Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 24/2017

28.08.2017

One-step synthesis of conductive graphene/polyaniline nanocomposites using sodium dodecylbenzenesulfonate: preparation and properties

verfasst von: S. Y. Chin, T. K. Abdullah, M. Mariatti

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 24/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The preparation of conducting graphene/polyaniline–sodium dodecylbenzenesulfonate (PANI–SDBS) nanocomposites using synthesised graphene as the starting material is successfully conducted in the present study. The effect of the anionic surfactant SDBS on the properties of the graphene/PANI–SDBS nanocomposites is studied. The structure and morphology of the synthesised nanocomposites are characterised by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–vis) spectrophotometry, X-ray diffraction and atomic force microscopy (AFM). The electrical conductivity properties of the resulting nanocomposites are determined using a resistance meter measurement system. The FESEM and TEM images reveal that the addition of SDBS surfactant to the PANI transforms the nanofibers of the PANI to a nanosphere morphology of PANI–SDBS. FTIR and UV–vis studies reveal that the conductive graphene/PANI–SDBS nanocomposites are successfully synthesised. AFM characterisation shows that the addition of graphene reduces the root mean square roughness of the surface of the PANI. The electrical conductivity and thermal stability of the PANI are improved after the introduction of SDBS. The nanocomposites containing a 5 wt% graphene loading exhibit the highest electrical conductivity of 2.94 × 10−2 S/cm, which is much higher than that of PANI (9.09 × 10−6 S/cm).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Wu, Y. Cheng, K. Wang, Y. Wang, A. Feng, Fabrication and characterization of OMMt/BMI/CE composites with low dielectric properties and high thermal stability for electronic packaging. J. Mater. Sci. 27, 5592–5599 (2016) G. Wu, Y. Cheng, K. Wang, Y. Wang, A. Feng, Fabrication and characterization of OMMt/BMI/CE composites with low dielectric properties and high thermal stability for electronic packaging. J. Mater. Sci. 27, 5592–5599 (2016)
2.
Zurück zum Zitat G. Wu, Y. Cheng, Z. Wang, K. Wang, A. Feng, In situ polymerization of modified graphene/polyimide composite with improved mechanical and thermal properties. J. Mater. Sci. 28, 576–581 (2017) G. Wu, Y. Cheng, Z. Wang, K. Wang, A. Feng, In situ polymerization of modified graphene/polyimide composite with improved mechanical and thermal properties. J. Mater. Sci. 28, 576–581 (2017)
3.
Zurück zum Zitat S.H. Xie, Y.Y. Liu, J.Y. Li, Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes. Appl. Phys. Lett. 92, 243121 (2008) S.H. Xie, Y.Y. Liu, J.Y. Li, Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes. Appl. Phys. Lett. 92, 243121 (2008)
4.
Zurück zum Zitat G. Kaur, R. Adhikari, P. Cass, M. Bown, P. Gunatillake, Electrically conductive polymers and composites for biomedical applications. RSC Adv. 5, 37553–37567 (2015) G. Kaur, R. Adhikari, P. Cass, M. Bown, P. Gunatillake, Electrically conductive polymers and composites for biomedical applications. RSC Adv. 5, 37553–37567 (2015)
5.
Zurück zum Zitat S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 34, 783–810 (2009) S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 34, 783–810 (2009)
6.
Zurück zum Zitat J. Yang, Y. Ding, G. Chen, C. Li, Synthesis of conducting polyaniline using novel anionic gemini surfactant as micellar stabilizer. Eur. Polym. J. 43, 3337–3343 (2007) J. Yang, Y. Ding, G. Chen, C. Li, Synthesis of conducting polyaniline using novel anionic gemini surfactant as micellar stabilizer. Eur. Polym. J. 43, 3337–3343 (2007)
7.
Zurück zum Zitat S. Xing, C. Zhao, T. Zhou, S. Jing, Z. Wang, Preparation and characterization of polyaniline–polypyrrole composite from polyaniline dispersions. J. Appl. Polym. Sci. 104, 3523–3529 (2007) S. Xing, C. Zhao, T. Zhou, S. Jing, Z. Wang, Preparation and characterization of polyaniline–polypyrrole composite from polyaniline dispersions. J. Appl. Polym. Sci. 104, 3523–3529 (2007)
8.
