Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 9/2020

Open Access 04.04.2020

One-step spray of Cu2NiSnS4 thin films as absorber materials for photovoltaic applications

verfasst von: S. Dridi, N. Bitri, S. Mahjoubi, F. Chaabouni, I. Ly

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 9/2020

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A simple one-step «Spray Pyrolysis» technique was developed for preparing Cu2NiSnS4 (CNTS) thin film followed by an annealing treatment process. Originally, the spray technique was successfully used to deposit the thin film onto glass substrate at 250 °C for 60 min spray duration. Again, the deposited thin film was annealed in a sulfur atmosphere at a temperature of 500 °C during 30 min. The sulfured thin film exhibits (111), (220) and (311) orientations correspond well to the cubic CNTS structure and other impurity compounds. The SEM data exhibit a uniform, rough and compact topography of CNTS thin films with an average-thickness of 1.36 µm. The absorption coefficient is found to be higher than 104 cm−1 in the visible region while the direct band energy of 1.62 eV, which is eminently suitable for use as an absorber in the solar cell. The complex impedance diagrams indicate the decrease of resistance by increasing temperature, which attributes to a semiconductor behavior. The close values of activation energies 0.63 and 0.54 eV determined from both angular frequency and DC conductivity indicate that the carrier transport mechanism is thermally activated.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Copper–nickel–tin–sulfur (Cu2NiSnS4), one of the quaternary semiconductor materials, has been the focus of attention in recent years since its constituent elements are inexpensive, environmentally benign and widely existing in nature. Other important advantages, the CNTS material with p-type conductivity [1] has a high optical absorption coefficient [104–105 cm−1] in the visible region and suitable direct optical band gap in the range of 1.1–1.5 eV [2]. These excellent properties enable to CNTS material to be used as an absorber in low-cost solar cells. In the literature, CNTS materials have been synthesized by several methods such as electrodeposition [3, 4], solvothermal [57], hydrothermal [1], hot injection [2], electrospinning [8], spin coating [9] and spray pyrolysis [10, 11]. This study focused on describing the chemical spray pyrolysis technique.
Generally speaking, the spray pyrolysis method for thin film deposition involves spraying a precursor solution simultaneously or sequentially [12]. For example, in our previous works [10, 11], we studied the structural, morphological, optical and electrical properties of CNTS thin films prepared by spray sandwich without any annealing treatment. This method «spray sandwich» consists of spraying the precursor solutions sequentially from NiS, SnS2, and Cu2S onto glass substrates at high temperatures. In the present work, we have investigated the effect of sulfurization on structural, morphological, optical and electrical properties of CNTS thin films prepared by a single step of spray. As is implied by the name, this method is based on spraying the precursor solutions simultaneously on heated glass substrates.

2 Experimental details

2.1 Synthesis of CNTS thin films

CNTS thin films were prepared by two different growth techniques: a spray process and an annealing treatment process. These two processes are described in the following.
For the spray process, the CNTS precursors were prepared by dissolving the following constituents: 0.02 M Ni(NO3)2⋅6H2O, 0.02 M SnO2, 0.02 M CuSO4 and 0.02 M Na2S2O3⋅5H2O in 100 mL distilled water. The main deposition parameters of the spraying system such as the substrate temperature, the spray duration, the spray deposition rate, the gas flow rate, the distance nozzle-substrate and the hot plate rotation speed were set at: 250 °C, 60 min, 2 mL/min, 10 L/min, 20 cm, and 14 rpm, respectively. Figure 1 presents the usual equipment of spray pyrolysis.
For the annealing treatment process, the samples were sulfurized in a tube furnace under nitrogen flow at a temperatures of 450 and 500 °C for 30 min. During the heating process, the sulfur powder (0.035 g) was transformed into vapor and diffused into the layer to ensure the full-sulfurization of precursors using a nitrogen flow (1.5 L/min) which was used to prevent the oxidation of the CNTS thin films. This process is schematically presented in Fig. 2.

