 11424–11431 (2001). doi:10.​1021/​jp012085b CrossRef
29.
Zurück zum Zitat D. Venegoni, P. Serp, R. Feurer, Y. Kihn, C. Vahlas, P. Kalck, Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor. Carbon 40(10), 1799–1807 (2002). doi:10.1016/s0008-6223(02)00057-x CrossRef D. Venegoni, P. Serp, R. Feurer, Y. Kihn, C. Vahlas, P. Kalck, Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor. Carbon 40(10), 1799–1807 (2002). doi:10.​1016/​s0008-6223(02)00057-x CrossRef
31.
Zurück zum Zitat H. Ago, T. Komatsu, S. Ohshima, Y. Kuriki, M. Yumura, Dispersion of metal nanoparticles for aligned carbon nanotube arrays. Appl. Phys. Lett. 77(1), 79–81 (2000). doi:10.1063/1.126883 CrossRef H. Ago, T. Komatsu, S. Ohshima, Y. Kuriki, M. Yumura, Dispersion of metal nanoparticles for aligned carbon nanotube arrays. Appl. Phys. Lett. 77(1), 79–81 (2000). doi:10.​1063/​1.​126883 CrossRef
32.
Zurück zum Zitat Y. Li, J. Liu, Y.Q. Wang, Z.L. Wang, Preparation of monodispersed Fe–Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem. Mater. 13(3), 1008–1014 (2001). doi:10.1021/cm000787s CrossRef Y. Li, J. Liu, Y.Q. Wang, Z.L. Wang, Preparation of monodispersed Fe–Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem. Mater. 13(3), 1008–1014 (2001). doi:10.​1021/​cm000787s CrossRef
33.
36.
Zurück zum Zitat N.G. Shang, W.I. Milne, X. Jiang, Tubular graphite cones with single-crystal nanotips and their antioxygenic properties. J. Am. Chem. Soc. 129(28), 8907–8911 (2007). doi:10.1021/ja071830g CrossRef N.G. Shang, W.I. Milne, X. Jiang, Tubular graphite cones with single-crystal nanotips and their antioxygenic properties. J. Am. Chem. Soc. 129(28), 8907–8911 (2007). doi:10.​1021/​ja071830g CrossRef
38.
Zurück zum Zitat Y.G. Zhang, A.L. Chang, J. Cao, Q. Wang, W. Kim, Y.M. Li, N. Morris, E. Yenilmez, J. Kong, H.J. Dai, Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 79(19), 3155–3157 (2001). doi:10.1063/1.1415412 CrossRef Y.G. Zhang, A.L. Chang, J. Cao, Q. Wang, W. Kim, Y.M. Li, N. Morris, E. Yenilmez, J. Kong, H.J. Dai, Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 79(19), 3155–3157 (2001). doi:10.​1063/​1.​1415412 CrossRef
39.
Zurück zum Zitat A. Ural, Y.M. Li, H.J. Dai, Electric-field-aligned growth of single-walled carbon nanotubes on surfaces. Appl. Phys. Lett. 81(18), 3464–3466 (2002). doi:10.1063/1.1518773 CrossRef A. Ural, Y.M. Li, H.J. Dai, Electric-field-aligned growth of single-walled carbon nanotubes on surfaces. Appl. Phys. Lett. 81(18), 3464–3466 (2002). doi:10.​1063/​1.​1518773 CrossRef
40.
Zurück zum Zitat R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth (New method growth catalysis from impurity whisker epitaxial + large crystals Si E). Appl. Phys. Lett. 4(5), 89 (1964). doi:10.1063/1.1753975 CrossRef R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth (New method growth catalysis from impurity whisker epitaxial + large crystals Si E). Appl. Phys. Lett. 4(5), 89 (1964). doi:10.​1063/​1.​1753975 CrossRef
42.
Zurück zum Zitat M.A. Ermakova, D.Y. Ermakov, A.L. Chuvilin, G.G. Kuvshinov, Decomposition of methane over iron catalysts at the range of moderate temperatures: the influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments. J. Catal. 201(2), 183–197 (2001). doi:10.1006/jcat.2001.3243 CrossRef M.A. Ermakova, D.Y. Ermakov, A.L. Chuvilin, G.G. Kuvshinov, Decomposition of methane over iron catalysts at the range of moderate temperatures: the influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments. J. Catal. 201(2), 183–197 (2001). doi:10.​1006/​jcat.​2001.​3243 CrossRef
44.
Zurück zum Zitat S. Tsunekawa, S. Ito, Y. Kawazoe, J.T. Wang, Critical size of the phase transition from cubic to tetragonal in pure zirconia nanoparticles. Nano Lett. 3(7), 871–875 (2003). doi:10.1021/ni034129t CrossRef S. Tsunekawa, S. Ito, Y. Kawazoe, J.T. Wang, Critical size of the phase transition from cubic to tetragonal in pure zirconia nanoparticles. Nano Lett. 3(7), 871–875 (2003). doi:10.​1021/​ni034129t CrossRef
45.
Zurück zum Zitat S.S. Fan, W.J. Liang, H.Y. Dang, N. Franklin, T. Tombler, M. Chapline, H.J. Dai, Carbon nanotube arrays on silicon substrates and their possible application. Physica E 8(2), 179–183 (2000). doi:10.1016/s1386-9477(00)00136-3 CrossRef S.S. Fan, W.J. Liang, H.Y. Dang, N. Franklin, T. Tombler, M. Chapline, H.J. Dai, Carbon nanotube arrays on silicon substrates and their possible application. Physica E 8(2), 179–183 (2000). doi:10.​1016/​s1386-9477(00)00136-3 CrossRef
50.