Zurück zum Zitat H. Kim, Y. Miura, C.W. Macosko, Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem. Mater. 22, 3441–3450 (2010) H. Kim, Y. Miura, C.W. Macosko, Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem. Mater. 22, 3441–3450 (2010)
9.
Zurück zum Zitat Y. Hu, C. Bao, Chapter 5 In situ polymerization in the presence of graphene. in Polymer-Graphene Nanocomposites (The Royal Society of Chemistry, 2012), pp. 117–140 Y. Hu, C. Bao, Chapter 5 In situ polymerization in the presence of graphene. in Polymer-Graphene Nanocomposites (The Royal Society of Chemistry, 2012), pp. 117–140
10.
Zurück zum Zitat M.S.H. Gong, R. Fan, L. Qian, One-step preparation of a composite consisting of graphene oxide, Prussian blue and chitosan for electrochemical sensing of hydrogen peroxide. Microchim. Acta 180, 295–301 (2013) M.S.H. Gong, R. Fan, L. Qian, One-step preparation of a composite consisting of graphene oxide, Prussian blue and chitosan for electrochemical sensing of hydrogen peroxide. Microchim. Acta 180, 295–301 (2013)
11.
Zurück zum Zitat X. Chen, F. Meng, Z. Zhou, X. Tian, L. Shan, S. Zhu, X. Xu, M. Jiang, L. Wang, D. Hui, Y. Wang, J. Lu, J. Gou, One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties. Nanoscale 6, 8140–8148 (2014) X. Chen, F. Meng, Z. Zhou, X. Tian, L. Shan, S. Zhu, X. Xu, M. Jiang, L. Wang, D. Hui, Y. Wang, J. Lu, J. Gou, One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties. Nanoscale 6, 8140–8148 (2014)
12.
Zurück zum Zitat P. Zhu, T. Yu, S. Kang, S. Guan, One-step synthesis of spherical polyaniline/graphene composites by microemulsion for supercapacitors. Int. J. Electrochem. Sci. 11, 9019–9029 (2016) P. Zhu, T. Yu, S. Kang, S. Guan, One-step synthesis of spherical polyaniline/graphene composites by microemulsion for supercapacitors. Int. J. Electrochem. Sci. 11, 9019–9029 (2016)
13.
Zurück zum Zitat K. Zhang, L.L. Zhang, X.S. Zhao, J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22, 1392–1401 (2010) K. Zhang, L.L. Zhang, X.S. Zhao, J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22, 1392–1401 (2010)
14.
Zurück zum Zitat X. Fan, Z. Yang, Z. Liu, One-step synthesis of graphene/polyaniline nanotube composite for supercapacitor electrode. Chin. J. Chem. 34, 107–113 (2016) X. Fan, Z. Yang, Z. Liu, One-step synthesis of graphene/polyaniline nanotube composite for supercapacitor electrode. Chin. J. Chem. 34, 107–113 (2016)
15.
Zurück zum Zitat L. Mao, K. Zhang, H.S. On Chan, J. Wu, Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode. J. Mater. Chem. 22, 80–85 (2012) L. Mao, K. Zhang, H.S. On Chan, J. Wu, Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode. J. Mater. Chem. 22, 80–85 (2012)
16.
Zurück zum Zitat J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, F. Wei, Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48, 487–493 (2010) J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, F. Wei, Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48, 487–493 (2010)
17.
Zurück zum Zitat A.V. Murugan, T. Muraliganth, A. Manthiram, Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage. Chem. Mater. 21, 5004–5006 (2009) A.V. Murugan, T. Muraliganth, A. Manthiram, Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage. Chem. Mater. 21, 5004–5006 (2009)
18.
Zurück zum Zitat M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009) M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009)
19.
Zurück zum Zitat S.K. Sahoo, A. Mallik, Simple, fast and cost-effective electrochemical synthesis of few layer graphene nanosheets. Nano 10, 1550019 (2015) S.K. Sahoo, A. Mallik, Simple, fast and cost-effective electrochemical synthesis of few layer graphene nanosheets. Nano 10, 1550019 (2015)
20.