2.2 Characterization of CNTS thin films

X-ray diffraction (Philips X’Pert diffractometer) was used to analyze the crystalline structures of the CNTS thin films using Cu-Kα radiation (λ = 1.5418 Å) operated in the scanning angle 2θ from 10° to 70°. Further information, the operation voltage, and current were 40 kV and 30 mA, respectively. Using electron microscopy (Hitachi S-4800), the surface morphology of the CNTS thin films was investigated. UV–Vis spectrophotometer (type Shimadzu UV 3100S) was applied to ascertain the transmittance and reflectance measurements for determining the optical parameters such as the absorption coefficient and the band gap energy. Impedance spectroscopy was carried to measure the real and imaginary components of impedance parameters (Zʹ and Zʺ) over a wide range of temperature (713–773 °K) with a frequency of (1–13,000 kHz) through Hewlett-Packard 4192 analyzer. The results of measurements of the electrical properties of CNTS thin films give information concerning other electrical parameters, namely the conductivity σT, the resistance R, the frequency ωm, and the activation energy Ea. For electrical measurements, the contact was performed using two electrodes, which were painted on both ends of the sample using a conductive silver paste.

3 Results and discussions

3.1 Structural analysis

Figure 3 depicts the XRD pattern of the as-deposited and the annealed layers. From this graph, both of the thin films deposited at 250 °C and annealed at 450 °C present an amorphous character. Whereas, the thin films annealed at 500 °C show an improvement crystallinity. Indeed, the characteristic peaks at 28.59°, 47.97° and 56.39° corresponding to the (111), (220) and (311) planes related to the CNTS phase, respectively. Apart from these peaks, there were additional peaks including impurity phases such as binary compounds (NiO2, Cu2S, Na2S, and SnS) and ternary compound (Na2SO4). Besides, the CNTS thin films exhibit a cubic structure in the space group F-43m. The above results coincide with the values reported by the Joint Committee on Powder Diffraction Standards (JCPDS) card number 00-026-0552 and also agree with the previous works reported by other authors [1, 6, 13].
The structural parameters such as reticular distance (dhkl), lattice parameters (a, b and c), full width at half maximum (β), the average crystallite size (D), microstrain (ε) and dislocation density (δ) were determined. Using (111), (220) and (311) planes of CNTS thin films, the reticular distance dhkl values, were calculated according to the Bragg equation [14]:
$$ n\lambda = 2d_{hkl} \sin \theta , $$
(1)
As mentioned above, the CNTS thin films represent a cubic structure which leads to (a = b = c). Therefore, the lattice parameters were determined using the reticular distance formula:
$$ d_{hkl} = \frac{a}{{\sqrt {(h^{2} + k^{2} + l^{2} )} }}. $$
(2)
The Gaussian fit of the main peak (111) is shown in Fig. 4. The average crystallite size (D) is calculated using the Debye–Scherrer formula [15]:
$$ D = \frac{k\lambda }{{\beta \cos \theta }}, $$
(3)
where k is the shape factor (k = 0.9), λ is the X-ray wavelength (1.5406 Å), β is the full width at half maximum (FWHM) and θ is the Bragg diffraction angle.
The microstrain (ε) can be expressed as follows [16]:
$$ \varepsilon = \frac{\beta }{4\tan (\theta )}. $$
(4)
The dislocation density (δ) can be evaluated by Williamson and Smallman’s formula [17]:
$$ \delta = \frac{1}{{D^{2} }}. $$
(5)
Then, the detailed data, including the main structural parameters are listed in Table 1.
Table 1
Structural parameters of CNTS thin films
2θ (°)
(hkl)
dhkl
a = b = c (Å)
β (°)
D (nm)
ε (10–1)
δ (10–3 nm−2)
28.59
(111)
3.11
5.4
0.299
27.51
2.93
1.32
47.97
(220)
1.89
5.36
56.39
(311)
1.63
5.4

3.2 Morphological analysis

The surface image of the CNTS thin films was determined by scanning electron microscopy (SEM), as shown in Fig. 5a The surface of CNTS thin films is found to be uniform, rough and compact. No voids are observed throughout the whole glass substrate. As also seen, the SEM image demonstrates that several grains are agglomerated to each other. From the cross-sectional micrograph (Fig. 5b), the average-thickness is measured to be 1.36 µm (± 0.05). This value is close to the thickness of CNTS material established by Kamble et al. [18].