Zurück zum Zitat J.A. Lobo, G.H. Geiger, Thermodynamics and solubility of carbon in ferrite and ferritic Fe–Mo alloys. Metall. Trans. A Phys. Metall. Mater. Sci. 7(9), 1347–1357 (1976). doi:10.1007/bf02658820 CrossRef J.A. Lobo, G.H. Geiger, Thermodynamics and solubility of carbon in ferrite and ferritic Fe–Mo alloys. Metall. Trans. A Phys. Metall. Mater. Sci. 7(9), 1347–1357 (1976). doi:10.​1007/​bf02658820 CrossRef
52.
Zurück zum Zitat T. Maruyama, K. Sato, Y. Mizutani, K. Tanioku, T. Shiraiwa, S. Naritsuka, Low-temperature synthesis of single-walled carbon nanotubes by alcohol gas source growth in high vacuum. J. Nanosci. Nanotechnol. 10(6), 4095–4101 (2010). doi:10.1166/jnn.2010.2000 CrossRef T. Maruyama, K. Sato, Y. Mizutani, K. Tanioku, T. Shiraiwa, S. Naritsuka, Low-temperature synthesis of single-walled carbon nanotubes by alcohol gas source growth in high vacuum. J. Nanosci. Nanotechnol. 10(6), 4095–4101 (2010). doi:10.​1166/​jnn.​2010.​2000 CrossRef
53.
Zurück zum Zitat J. Highfield, Y.S. Loo, Z. Zhong, B. Grushko, Thermogravimetric studies of carbon nanofiber formation from methane at low temperature over Ni-based skeletal catalysts and the effect of substrate pre-carburization. Carbon 45(13), 2597–2607 (2007). doi:10.1016/j.carbon.2007.08.012 CrossRef J. Highfield, Y.S. Loo, Z. Zhong, B. Grushko, Thermogravimetric studies of carbon nanofiber formation from methane at low temperature over Ni-based skeletal catalysts and the effect of substrate pre-carburization. Carbon 45(13), 2597–2607 (2007). doi:10.​1016/​j.​carbon.​2007.​08.​012 CrossRef
54.
55.
Zurück zum Zitat A. Magrez, J.W. Seo, R. Smajda, B. Korbely, J.C. Andresen, M. Mionic, S. Casimirius, L. Forro, Low-temperature, highly efficient growth of carbon nanotubes on functional materials by an oxidative dehydrogenation reaction. ACS Nano 4(7), 3702–3708 (2010). doi:10.1021/nn100279j CrossRef A. Magrez, J.W. Seo, R. Smajda, B. Korbely, J.C. Andresen, M. Mionic, S. Casimirius, L. Forro, Low-temperature, highly efficient growth of carbon nanotubes on functional materials by an oxidative dehydrogenation reaction. ACS Nano 4(7), 3702–3708 (2010). doi:10.​1021/​nn100279j CrossRef
56.
Zurück zum Zitat N. Halonen, A. Sapi, L. Nagy, R. Puskas, A.-R. Leino, J. Maklin, J. Kukkola, G. Toth, M.-C. Wu, H.-C. Liao, W.-F. Su, A. Shchukarev, J.-P. Mikkola, A. Kukovecz, Z. Konya, K. Kordas, Low-temperature growth of multi-walled carbon nanotubes by thermal CVD. Physica Status Solidi B Basic Solid State Phys. 248(11), 2500–2503 (2011). doi:10.1002/pssb.201100137 CrossRef N. Halonen, A. Sapi, L. Nagy, R. Puskas, A.-R. Leino, J. Maklin, J. Kukkola, G. Toth, M.-C. Wu, H.-C. Liao, W.-F. Su, A. Shchukarev, J.-P. Mikkola, A. Kukovecz, Z. Konya, K. Kordas, Low-temperature growth of multi-walled carbon nanotubes by thermal CVD. Physica Status Solidi B Basic Solid State Phys. 248(11), 2500–2503 (2011). doi:10.​1002/​pssb.​201100137 CrossRef
57.
Zurück zum Zitat O. Pitkanen, N. Halonen, A.R. Leino, J. Maklin, A. Dombovari, J.H. Lin, G. Toth, K. Kordas, Low-temperature growth of carbon nanotubes on bi- and tri-metallic catalyst templates. Top. Catal. 56(9–10), 522–526 (2013). doi:10.1007/s11244-013-0047-9 CrossRef O. Pitkanen, N. Halonen, A.R. Leino, J. Maklin, A. Dombovari, J.H. Lin, G. Toth, K. Kordas, Low-temperature growth of carbon nanotubes on bi- and tri-metallic catalyst templates. Top. Catal. 56(9–10), 522–526 (2013). doi:10.​1007/​s11244-013-0047-9 CrossRef
59.
60.
Zurück zum Zitat K. Aoki, T. Yamamoto, H. Furuta, T. Ikuno, S. Honda, M. Furuta, K. Oura, T. Hirao, Low-temperature growth of carbon nanofiber by thermal chemical vapor deposition using CuNi catalyst. Jpn. J. Appl. Phys. Part 1 Regular Pap. Brief Commun. Rev. Pap. 45(6A), 5329–5331 (2006). doi:10.1143/jjap.45.5329 CrossRef K. Aoki, T. Yamamoto, H. Furuta, T. Ikuno, S. Honda, M. Furuta, K. Oura, T. Hirao, Low-temperature growth of carbon nanofiber by thermal chemical vapor deposition using CuNi catalyst. Jpn. J. Appl. Phys. Part 1 Regular Pap. Brief Commun. Rev. Pap. 45(6A), 5329–5331 (2006). doi:10.​1143/​jjap.​45.​5329 CrossRef
61.