Zurück zum Zitat K.-J. Ahn, Y. Lee, H. Choi, M.-S. Kim, K. Im, S. Noh, H. Yoon, Surfactant-templated synthesis of polypyrrole nanocages as redox mediators for efficient energy storage. Sci. Rep. 5, 14097 (2015) K.-J. Ahn, Y. Lee, H. Choi, M.-S. Kim, K. Im, S. Noh, H. Yoon, Surfactant-templated synthesis of polypyrrole nanocages as redox mediators for efficient energy storage. Sci. Rep. 5, 14097 (2015)
21.
Zurück zum Zitat M.O. Ansari, M.M. Khan, S.A. Ansari, I. Amal, J. Lee, M.H. Cho, pTSA doped conducting graphene/polyaniline nanocomposite fibers: thermoelectric behavior and electrode analysis. Chem. Eng. J. 242, 155–161 (2014) M.O. Ansari, M.M. Khan, S.A. Ansari, I. Amal, J. Lee, M.H. Cho, pTSA doped conducting graphene/polyaniline nanocomposite fibers: thermoelectric behavior and electrode analysis. Chem. Eng. J. 242, 155–161 (2014)
22.
Zurück zum Zitat Y. Li, H. Peng, G. Li, K. Chen, Synthesis and electrochemical performance of sandwich-like polyaniline/graphene composite nanosheets. Eur. Polym. J. 48, 1406–1412 (2012) Y. Li, H. Peng, G. Li, K. Chen, Synthesis and electrochemical performance of sandwich-like polyaniline/graphene composite nanosheets. Eur. Polym. J. 48, 1406–1412 (2012)
23.
Zurück zum Zitat Y.-C. Lin, F.-H. Hsu, T.-M. Wu, Enhanced conductivity and thermal stability of conductive polyaniline/graphene composite synthesized by in situ chemical oxidation polymerization with sodium dodecyl sulfate. Synth. Met. 184, 29–34 (2013) Y.-C. Lin, F.-H. Hsu, T.-M. Wu, Enhanced conductivity and thermal stability of conductive polyaniline/graphene composite synthesized by in situ chemical oxidation polymerization with sodium dodecyl sulfate. Synth. Met. 184, 29–34 (2013)
24.
Zurück zum Zitat N.B. Trung, T.V. Tam, H.R. Kim, S.H. Hur, E.J. Kim, W.M. Choi, Three-dimensional hollow balls of graphene–polyaniline hybrids for supercapacitor applications. Chem. Eng. J. 255, 89–96 (2014) N.B. Trung, T.V. Tam, H.R. Kim, S.H. Hur, E.J. Kim, W.M. Choi, Three-dimensional hollow balls of graphene–polyaniline hybrids for supercapacitor applications. Chem. Eng. J. 255, 89–96 (2014)
25.
Zurück zum Zitat D. Zhou, Y. Li, J. Wang, P. Xu, X. Han, Synthesis of polyaniline nanofibers with high electrical conductivity from CTAB–SDBS mixed surfactants. Mater. Lett. 65, 3601–3604 (2011) D. Zhou, Y. Li, J. Wang, P. Xu, X. Han, Synthesis of polyaniline nanofibers with high electrical conductivity from CTAB–SDBS mixed surfactants. Mater. Lett. 65, 3601–3604 (2011)
26.
Zurück zum Zitat S. Quillard, G. Louarn, S. Lefrant, A.G. Macdiarmid, Vibrational analysis of polyaniline: a comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Phys. Rev. B 50, 12496–12508 (1994) S. Quillard, G. Louarn, S. Lefrant, A.G. Macdiarmid, Vibrational analysis of polyaniline: a comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Phys. Rev. B 50, 12496–12508 (1994)
27.
Zurück zum Zitat W. Liu, J. Kumar, S. Tripathy, L.A. Samuelson, Enzymatic synthesis of conducting polyaniline in micelle solutions. Langmuir 18, 9696–9704 (2002) W. Liu, J. Kumar, S. Tripathy, L.A. Samuelson, Enzymatic synthesis of conducting polyaniline in micelle solutions. Langmuir 18, 9696–9704 (2002)
28.