3.3 Optical analysis

The optical absorption coefficient (α) is evaluated from the transmittance (T) and reflectance (R) measurements using the following relation [19]:
$$ \alpha = \left( \frac{1}{d} \right)*\ln \left( {\frac{{(1 - R)^{2} }}{T}} \right), $$
(6)
where d is the thickness. The variation of the absorption coefficient (α) with respect to photon energy () for CNTS thin films is displayed in Fig. 6. It is observed that the absorption coefficient (α) increases slightly as the photon energy increases from 0.68 to 3.85 eV and afterwards continues to increase rapidly with the photon energy. Thereby, the evaluated value of (α) for CNTS thin films exceeds considerably 104 cm−1 in the visible region, indicating its use as an absorber layer in the solar cells.
On the other hand, the optical band gap energy (Eg) is obtained according to the Tauc’s relation [20]:
$$ (\alpha h\nu ) = A(h\nu - E_{{\text{g}}} )^{n} , $$
(7)
where A is proportionality constant, h is Planck’s constant, ν is the frequency of the incident photon and n equal to 1/2 or 2 for the direct and indirect band gap semiconductors, respectively. In our case n = 1/2, the optical band gap is determined by extrapolating the tangent line of the curve (αhν)2 to the photon energies axis (). Figure 7 shows two linear portions which lead to two band gap values. And related to the XRD analysis, the band gap of 1.62 eV attributes to the CNTS phase and the second band gap of 2.06 eV can be correspond to Na2S phase (~ 2 eV) or to Cu2S phase (~ 2.37 eV) present in film [21, 22]. To conclude, the CNTS band gap energy of 1.62 eV is near with the optimal values for solar cell applications reported by other authors [4, 13, 23].

3.4 Electrical analysis

The complex impedance diagrams (Zʹ versus Zʺ) of CNTS thin films at different temperatures of 713–773 °K, were shown in Fig. 8. On the one hand, the single semicircular arcs, observed in complex impedance diagrams, are slightly depressed and their centers shift towards higher frequency with the rise of temperature. The obtained of each semicircular arc presents the response of the grain contribution in materials. Figure 8 also interprets that each semicircular arc is an indicative of an electrical equivalent circuit, which comprises a capacitive element C placed in parallel with a resistive element R. On the other hand, the size of all semicircular arcs shrinks with the increase in temperature referring to pronounced reduce in the electrical resistivity [24]. As a result, these features correspond to a semiconductor behavior. Furthermore, the electrical conductivity and relaxation times are thermally activated. Similar results have also been reported by Bitri et al. for Cu2ZnSnS4 thin films [25].
As shown in Fig. 8, the resistance «R» values are ascertained from the intercept of semicircular arcs to the real axis and the associated capacitance «C» values are determined using the relation (8). Therefore, the main electrical parameters are collected in Table 2. From this table, the resistance «R» value decreases with increasing temperature. While the frequency ωm value increases with the temperature.
Table 2
Electrical parameters of CNTS thin films
T (°K)
ln(ωm)
ωm (105)
R (105 Ω)
713
12.742
3.418
4.698
723
12.770
3.515
4.482
733
13.023
4.527
3.692
743
13.445
6.903
2.721
753
13.614
8.174
2.327
763
13.839
10.237
1.652
773
14.187
14.498
1.257
The spectra in Fig. 9 give the variation of the imaginary part of impedance Zʺ with the frequency of CNTS thin films. The magnitude of imaginary impedance Zʺ increases initially up to reach a maximum peak and afterwards begin to decrease with frequency. In the same line, the maximum in Zʺ peak merges in the higher frequency region with the increase in temperature. Besides, the frequency ωm matching at Zʺ maximum is given by the reciprocal of the relaxation time τ:
$$ \omega_{{\text{m}}} = \frac{1}{\tau } = \frac{1}{RC}. $$
(8)
The temperature dependence of angular frequency ωm is found to follow the Arrhenius equation [26]:
$$ \omega_{{\text{m}}} = \omega_{0} e^{{\frac{{ - E_{{\text{a}}} }}{{k_{{\text{B}}} T}}}} , $$
(9)
where ω0 is constant, Ea is the activation energy, and kB is the Boltzmann constant. As shown in Fig. 9b (inset graph), the slope of the linear fit obtained from the plot of ln(ωm) versus (1000/T) leads to the activation energy.
The CNTS thin films present two activation energies Ea1 = 0.63 eV and Ea2 = 1.21 eV. The presence of second activation energy can be attributed to the formation of secondary phases in film.
Figure 10 presents the variation of total conductivity σT in the low- and high-frequency regions (I and II) of CNTS thin films at different temperatures. Region I demonstrates that the total conductivity is almost unchanged with frequency, which can be attributed to DC contribution. While, region II proves that the total conductivity increases linearly with frequency, which corresponds to the AC conductivity. A distinct change in the slope of total conductivity from frequency independent (region I) to frequency dependent (region II) suggests the phenomenon of conductivity relaxation [27, 28]. Subsequently, the total conductivity «σT» is given by:
$$ \sigma_{{\text{t}}} = \sigma_{{{\text{DC}}}} + \sigma_{{{\text{AC}}}} , $$
(10)
where «σDC» is the DC conductivity obtained by extrapolation of the curves of «σT» to zero frequency at different temperatures and «σAC» is the AC conductivity as well defined via Jonscher’s universal power law:
$$ \sigma_{{{\text{AC}}}} (\omega ) = A\omega^{{\text{S}}} . $$
(11)
Here A is a complex proportionality constant and «s» is an exponent, which has a value less than or equal to the unity.
The temperature dependence of DC conductivity is found to follow the Arrhenius equation [26]:
$$ \sigma_{{{\text{DC}}}} = \sigma_{0} e^{{\frac{{ - E_{{\text{a}}} }}{{k_{{\text{B}}} T}}}} , $$
(12)
where σ0 is constant.
As illustrated in Fig. 10b (inset graph), the activation energy is determined from the slope of the ln(σDC) versus (1000/T). The activation energies Ea1 = 0.54 eV and Ea2 = 1.32 eV are consistent with those deduced from angular frequency. The values obtained from the angular frequency and DC conductivity indicate that the carrier transport mechanism is thermally activated in the band gap. These results are in agreement with our DRX and optical results.