Zurück zum Zitat N. Na, D.Y. Kim, Y.-G. So, Y. Ikuhara, S. Noda, Simple and engineered process yielding carbon nanotube arrays with 1.2 × 1013 cm−2 wall density on conductive underlayer at 400 °C. Carbon 81, 773–781 (2015). doi:10.1016/j.carbon.2014.10.023 CrossRef N. Na, D.Y. Kim, Y.-G. So, Y. Ikuhara, S. Noda, Simple and engineered process yielding carbon nanotube arrays with 1.2 × 1013 cm−2 wall density on conductive underlayer at 400 °C. Carbon 81, 773–781 (2015). doi:10.​1016/​j.​carbon.​2014.​10.​023 CrossRef
66.
67.
68.
Zurück zum Zitat Y. Qin, Q. Zhang, Z.L. Cui, Effect of synthesis method of nanocopper catalysts on the morphologies of carbon nanofibers prepared by catalytic decomposition of acetylene. J. Catal. 223(2), 389–394 (2004). doi:10.1016/j.jcat.2004.02.004 CrossRef Y. Qin, Q. Zhang, Z.L. Cui, Effect of synthesis method of nanocopper catalysts on the morphologies of carbon nanofibers prepared by catalytic decomposition of acetylene. J. Catal. 223(2), 389–394 (2004). doi:10.​1016/​j.​jcat.​2004.​02.​004 CrossRef
69.
71.
Zurück zum Zitat Y. Qin, X. Jiang, Z.L. Cui, Low-temperature synthesis of amorphous carbon nanocoils via acetylene coupling on copper nanocrystal surfaces at 468 K: a reaction mechanism analysis. J. Phys. Chem. B 109(46), 21749–21754 (2005). doi:10.1021/jp054412b CrossRef Y. Qin, X. Jiang, Z.L. Cui, Low-temperature synthesis of amorphous carbon nanocoils via acetylene coupling on copper nanocrystal surfaces at 468 K: a reaction mechanism analysis. J. Phys. Chem. B 109(46), 21749–21754 (2005). doi:10.​1021/​jp054412b CrossRef
73.
Zurück zum Zitat J.H. Xia, Growth of carbon nanofibers studied by using transmission electron microscopy. Shaker Verlag, D-52018 Aachen (2010) J.H. Xia, Growth of carbon nanofibers studied by using transmission electron microscopy. Shaker Verlag, D-52018 Aachen (2010)
75.
Zurück zum Zitat Y.J. Tian, Z. Hu, Y. Yang, X.Z. Wang, X. Chen, H. Xu, Q. Wu, W.J. Ji, Y. Chen, In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor. J. Am. Chem. Soc. 126(4), 1180–1183 (2004). doi:10.1021/ja037561i CrossRef Y.J. Tian, Z. Hu, Y. Yang, X.Z. Wang, X. Chen, H. Xu, Q. Wu, W.J. Ji, Y. Chen, In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor. J. Am. Chem. Soc. 126(4), 1180–1183 (2004). doi:10.​1021/​ja037561i CrossRef
76.
Zurück zum Zitat B. Zheng, C.G. Lu, G. Gu, A. Makarovski, G. Finkelstein, J. Liu, Efficient CVD growth of single-walled carbon nanotubes on surfaces using carbon monoxide precursor. Nano Lett. 2(8), 895–898 (2002). doi:10.1021/nl025634d CrossRef B. Zheng, C.G. Lu, G. Gu, A. Makarovski, G. Finkelstein, J. Liu, Efficient CVD growth of single-walled carbon nanotubes on surfaces using carbon monoxide precursor. Nano Lett. 2(8), 895–898 (2002). doi:10.​1021/​nl025634d CrossRef
77.
Zurück zum Zitat A.J. Hart, A.H. Slocum, Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst. J. Phys. Chem. B. 110(16), 8250–8257 (2006). doi:10.1021/jp055498b CrossRef A.J. Hart, A.H. Slocum, Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst. J. Phys. Chem. B. 110(16), 8250–8257 (2006). doi:10.​1021/​jp055498b CrossRef
79.
Zurück zum Zitat A.V. Vasenkov, D. Sengupta, M. Frenklach, Multiscale modeling catalytic decomposition of hydrocarbons during carbon nanotube growth. J. Phys. Chem. B. 113(7), 1877–1882 (2009). doi:10.1021/jp808346h CrossRef A.V. Vasenkov, D. Sengupta, M. Frenklach, Multiscale modeling catalytic decomposition of hydrocarbons during carbon nanotube growth. J. Phys. Chem. B. 113(7), 1877–1882 (2009). doi:10.​1021/​jp808346h CrossRef
80.
Zurück zum Zitat G.D. Nessim, A. Al-Obeidi, H. Grisaru, E.S. Polsen, C.R. Oliver, T. Zimrin, A.J. Hart, D. Aurbach, C.V. Thompson, Synthesis of tall carpets of vertically aligned carbon nanotubes by in situ generation of water vapor through preheating of added oxygen. Carbon 50(11), 4002–4009 (2012). doi:10.1016/j.carbon.2012.04.043 CrossRef G.D. Nessim, A. Al-Obeidi, H. Grisaru, E.S. Polsen, C.R. Oliver, T. Zimrin, A.J. Hart, D. Aurbach, C.V. Thompson, Synthesis of tall carpets of vertically aligned carbon nanotubes by in situ generation of water vapor through preheating of added oxygen. Carbon 50(11), 4002–4009 (2012). doi:10.​1016/​j.​carbon.​2012.​04.​043 CrossRef
81.