Zurück zum Zitat A. Mirmohseni, G.G. Wallace, Preparation and characterization of processable electroactive polyaniline–polyvinyl alcohol composite. Polymer 44, 3523–3528 (2003) A. Mirmohseni, G.G. Wallace, Preparation and characterization of processable electroactive polyaniline–polyvinyl alcohol composite. Polymer 44, 3523–3528 (2003)
29.
Zurück zum Zitat C. Yan, Y.W. Kanaththage, R. Short, C.T. Gibson, L. Zou, Graphene/polyaniline nanocomposite as electrode material for membrane capacitive deionization. Desalination 344, 274–279 (2014) C. Yan, Y.W. Kanaththage, R. Short, C.T. Gibson, L. Zou, Graphene/polyaniline nanocomposite as electrode material for membrane capacitive deionization. Desalination 344, 274–279 (2014)
30.
Zurück zum Zitat Y. Yu, B. Che, Z. Si, L. Li, W. Chen, G. Xue, Carbon nanotube/polyaniline core-shell nanowires prepared by in situ inverse microemulsion. Synth. Met. 150, 271–277 (2005) Y. Yu, B. Che, Z. Si, L. Li, W. Chen, G. Xue, Carbon nanotube/polyaniline core-shell nanowires prepared by in situ inverse microemulsion. Synth. Met. 150, 271–277 (2005)
31.
Zurück zum Zitat D. Gui, C. Liu, F. Chen, J. Liu, Preparation of polyaniline/graphene oxide nanocomposite for the application of supercapacitor. Appl. Surf. Sci. 307, 172–177 (2014) D. Gui, C. Liu, F. Chen, J. Liu, Preparation of polyaniline/graphene oxide nanocomposite for the application of supercapacitor. Appl. Surf. Sci. 307, 172–177 (2014)
32.
Zurück zum Zitat H. Baniasadi, S.A.A. Ramazani, S. Mashayekhan, F. Ghaderinezhad, Preparation of conductive polyaniline/graphene nanocomposites via in situ emulsion polymerization and product characterization. Synth. Met. 196, 199–205 (2014) H. Baniasadi, S.A.A. Ramazani, S. Mashayekhan, F. Ghaderinezhad, Preparation of conductive polyaniline/graphene nanocomposites via in situ emulsion polymerization and product characterization. Synth. Met. 196, 199–205 (2014)
33.
Zurück zum Zitat Q.-C. Zhang, Y.-Y. Zhi, E.-J. Hu, J.-P. Shen, Q. Shen, Fabrication and characterization of polyaniline by doping TX100-based two surfactants. J. Polym. Res. 22, 93 (2015) Q.-C. Zhang, Y.-Y. Zhi, E.-J. Hu, J.-P. Shen, Q. Shen, Fabrication and characterization of polyaniline by doping TX100-based two surfactants. J. Polym. Res. 22, 93 (2015)
34.
Zurück zum Zitat M.O. Ansari, S.K. Yadav, J.W. Cho, F. Mohammad, Thermal stability in terms of DC electrical conductivity retention and the efficacy of mixing technique in the preparation of nanocomposites of graphene/polyaniline over the carbon nanotubes/polyaniline. Compos B Eng 47, 155–161 (2013) M.O. Ansari, S.K. Yadav, J.W. Cho, F. Mohammad, Thermal stability in terms of DC electrical conductivity retention and the efficacy of mixing technique in the preparation of nanocomposites of graphene/polyaniline over the carbon nanotubes/polyaniline. Compos B Eng 47, 155–161 (2013)
35.
Zurück zum Zitat R. Bkakri, N. Chehata, A. Ltaief, O.E. Kusmartseva, F.V. Kusmartsev, M. Song, A. Bouazizi, Effects of the graphene content on the conversion efficiency of P3HT: graphene based organic solar cells. J. Phys. Chem. Solids 85, 206–211 (2015) R. Bkakri, N. Chehata, A. Ltaief, O.E. Kusmartseva, F.V. Kusmartsev, M. Song, A. Bouazizi, Effects of the graphene content on the conversion efficiency of P3HT: graphene based organic solar cells. J. Phys. Chem. Solids 85, 206–211 (2015)
36.