4 Conclusions

In summary, CNTS thin films were successfully prepared, for the first time, by the «Spray pyrolysis» technique followed by an annealing treatment process. XRD studies reveal that the CNTS thin films present a cubic structure with preferential orientation along (111) direction. SEM micrograph reveals that the surface of CNTS thin film uniform, rough and compact. UV/Vis absorption spectra indicate that CNTS thin films have a high optical absorption (104 cm−1) in the visible region and the direct band energy of 1.62 eV. Impedance spectroscopy studies show single semicircular arcs, which can be described by an electrical equivalent RC circuit. Thereby, it is shown in complex impedance diagrams that the resistance R decreases with increasing temperature, which corresponds to a semiconductor behavior. In the end, the activation energy value esteemed from angular frequency is identical to this calculated from DC conductivity, indicating that the carrier transport mechanism is thermally activated in the band gap. These results open the possibility to use the CNTS material as an active layer in thin film solar cells.

Acknowledgements

The authors would like to acknowledge Tunisian Ministry of Higher Education and Scientific Research for financial support of this work and to thank Mrs Isabelle Ly for her help with the MEB characterizations measurements from CRPP (University Bordeaux 1).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat S. Sarkar, B. Das, P.R. Midya, G.C. Das, K.K. Chattopadhyay, Optical and thermoelectric properties of chalcogenide based Cu2NiSnS4 nanoparticles synthesized by a novel hydrothermal route. Mater. Lett. 152, 155–158 (2015)CrossRef S. Sarkar, B. Das, P.R. Midya, G.C. Das, K.K. Chattopadhyay, Optical and thermoelectric properties of chalcogenide based Cu2NiSnS4 nanoparticles synthesized by a novel hydrothermal route. Mater. Lett. 152, 155–158 (2015)CrossRef
2.
Zurück zum Zitat A. Kamble, K. Mokurala, A. Gupta, S. Mallick, P. Bhargava, Synthesis of Cu2NiSnS4 nanoparticles by hot injection method for photovoltaic applications. Mater. Lett. 137, 440–443 (2014)CrossRef A. Kamble, K. Mokurala, A. Gupta, S. Mallick, P. Bhargava, Synthesis of Cu2NiSnS4 nanoparticles by hot injection method for photovoltaic applications. Mater. Lett. 137, 440–443 (2014)CrossRef
3.
Zurück zum Zitat H.-J. Chen, S.-W. Fu, T.-C. Tsai, C.-F. Shih, Quaternary Cu2NiSnS4 thin films as a solar material prepared through electrodeposition. Mater. Lett. 166, 215–218 (2016)CrossRef H.-J. Chen, S.-W. Fu, T.-C. Tsai, C.-F. Shih, Quaternary Cu2NiSnS4 thin films as a solar material prepared through electrodeposition. Mater. Lett. 166, 215–218 (2016)CrossRef
4.
Zurück zum Zitat C.L. Yang, Y.H. Chen, M. Lin, S.L. Wu, L. Li, W.C. Liu, X.S. Wu, F.M. Zhang, Structural, optical and magnetic properties of Cu2NiSnS4 thin films deposited by facile one-step electrodeposition. Mater. Lett. 166, 101–104 (2016)CrossRef C.L. Yang, Y.H. Chen, M. Lin, S.L. Wu, L. Li, W.C. Liu, X.S. Wu, F.M. Zhang, Structural, optical and magnetic properties of Cu2NiSnS4 thin films deposited by facile one-step electrodeposition. Mater. Lett. 166, 101–104 (2016)CrossRef