Zurück zum Zitat D.N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, S. Iijima, Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys. Rev. Lett. 95(5), 4 (2005). doi:10.1103/PhysRevLett.95.056104 CrossRef D.N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, S. Iijima, Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys. Rev. Lett. 95(5), 4 (2005). doi:10.​1103/​PhysRevLett.​95.​056104 CrossRef
83.
Zurück zum Zitat M. Bansal, C. Lal, R. Srivastava, M.N. Kamalasanan, L.S. Tanwar, Comparison of structure and yield of multiwall carbon nanotubes produced by the CVD technique and a water assisted method. Physica B Condens. Matter 405(7), 1745–1749 (2010). doi:10.1016/j.physb.2010.01.031 CrossRef M. Bansal, C. Lal, R. Srivastava, M.N. Kamalasanan, L.S. Tanwar, Comparison of structure and yield of multiwall carbon nanotubes produced by the CVD technique and a water assisted method. Physica B Condens. Matter 405(7), 1745–1749 (2010). doi:10.​1016/​j.​physb.​2010.​01.​031 CrossRef
84.
Zurück zum Zitat C.-S. Chen, C.-K. Hsieh, Oxygen-assisted low-pressure chemical vapor deposition for the low-temperature direct growth of graphitic nanofibers on fluorine-doped tin oxide glass as a counter electrode for dye-sensitized solar cell. Jpn. J. Appl. Phys. 53(11), 11RE02 (2014). doi:10.7567/jjap.53.11re02 C.-S. Chen, C.-K. Hsieh, Oxygen-assisted low-pressure chemical vapor deposition for the low-temperature direct growth of graphitic nanofibers on fluorine-doped tin oxide glass as a counter electrode for dye-sensitized solar cell. Jpn. J. Appl. Phys. 53(11), 11RE02 (2014). doi:10.​7567/​jjap.​53.​11re02
85.
Zurück zum Zitat I.H. Son, H.J. Song, S. Kwon, A. Bachmatiuk, S.J. Lee, A. Benayad, J.H. Park, J.-Y. Choi, H. Chang, M.H. Ruemmeli, CO2 enhanced chemical vapor deposition growth of few-layer graphene over NiOx. ACS Nano 8(9), 9224–9232 (2014). doi:10.1021/nn504342e CrossRef I.H. Son, H.J. Song, S. Kwon, A. Bachmatiuk, S.J. Lee, A. Benayad, J.H. Park, J.-Y. Choi, H. Chang, M.H. Ruemmeli, CO2 enhanced chemical vapor deposition growth of few-layer graphene over NiOx. ACS Nano 8(9), 9224–9232 (2014). doi:10.​1021/​nn504342e CrossRef
86.
Zurück zum Zitat J.Q. Huang, Q. Zhang, M.Q. Zhao, F. Wei, Process intensification by CO2 for high quality carbon nanotube forest growth: double-walled carbon nanotube convexity or single-walled carbon nanotube bowls? Nano Res. 2(11), 872–881 (2009). doi:10.1007/s12274-009-9088-6 CrossRef J.Q. Huang, Q. Zhang, M.Q. Zhao, F. Wei, Process intensification by CO2 for high quality carbon nanotube forest growth: double-walled carbon nanotube convexity or single-walled carbon nanotube bowls? Nano Res. 2(11), 872–881 (2009). doi:10.​1007/​s12274-009-9088-6 CrossRef
87.
Zurück zum Zitat Z. Zhu, H. Jiang, T. Susi, A.G. Nasibulin, E.I. Kauppinen, The use of NH3 to promote the production of large-diameter single-walled carbon nanotubes with a narrow (n, m) distribution. J. Am. Chem. Soc. 133(5), 1224–1227 (2011). doi:10.1021/ja1087634 CrossRef Z. Zhu, H. Jiang, T. Susi, A.G. Nasibulin, E.I. Kauppinen, The use of NH3 to promote the production of large-diameter single-walled carbon nanotubes with a narrow (n, m) distribution. J. Am. Chem. Soc. 133(5), 1224–1227 (2011). doi:10.​1021/​ja1087634 CrossRef
88.
Zurück zum Zitat T. Susi, A.G. Nasibulin, P. Ayala, Y. Tian, Z. Zhu, H. Jiang, C. Roquelet, D. Garrot, J.-S. Lauret, E.I. Kauppinen, High quality SWCNT synthesis in the presence of NH3 using a vertical flow aerosol reactor. Physica Status Solidi B Basic Solid State Phys. 246(11–12), 2507–2510 (2009). doi:10.1002/pssb.200982338 CrossRef T. Susi, A.G. Nasibulin, P. Ayala, Y. Tian, Z. Zhu, H. Jiang, C. Roquelet, D. Garrot, J.-S. Lauret, E.I. Kauppinen, High quality SWCNT synthesis in the presence of NH3 using a vertical flow aerosol reactor. Physica Status Solidi B Basic Solid State Phys. 246(11–12), 2507–2510 (2009). doi:10.​1002/​pssb.​200982338 CrossRef
90.