Zurück zum Zitat A. Lodha, S.M. Kilbey, P.C. Ramamurthy, R.V. Gregory, Effect of annealing on electrical conductivity and morphology of polyaniline films. J. Appl. Polym. Sci. 82, 3602–3610 (2001) A. Lodha, S.M. Kilbey, P.C. Ramamurthy, R.V. Gregory, Effect of annealing on electrical conductivity and morphology of polyaniline films. J. Appl. Polym. Sci. 82, 3602–3610 (2001)
37.
Zurück zum Zitat Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, B. Liu, Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuators B 178, 485–493 (2013) Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, B. Liu, Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuators B 178, 485–493 (2013)
38.
Zurück zum Zitat J. Stejskal, P. Kratochvíl, N. Radhakrishnan, Polyaniline dispersions 2. UV–vis absorption spectra. Synth. Met. 61, 225–231 (1993) J. Stejskal, P. Kratochvíl, N. Radhakrishnan, Polyaniline dispersions 2. UV–vis absorption spectra. Synth. Met. 61, 225–231 (1993)
39.
Zurück zum Zitat A.H. Gemeay, R.G. El-Sharkawy, I.A. Mansour, A.B. Zaki, Preparation and characterization of polyaniline/manganese dioxide composites and their catalytic activity. J. Colloid Interface Sci. 308, 385–394 (2007) A.H. Gemeay, R.G. El-Sharkawy, I.A. Mansour, A.B. Zaki, Preparation and characterization of polyaniline/manganese dioxide composites and their catalytic activity. J. Colloid Interface Sci. 308, 385–394 (2007)
40.
Zurück zum Zitat A.V. Streltsov, O.V. Morozova, N.A. Arkharova, V.V. Klechkovskaya, I.N. Staroverova, G.P. Shumakovich, A.I. Yaropolov, Synthesis and characterization of conducting polyaniline prepared by laccase-catalyzed method in sodium dodecylbenzenesulfonate micellar solutions. J. Appl. Polym. Sci. 114, 928–934 (2009) A.V. Streltsov, O.V. Morozova, N.A. Arkharova, V.V. Klechkovskaya, I.N. Staroverova, G.P. Shumakovich, A.I. Yaropolov, Synthesis and characterization of conducting polyaniline prepared by laccase-catalyzed method in sodium dodecylbenzenesulfonate micellar solutions. J. Appl. Polym. Sci. 114, 928–934 (2009)
41.
Zurück zum Zitat R.C. Rathod, V.K. Didolkar, S.S. Umare, B.H. Shambharkar, Synthesis of processable polyaniline and its anticorrosion performance on 316LN stainless steel. Trans. Indian Inst. Met. 64, 431–438 (2011) R.C. Rathod, V.K. Didolkar, S.S. Umare, B.H. Shambharkar, Synthesis of processable polyaniline and its anticorrosion performance on 316LN stainless steel. Trans. Indian Inst. Met. 64, 431–438 (2011)
42.
Zurück zum Zitat S. Ran, C. Chen, Z. Guo, Z. Fang, Char barrier effect of graphene nanoplatelets on the flame retardancy and thermal stability of high-density polyethylene flame-retarded by brominated polystyrene. J. Appl. Polym. Sci. 131, 40520 (2014) S. Ran, C. Chen, Z. Guo, Z. Fang, Char barrier effect of graphene nanoplatelets on the flame retardancy and thermal stability of high-density polyethylene flame-retarded by brominated polystyrene. J. Appl. Polym. Sci. 131, 40520 (2014)
43.
Zurück zum Zitat S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006) S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)
44.
Zurück zum Zitat H. Hu, X. Wang, J. Wang, L. Wan, F. Liu, H. Zheng, R. Chen, C. Xu, Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem. Phys. Lett. 484, 247–253 (2010) H. Hu, X. Wang, J. Wang, L. Wan, F. Liu, H. Zheng, R. Chen, C. Xu, Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem. Phys. Lett. 484, 247–253 (2010)
45.