5.
Zurück zum Zitat Y. Cui, R. Deng, G. Wang, D. Pan, A general strategy for synthesis of quaternary semiconductor Cu2MSnS4 (M = Co2+, Fe2+, Ni2+, Mn2+) nanocrystals. J. Mater. Chem. 22, 23136 (2012)CrossRef Y. Cui, R. Deng, G. Wang, D. Pan, A general strategy for synthesis of quaternary semiconductor Cu2MSnS4 (M = Co2+, Fe2+, Ni2+, Mn2+) nanocrystals. J. Mater. Chem. 22, 23136 (2012)CrossRef
6.
Zurück zum Zitat T.-X. Wang, Y.-G. Li, H.-R. Liu, H. Li, S.-X. Chen, Flower-like Cu2NiSnS4 nanoparticles synthesized by a facile solvothermal method. Mater. Lett. 124, 148–150 (2014)CrossRef T.-X. Wang, Y.-G. Li, H.-R. Liu, H. Li, S.-X. Chen, Flower-like Cu2NiSnS4 nanoparticles synthesized by a facile solvothermal method. Mater. Lett. 124, 148–150 (2014)CrossRef
7.
Zurück zum Zitat L. Shi, Y. Li, R. Zheng, Nanoconfined solvothermal synthesis and characterization of ultrafine Cu2NiSnS4 nanotubes. ChemPlusChem 80, 1533–1536 (2015)CrossRef L. Shi, Y. Li, R. Zheng, Nanoconfined solvothermal synthesis and characterization of ultrafine Cu2NiSnS4 nanotubes. ChemPlusChem 80, 1533–1536 (2015)CrossRef
8.
Zurück zum Zitat F. Ozel, Earth-abundant quaternary semiconductor Cu2MSnS4 (M=Fe Co, Ni and Mn) nanofibers: fabrication, characterization and band gap arrangement. J. Alloys Compd. 657, 157–162 (2016)CrossRef F. Ozel, Earth-abundant quaternary semiconductor Cu2MSnS4 (M=Fe Co, Ni and Mn) nanofibers: fabrication, characterization and band gap arrangement. J. Alloys Compd. 657, 157–162 (2016)CrossRef
9.
Zurück zum Zitat A. Ghosh, A. Biswas, R. Thangavel, G. Udayabhanu, Photo-electrochemical property and electronic band structure of kesterite copper chalcogenides Cu2-II-Sn-S4 (II = Fe Co, Ni) thin films. RSC Adv. 6, 96025–96034 (2016)CrossRef A. Ghosh, A. Biswas, R. Thangavel, G. Udayabhanu, Photo-electrochemical property and electronic band structure of kesterite copper chalcogenides Cu2-II-Sn-S4 (II = Fe Co, Ni) thin films. RSC Adv. 6, 96025–96034 (2016)CrossRef
10.
Zurück zum Zitat S. Dridi, N. Bitri, M. Abaab, Synthesis of quaternary Cu2NiSnS4 thin films as a solar energy material prepared through «Spray» technique. Mater. Lett. 204, 61–64 (2017)CrossRef S. Dridi, N. Bitri, M. Abaab, Synthesis of quaternary Cu2NiSnS4 thin films as a solar energy material prepared through «Spray» technique. Mater. Lett. 204, 61–64 (2017)CrossRef
11.
Zurück zum Zitat N. Bitri, S. Dridi, F. Chaabouni, M. Abaab, Studies on the electrical properties of Cu2NiSnS4 thin films prepared by a simple chemical method. Mater. Lett. 213, 31–34 (2018)CrossRef N. Bitri, S. Dridi, F. Chaabouni, M. Abaab, Studies on the electrical properties of Cu2NiSnS4 thin films prepared by a simple chemical method. Mater. Lett. 213, 31–34 (2018)CrossRef
12.
Zurück zum Zitat D. Perednis, L.-J. Gauckler, Thin film deposition using spray pyrolysis. J. Electroceram. 14, 103–111 (2005)CrossRef D. Perednis, L.-J. Gauckler, Thin film deposition using spray pyrolysis. J. Electroceram. 14, 103–111 (2005)CrossRef
13.