Zurück zum Zitat P.R. Davies, D. Edwards, D. Richards, Possible role for Cu(II) compounds in the oxidation of malonyl dichloride and HCl at Cu (110) surfaces. J. Phys. Chem. C 113(24), 10333–10336 (2009). doi:10.1021/jp903042f CrossRef P.R. Davies, D. Edwards, D. Richards, Possible role for Cu(II) compounds in the oxidation of malonyl dichloride and HCl at Cu (110) surfaces. J. Phys. Chem. C 113(24), 10333–10336 (2009). doi:10.​1021/​jp903042f CrossRef
91.
Zurück zum Zitat Y. Ma, Vapor-facet-solid (VFS) mechanism: a new route for catalytic CVD growth of one-dimensional nanostructures at low temperature. Schriftenreihe der Arbeitsgruppe des Lehrstuhls für Oberfächen- und Werkstofftechnologie im Institut für Werkstofftechnik. 4 (2015) Y. Ma, Vapor-facet-solid (VFS) mechanism: a new route for catalytic CVD growth of one-dimensional nanostructures at low temperature. Schriftenreihe der Arbeitsgruppe des Lehrstuhls für Oberfächen- und Werkstofftechnologie im Institut für Werkstofftechnik. 4 (2015)
92.
Zurück zum Zitat J.T. Hu, L.S. Li, W.D. Yang, L. Manna, L.W. Wang, A.P. Alivisatos, Linearly polarized emission from colloidal semiconductor quantum rods. Science 292(5524), 2060–2063 (2001). doi:10.1126/science.1060810 CrossRef J.T. Hu, L.S. Li, W.D. Yang, L. Manna, L.W. Wang, A.P. Alivisatos, Linearly polarized emission from colloidal semiconductor quantum rods. Science 292(5524), 2060–2063 (2001). doi:10.​1126/​science.​1060810 CrossRef
93.
Zurück zum Zitat A.X. Yin, X.Q. Min, Y.W. Zhang, C.H. Yan, Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt-Pd tetrahedrons and cubes. J. Am. Chem. Soc. 133(11), 3816–3819 (2011). doi:10.1021/ja200329p CrossRef A.X. Yin, X.Q. Min, Y.W. Zhang, C.H. Yan, Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt-Pd tetrahedrons and cubes. J. Am. Chem. Soc. 133(11), 3816–3819 (2011). doi:10.​1021/​ja200329p CrossRef
94.
Zurück zum Zitat S. Mostafa, F. Behafarid, J.R. Croy, L.K. Ono, L. Li, J.C. Yang, A.I. Frenkel, B.R. Cuenya, Shape-dependent catalytic properties of Pt nanoparticles. J. Am. Chem. Soc. 132(44), 15714–15719 (2010). doi:10.1021/ja106679z CrossRef S. Mostafa, F. Behafarid, J.R. Croy, L.K. Ono, L. Li, J.C. Yang, A.I. Frenkel, B.R. Cuenya, Shape-dependent catalytic properties of Pt nanoparticles. J. Am. Chem. Soc. 132(44), 15714–15719 (2010). doi:10.​1021/​ja106679z CrossRef
95.
Zurück zum Zitat H. Zhang, M.S. Jin, Y.J. Xiong, B. Lim, Y.N. Xia, Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc. Chem. Res. 46(8), 1783–1794 (2013). doi:10.1021/ar300209w CrossRef H. Zhang, M.S. Jin, Y.J. Xiong, B. Lim, Y.N. Xia, Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc. Chem. Res. 46(8), 1783–1794 (2013). doi:10.​1021/​ar300209w CrossRef
96.
Zurück zum Zitat R. Narayanan, M.A. El-Sayed, Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J. Phys. Chem. B. 109(26), 12663–12676 (2005). doi:10.1021/jp051066p CrossRef R. Narayanan, M.A. El-Sayed, Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J. Phys. Chem. B. 109(26), 12663–12676 (2005). doi:10.​1021/​jp051066p CrossRef
97.
Zurück zum Zitat Y.H. Leng, Y.H. Zhang, T. Liu, M. Suzuki, X.G. Li, Synthesis of single crystalline triangular and hexagonal Ni nanosheets with enhanced magnetic properties. Nanotechnology 17(6), 1797–1800 (2006). doi:10.1088/0957-4484/17/6/042 CrossRef Y.H. Leng, Y.H. Zhang, T. Liu, M. Suzuki, X.G. Li, Synthesis of single crystalline triangular and hexagonal Ni nanosheets with enhanced magnetic properties. Nanotechnology 17(6), 1797–1800 (2006). doi:10.​1088/​0957-4484/​17/​6/​042 CrossRef
98.
Zurück zum Zitat Y.W. Jun, J.S. Choi, J. Cheon, Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angewandte Chemie International Edition 45(21), 3414–3439 (2006). doi:10.1002/anie.200503821 CrossRef Y.W. Jun, J.S. Choi, J. Cheon, Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angewandte Chemie International Edition 45(21), 3414–3439 (2006). doi:10.​1002/​anie.​200503821 CrossRef
99.
Zurück zum Zitat Y.N. Xia, Y.J. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angewandte Chemie International Edition 48(1), 60–103 (2009). doi:10.1002/anie.200802248 CrossRef Y.N. Xia, Y.J. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angewandte Chemie International Edition 48(1), 60–103 (2009). doi:10.​1002/​anie.​200802248 CrossRef
103.
Zurück zum Zitat J. Li, C. Papadopoulos, J. Xu, Nanoelectronics—growing Y-junction carbon nanotubes. Nature 402(6759), 253–254 (1999). doi:10.1038/46214 J. Li, C. Papadopoulos, J. Xu, Nanoelectronics—growing Y-junction carbon nanotubes. Nature 402(6759), 253–254 (1999). doi:10.​1038/​46214
104.