Zurück zum Zitat S. Ansari, E.P. Giannelis, Functionalized graphene sheet—poly(vinylidene fluoride) conductive nanocomposites. J. Polym. Sci. B 47, 888–897 (2009) S. Ansari, E.P. Giannelis, Functionalized graphene sheet—poly(vinylidene fluoride) conductive nanocomposites. J. Polym. Sci. B 47, 888–897 (2009)
46.
Zurück zum Zitat S.M. Imran, A. Salman, G.N. Shao, M.S. Haider, N. Abbas, S. Park, M. Hussain, H.T. Kim, Study of the electroconductive properties of conductive polymers-graphene/graphene oxide nanocomposites synthesized via in situ emulsion polymerization., Polym. Compos. (2016). doi:10.1002/pc.24179 CrossRef S.M. Imran, A. Salman, G.N. Shao, M.S. Haider, N. Abbas, S. Park, M. Hussain, H.T. Kim, Study of the electroconductive properties of conductive polymers-graphene/graphene oxide nanocomposites synthesized via in situ emulsion polymerization., Polym. Compos. (2016). doi:10.​1002/​pc.​24179 CrossRef
47.
Zurück zum Zitat D. Saini, T. Basu, Synthesis and characterization of nanocomposites based on polyaniline-gold/graphene nanosheets. Appl. Nanosci. 2, 467–479 (2012) D. Saini, T. Basu, Synthesis and characterization of nanocomposites based on polyaniline-gold/graphene nanosheets. Appl. Nanosci. 2, 467–479 (2012)
48.
Zurück zum Zitat Z.A. Boeva, K.A. Milakin, M. Pesonen, A.N. Ozerin, V.G. Sergeyev, T. Lindfors, Dispersible composites of exfoliated graphite and polyaniline with improved electrochemical behaviour for solid-state chemical sensor applications. RSC Adv. 4, 46340–46350 (2014) Z.A. Boeva, K.A. Milakin, M. Pesonen, A.N. Ozerin, V.G. Sergeyev, T. Lindfors, Dispersible composites of exfoliated graphite and polyaniline with improved electrochemical behaviour for solid-state chemical sensor applications. RSC Adv. 4, 46340–46350 (2014)
49.
Zurück zum Zitat A.K. Sharma, G. Chaudhary, I. Kaushal, U. Bhardwaj, A. Mishra, Studies on nanocomposites of polyaniline using different substrates. Am. J. Polym. Sci. 5, 1–6 (2015) A.K. Sharma, G. Chaudhary, I. Kaushal, U. Bhardwaj, A. Mishra, Studies on nanocomposites of polyaniline using different substrates. Am. J. Polym. Sci. 5, 1–6 (2015)
50.
Zurück zum Zitat O.D. Iakobson, O.L. Gribkova, A.R. Tameev, V.V. Kravchenko, A.V. Egorov, A.V. Vannikov, Conductive composites of polyaniline–polyacid complex and graphene nanostacks. Synth. Met. 211, 89–98 (2016) O.D. Iakobson, O.L. Gribkova, A.R. Tameev, V.V. Kravchenko, A.V. Egorov, A.V. Vannikov, Conductive composites of polyaniline–polyacid complex and graphene nanostacks. Synth. Met. 211, 89–98 (2016)
51.
Zurück zum Zitat A. Pron, F. Genoud, C. Menardo, M. Nechtschein, The effect of the oxidation conditions on the chemical polymerization of polyaniline. Synth. Met. 24, 193–201 (1988) A. Pron, F. Genoud, C. Menardo, M. Nechtschein, The effect of the oxidation conditions on the chemical polymerization of polyaniline. Synth. Met. 24, 193–201 (1988)
Metadaten
Titel
One-step synthesis of conductive graphene/polyaniline nanocomposites using sodium dodecylbenzenesulfonate: preparation and properties
verfasst von
S. Y. Chin
T. K. Abdullah
M. Mariatti
Publikationsdatum
28.08.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 24/2017
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-7788-3

Weitere Artikel der Ausgabe 24/2017

Journal of Materials Science: Materials in Electronics 24/2017 Zur Ausgabe

Neuer Inhalt