Zurück zum Zitat A. Jariwala, T.K. Chaudhuri, S. Patel, A. Toshniwal, V. Kheraj, A. Ray, Direct-coated copper nickel tin sulphide (Cu2NiSnS4) thin films from molecular ink. Mater. Lett. 215, 118–120 (2018)CrossRef A. Jariwala, T.K. Chaudhuri, S. Patel, A. Toshniwal, V. Kheraj, A. Ray, Direct-coated copper nickel tin sulphide (Cu2NiSnS4) thin films from molecular ink. Mater. Lett. 215, 118–120 (2018)CrossRef
14.
Zurück zum Zitat J. Kacher, C. Landon, B.L. Adams, D. Fullwood, Bragg’s Law diffraction simulations for electron backscatter diffraction analysis. Ultramicroscopy 109, 1148–1156 (2009)CrossRef J. Kacher, C. Landon, B.L. Adams, D. Fullwood, Bragg’s Law diffraction simulations for electron backscatter diffraction analysis. Ultramicroscopy 109, 1148–1156 (2009)CrossRef
15.
Zurück zum Zitat C. Barret, T.B. Massalki, Structure of Metals (Oxford Pergamon, Oxford, 1980) C. Barret, T.B. Massalki, Structure of Metals (Oxford Pergamon, Oxford, 1980)
16.
Zurück zum Zitat A. Jebali, N. Khemiri, M. Kanzari, The effect of annealing in N2 atmosphere on the physical properties of SnSb4S7 thin films. J. Alloys Compd. 673, 38–46 (2016)CrossRef A. Jebali, N. Khemiri, M. Kanzari, The effect of annealing in N2 atmosphere on the physical properties of SnSb4S7 thin films. J. Alloys Compd. 673, 38–46 (2016)CrossRef
17.
Zurück zum Zitat G.K. Williamson, R.E. Smallman, Dislocation densities in some annealed and cold worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philos. Mag. 1, 34–45 (1956)CrossRef G.K. Williamson, R.E. Smallman, Dislocation densities in some annealed and cold worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philos. Mag. 1, 34–45 (1956)CrossRef
18.
Zurück zum Zitat A. Kamble, K. Mokurala, P. Bhargava, S. Mallick, Solution Processed Cu2NiSnS4 Nanoparticles: Potential Absorber Material For Thin Film Solar Cells, 42nd Photovoltaic Specialist Conference (PVSC) (2015) A. Kamble, K. Mokurala, P. Bhargava, S. Mallick, Solution Processed Cu2NiSnS4 Nanoparticles: Potential Absorber Material For Thin Film Solar Cells, 42nd Photovoltaic Specialist Conference (PVSC) (2015)
19.
Zurück zum Zitat M. Caglar, S. Ilican, Y. Caglar, Influence of dopant concentration on the optical properties of ZnO: In films by sol–gel method. Thin Solid Films 517, 5023–5028 (2009)CrossRef M. Caglar, S. Ilican, Y. Caglar, Influence of dopant concentration on the optical properties of ZnO: In films by sol–gel method. Thin Solid Films 517, 5023–5028 (2009)CrossRef
20.
Zurück zum Zitat E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 0903–0922 (1970)CrossRef E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 0903–0922 (1970)CrossRef
21.
Zurück zum Zitat P. Pandit, B. Rakshit, S.P. Sanyal, Electronic and elastic properties of alkali-metal sulphides-Li2S and Na2S. Indian J. Pure Appl. Phys. 47, 804–807 (2009) P. Pandit, B. Rakshit, S.P. Sanyal, Electronic and elastic properties of alkali-metal sulphides-Li2S and Na2S. Indian J. Pure Appl. Phys. 47, 804–807 (2009)
22.