Zurück zum Zitat H. Takikawa, M. Yatsuki, R. Miyano, M. Nagayama, T. Sakakibara, S. Itoh, Y. Ando, Amorphous carbon fibrilliform nanomaterials prepared by chemical vapor deposition. Jpn. J. Appl. Phys. Part 1 Regular Pap. Short Notes Rev. Pap. 39(9A), 5177–5179 (2000). doi:10.1143/jjap.39.5177 H. Takikawa, M. Yatsuki, R. Miyano, M. Nagayama, T. Sakakibara, S. Itoh, Y. Ando, Amorphous carbon fibrilliform nanomaterials prepared by chemical vapor deposition. Jpn. J. Appl. Phys. Part 1 Regular Pap. Short Notes Rev. Pap. 39(9A), 5177–5179 (2000). doi:10.​1143/​jjap.​39.​5177
105.
Zurück zum Zitat K. Inomata, N. Aoki, H. Koinuma, Production of fullerenes by low-temperature plasma chemical-vapor-deposition under atmospheric-pressure. Jpn. J. Appl. Phys. Part 2 Lett. 33(2A), L197–L199 (1994). doi:10.1143/jjap.33.l197 K. Inomata, N. Aoki, H. Koinuma, Production of fullerenes by low-temperature plasma chemical-vapor-deposition under atmospheric-pressure. Jpn. J. Appl. Phys. Part 2 Lett. 33(2A), L197–L199 (1994). doi:10.​1143/​jjap.​33.​l197
106.
Zurück zum Zitat Y. Suda, Y. Shimizu, M. Ozaki, H. Tanoue, H. Takikawa, H. Ue, K. Shimizu, Y. Umeda, Electrochemical properties of fuel cell catalysts loaded on carbon nanomaterials with different geometries. Mater. Today Commun. 3, 96–103 (2015). doi:10.1016/j.mtcomm.2015.02.003 CrossRef Y. Suda, Y. Shimizu, M. Ozaki, H. Tanoue, H. Takikawa, H. Ue, K. Shimizu, Y. Umeda, Electrochemical properties of fuel cell catalysts loaded on carbon nanomaterials with different geometries. Mater. Today Commun. 3, 96–103 (2015). doi:10.​1016/​j.​mtcomm.​2015.​02.​003 CrossRef
107.
Zurück zum Zitat G. Wang, G. Ran, G. Wan, P. Yang, Z. Gao, S. Lin, C. Fu, Y. Qin, Size-selective catalytic growth of nearly 100 % pure carbon nanocoils with copper nanoparticles produced by atomic layer deposition. ACS Nano 8(5), 5330–5338 (2014). doi:10.1021/nn501709h CrossRef G. Wang, G. Ran, G. Wan, P. Yang, Z. Gao, S. Lin, C. Fu, Y. Qin, Size-selective catalytic growth of nearly 100 % pure carbon nanocoils with copper nanoparticles produced by atomic layer deposition. ACS Nano 8(5), 5330–5338 (2014). doi:10.​1021/​nn501709h CrossRef
108.
Zurück zum Zitat G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan, S. Zhao, S. Lin, Y. Feng, L. Zhou, Y. Qin, Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012). doi:10.1021/nn304630h CrossRef G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan, S. Zhao, S. Lin, Y. Feng, L. Zhou, Y. Qin, Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012). doi:10.​1021/​nn304630h CrossRef
110.
Zurück zum Zitat D. Chen, K.O. Christensen, E. Ochoa-Fernandez, Z.X. Yu, B. Totdal, N. Latorre, A. Monzon, A. Holmen, Synthesis of carbon nanofibers: effects of Ni crystal size during methane decomposition. J. Catal. 229(1), 82–96 (2005). doi:10.1016/j.jcat.2004.10.017 CrossRef D. Chen, K.O. Christensen, E. Ochoa-Fernandez, Z.X. Yu, B. Totdal, N. Latorre, A. Monzon, A. Holmen, Synthesis of carbon nanofibers: effects of Ni crystal size during methane decomposition. J. Catal. 229(1), 82–96 (2005). doi:10.​1016/​j.​jcat.​2004.​10.​017 CrossRef
111.
Zurück zum Zitat P.L. Hansen, J.B. Wagner, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen, H. Topsoe, Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295(5562), 2053–2055 (2002). doi:10.1126/science.1069325 CrossRef P.L. Hansen, J.B. Wagner, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen, H. Topsoe, Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295(5562), 2053–2055 (2002). doi:10.​1126/​science.​1069325 CrossRef
113.
Zurück zum Zitat J.J. Lander, H.E. Kern, A.L. Beach, Solubility and diffusion coefficient of carbon in nickel-reaction rates of nickel-carbon alloys with barium oxide. J. Appl. Phys. 23(12), 1305–1309 (1952). doi:10.1063/1.1702064 CrossRef J.J. Lander, H.E. Kern, A.L. Beach, Solubility and diffusion coefficient of carbon in nickel-reaction rates of nickel-carbon alloys with barium oxide. J. Appl. Phys. 23(12), 1305–1309 (1952). doi:10.​1063/​1.​1702064 CrossRef
116.
117.
Zurück zum Zitat S. Helveg, C. Lopez-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, J.K. Norskov, Atomic-scale imaging of carbon nanofibre growth. Nature 427(6973), 426–429 (2004). doi:10.1038/nature02278 CrossRef S. Helveg, C. Lopez-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, J.K. Norskov, Atomic-scale imaging of carbon nanofibre growth. Nature 427(6973), 426–429 (2004). doi:10.​1038/​nature02278 CrossRef
119.
Zurück zum Zitat J. Dvorak, J. Hrbek, Adsorbate ordering effects in the trimerization reaction of acetylene on Cu (100). J. Phys. Chem. B. 102(47), 9443–9450 (1998). doi:10.1021/jp981956n CrossRef J. Dvorak, J. Hrbek, Adsorbate ordering effects in the trimerization reaction of acetylene on Cu (100). J. Phys. Chem. B. 102(47), 9443–9450 (1998). doi:10.​1021/​jp981956n CrossRef
121.
Zurück zum Zitat G. Kyriakou, J. Kim, M.S. Tikhov, N. Macleod, R.M. Lambert, Acetylene coupling on Cu (111): formation of butadiene, benzene, and cyclooctatetraene. J. Phys. Chem. B. 109(21), 10952–10956 (2005). doi:10.1021/jp044213c CrossRef G. Kyriakou, J. Kim, M.S. Tikhov, N. Macleod, R.M. Lambert, Acetylene coupling on Cu (111): formation of butadiene, benzene, and cyclooctatetraene. J. Phys. Chem. B. 109(21), 10952–10956 (2005). doi:10.​1021/​jp044213c CrossRef
122.
Zurück zum Zitat W. Alter, D. Borgmann, M. Stadelmann, M. Worn, G. Wedler, Interaction of acetylene with films of the transition-metals iron, nickel, and palladium. J. Am. Chem. Soc. 116(22), 10041–10049 (1994). doi:10.1021/ja00101a024 CrossRef W. Alter, D. Borgmann, M. Stadelmann, M. Worn, G. Wedler, Interaction of acetylene with films of the transition-metals iron, nickel, and palladium. J. Am. Chem. Soc. 116(22), 10041–10049 (1994). doi:10.​1021/​ja00101a024 CrossRef
123.
Zurück zum Zitat F. Zaera, R.B. Hall, High-resolution electron energy loss spectroscopy and thermal programmed desorption studies of the chemisorption and thermal decomposition of ethylene and acetylene on Ni (100) single-crystal surfaces. J. Phys. Chem. 91(16), 4318–4323 (1987). doi:10.1021/j100300a023 CrossRef F. Zaera, R.B. Hall, High-resolution electron energy loss spectroscopy and thermal programmed desorption studies of the chemisorption and thermal decomposition of ethylene and acetylene on Ni (100) single-crystal surfaces. J. Phys. Chem. 91(16), 4318–4323 (1987). doi:10.​1021/​j100300a023 CrossRef
124.
Zurück zum Zitat J.C. Bertolini, J. Massardier, G. Dalmaiimelik, Evolution of adsorbed species during C2H2 adsorption on Ni (111) in relation to their vibrational spectra. J. Chem. Soc. Faraday Trans. I. 74, 1720–1725 (1978). doi:10.1039/f19787401720 CrossRef J.C. Bertolini, J. Massardier, G. Dalmaiimelik, Evolution of adsorbed species during C2H2 adsorption on Ni (111) in relation to their vibrational spectra. J. Chem. Soc. Faraday Trans. I. 74, 1720–1725 (1978). doi:10.​1039/​f19787401720 CrossRef
126.
Zurück zum Zitat A. Benninghoven, P. Beckmann, D. Greifendorf, M. Schemmer, Investigation of surface-reactions by SIMS and TDMS—interaction of ethylene and acetylene with hydrogen on polycrystalline nickel. Appl. Surf. Sci. 6(3–4), 288–296 (1980). doi:10.1016/0378-5963(80)90018-5 CrossRef A. Benninghoven, P. Beckmann, D. Greifendorf, M. Schemmer, Investigation of surface-reactions by SIMS and TDMS—interaction of ethylene and acetylene with hydrogen on polycrystalline nickel. Appl. Surf. Sci. 6(3–4), 288–296 (1980). doi:10.​1016/​0378-5963(80)90018-5 CrossRef
127.
129.
Zurück zum Zitat B. Lesiak, A. Jablonski, W. Palczewska, I. Kulszewiczbajer, M. Zagorska, Identification of the carbonaceous residues at nickel and platinum surfaces on the basis of the carbon Kll spectra. Surf. Interf. Anal. 18(6), 430–438 (1992). doi:10.1002/sia.740180610 CrossRef B. Lesiak, A. Jablonski, W. Palczewska, I. Kulszewiczbajer, M. Zagorska, Identification of the carbonaceous residues at nickel and platinum surfaces on the basis of the carbon Kll spectra. Surf. Interf. Anal. 18(6), 430–438 (1992). doi:10.​1002/​sia.​740180610 CrossRef
132.
Zurück zum Zitat K. Bartsch, K. Biedermann, T. Gemming, A. Leonhardt, On the diffusion-controlled growth of multiwalled carbon nanotubes. J. Appl. Phys. 97(11), 7 (2005). doi:10.1063/1.1922067 CrossRef K. Bartsch, K. Biedermann, T. Gemming, A. Leonhardt, On the diffusion-controlled growth of multiwalled carbon nanotubes. J. Appl. Phys. 97(11), 7 (2005). doi:10.​1063/​1.​1922067 CrossRef
134.
Zurück zum Zitat O.A. Louchev, Y. Sato, H. Kanda, Multiwall carbon nanotubes: self-organization and inhibition of step-flow growth kinetics. J. Appl. Phys. 89(6), 3438–3446 (2001). doi:10.1063/1.1347407 CrossRef O.A. Louchev, Y. Sato, H. Kanda, Multiwall carbon nanotubes: self-organization and inhibition of step-flow growth kinetics. J. Appl. Phys. 89(6), 3438–3446 (2001). doi:10.​1063/​1.​1347407 CrossRef
136.