Zurück zum Zitat N.K. Allouche, T.B. Nasr, C. Guasch, N.K. Turki, Optimization of the synthesis and characterizations of chemical bath deposited Cu2S thin films. C. R. Chimie 13, 1364–1369 (2010)CrossRef N.K. Allouche, T.B. Nasr, C. Guasch, N.K. Turki, Optimization of the synthesis and characterizations of chemical bath deposited Cu2S thin films. C. R. Chimie 13, 1364–1369 (2010)CrossRef
23.
Zurück zum Zitat S. Rondiya, N. Wadnerkar, Y. Jadhav, S. Jadkar, S. Haram, M. Kabir, Structural, electronic, and optical properties of Cu2NiSnS4: a combined experimental and theoretical study toward photovoltaic applications. Chem. Mater. 29, 3133–3142 (2017)CrossRef S. Rondiya, N. Wadnerkar, Y. Jadhav, S. Jadkar, S. Haram, M. Kabir, Structural, electronic, and optical properties of Cu2NiSnS4: a combined experimental and theoretical study toward photovoltaic applications. Chem. Mater. 29, 3133–3142 (2017)CrossRef
24.
Zurück zum Zitat I.B. Jemaa, F. Chaabouni, M. Abaab, Investigation into the optoelectrical properties of TiO2 thin films, deposited by RF magnetron sputtering using powder target. Phys. Status Solidi A 214, 1600426 (2017)CrossRef I.B. Jemaa, F. Chaabouni, M. Abaab, Investigation into the optoelectrical properties of TiO2 thin films, deposited by RF magnetron sputtering using powder target. Phys. Status Solidi A 214, 1600426 (2017)CrossRef
25.
Zurück zum Zitat N. Bitri, S. Mahjoubi, M. Abaab, I. Ly, Electrical properties of Cu2ZnSnS4 thin films deposited by spray-sandwich technique. Mater. Lett. 219, 194–197 (2018)CrossRef N. Bitri, S. Mahjoubi, M. Abaab, I. Ly, Electrical properties of Cu2ZnSnS4 thin films deposited by spray-sandwich technique. Mater. Lett. 219, 194–197 (2018)CrossRef
26.
Zurück zum Zitat C.R. Mariappan, G. Govindaraj, S.V. Rathan, G.V. Prakash, Vitrification of K3M2P3O12 (M = B, Al, Bi) NASICON-type materials and electrical relaxation studies. Mater. Sci. Eng. B 123, 63–68 (2005)CrossRef C.R. Mariappan, G. Govindaraj, S.V. Rathan, G.V. Prakash, Vitrification of K3M2P3O12 (M = B, Al, Bi) NASICON-type materials and electrical relaxation studies. Mater. Sci. Eng. B 123, 63–68 (2005)CrossRef
27.
Zurück zum Zitat A.A. Ali, M.H. Shaaban, Electrical properties of LiBBaTe glass doped with Nd2O3. Solid State Sci. 12, 2148–2154 (2010)CrossRef A.A. Ali, M.H. Shaaban, Electrical properties of LiBBaTe glass doped with Nd2O3. Solid State Sci. 12, 2148–2154 (2010)CrossRef
28.
Zurück zum Zitat R.V. Bardea, K.R. Nemade, S.A. Waghuley, AC conductivity and dielectric relaxation in V2O5–P2O5–B2O3 glasses. J. Asian Ceram. Soc. 3, 116–122 (2015)CrossRef R.V. Bardea, K.R. Nemade, S.A. Waghuley, AC conductivity and dielectric relaxation in V2O5–P2O5–B2O3 glasses. J. Asian Ceram. Soc. 3, 116–122 (2015)CrossRef
Metadaten
Titel
One-step spray of Cu2NiSnS4 thin films as absorber materials for photovoltaic applications
verfasst von
S. Dridi
N. Bitri
S. Mahjoubi
F. Chaabouni
I. Ly
Publikationsdatum
04.04.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 9/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03291-0

Weitere Artikel der Ausgabe 9/2020

Journal of Materials Science: Materials in Electronics 9/2020 Zur Ausgabe

Neuer Inhalt