Zurück zum Zitat O.A. Louchev, T. Laude, Y. Sato, H. Kanda, Diffusion-controlled kinetics of carbon nanotube forest growth by chemical vapor deposition. J. Chem. Phys. 118(16), 7622–7634 (2003). doi:10.1063/1.1562195 CrossRef O.A. Louchev, T. Laude, Y. Sato, H. Kanda, Diffusion-controlled kinetics of carbon nanotube forest growth by chemical vapor deposition. J. Chem. Phys. 118(16), 7622–7634 (2003). doi:10.​1063/​1.​1562195 CrossRef
138.
Zurück zum Zitat O.A. Louchev, Y. Sato, H. Kanda, Growth mechanism of carbon nanotube forests by chemical vapor deposition. Appl. Phys. Lett. 80(15), 2752–2754 (2002). doi:10.1063/1.1468266 CrossRef O.A. Louchev, Y. Sato, H. Kanda, Growth mechanism of carbon nanotube forests by chemical vapor deposition. Appl. Phys. Lett. 80(15), 2752–2754 (2002). doi:10.​1063/​1.​1468266 CrossRef
140.
141.
Zurück zum Zitat P.B. Amama, O. Ogebule, M.R. Maschmann, T.D. Sands, T.S. Fisher, Dendrimer-assisted low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Chem. Commun. 27, 2899–2901 (2006). doi:10.1039/b602623k CrossRef P.B. Amama, O. Ogebule, M.R. Maschmann, T.D. Sands, T.S. Fisher, Dendrimer-assisted low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Chem. Commun. 27, 2899–2901 (2006). doi:10.​1039/​b602623k CrossRef
142.
143.
Zurück zum Zitat S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 83(1), 135–137 (2003). doi:10.1063/1.1589187 CrossRef S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 83(1), 135–137 (2003). doi:10.​1063/​1.​1589187 CrossRef
144.
Zurück zum Zitat T.M. Minea, S. Point, A. Granier, M. Touzeau, Room temperature synthesis of carbon nanofibers containing nitrogen by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 85(7), 1244–1246 (2004). doi:10.1063/1.1781352 CrossRef T.M. Minea, S. Point, A. Granier, M. Touzeau, Room temperature synthesis of carbon nanofibers containing nitrogen by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 85(7), 1244–1246 (2004). doi:10.​1063/​1.​1781352 CrossRef
146.
Zurück zum Zitat Y. Ishikawa, K. Ishizuka, Growth of single-walled carbon nanotubes by hot-filament assisted chemical vapor deposition below 500 °C. Appl. Phys. Express 2(4), 3 (2009). doi:10.1143/apex.2.045001 Y. Ishikawa, K. Ishizuka, Growth of single-walled carbon nanotubes by hot-filament assisted chemical vapor deposition below 500 °C. Appl. Phys. Express 2(4), 3 (2009). doi:10.​1143/​apex.​2.​045001
148.
Zurück zum Zitat Y. Ishikawa, H. Jinbo, Synthesis of multiwalled carbon nanotubes at temperatures below 300 °C by hot-filament assisted chemical vapor deposition. Jpn. J. Appl. Phys. Part 2 Lett. Express Lett. 44(12–15), L394–L397 (2005). doi:10.1143/jjap.44.l394 Y. Ishikawa, H. Jinbo, Synthesis of multiwalled carbon nanotubes at temperatures below 300 °C by hot-filament assisted chemical vapor deposition. Jpn. J. Appl. Phys. Part 2 Lett. Express Lett. 44(12–15), L394–L397 (2005). doi:10.​1143/​jjap.​44.​l394
150.
Zurück zum Zitat C.L. Long, D.P. Qi, T. Wei, J. Yan, L.L. Jiang, Z.J. Fan, Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv. Funct. Mater. 24(25), 3953–3961 (2014). doi:10.1002/adfm.201304269 CrossRef C.L. Long, D.P. Qi, T. Wei, J. Yan, L.L. Jiang, Z.J. Fan, Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv. Funct. Mater. 24(25), 3953–3961 (2014). doi:10.​1002/​adfm.​201304269 CrossRef
151.
Zurück zum Zitat N.P. Wickramaratne, J.T. Xu, M. Wang, L. Zhu, L.M. Dai, M. Jaroniec, Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and CO2 adsorption. Chem. Mater. 26(9), 2820–2828 (2014). doi:10.1021/cm5001895 CrossRef N.P. Wickramaratne, J.T. Xu, M. Wang, L. Zhu, L.M. Dai, M. Jaroniec, Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and CO2 adsorption. Chem. Mater. 26(9), 2820–2828 (2014). doi:10.​1021/​cm5001895 CrossRef
152.
Zurück zum Zitat W. Wei, H.W. Liang, K. Parvez, X.D. Zhuang, X.L. Feng, K. Mullen, Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction. Angewandte Chemie-International Edition 53(6), 1570–1574 (2014). doi:10.1002/anie.201307319 CrossRef W. Wei, H.W. Liang, K. Parvez, X.D. Zhuang, X.L. Feng, K. Mullen, Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction. Angewandte Chemie-International Edition 53(6), 1570–1574 (2014). doi:10.​1002/​anie.​201307319 CrossRef
Metadaten
Titel
One-Dimensional Carbon Nanostructures: Low-Temperature Chemical Vapor Synthesis and Applications
verfasst von
Yao Ma
Nianjun Yang
Xin Jiang
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-28782-9_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.