Skip to main content
Erschienen in: Journal of Materials Science 13/2016

11.04.2016 | Original Paper

One-step synthesis of Polyvinylpyrrolidone-reduced graphene oxide-Pd nanoparticles for electrochemical sensing

verfasst von: Yanyan Zhang, Cong Zhang, Weizhen Wang, Xin Du, Wenhao Dong, Bingkai Han, Qiang Chen

Erschienen in: Journal of Materials Science | Ausgabe 13/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An effective and facile approach was developed for preparing non-enzymatic hydrogen peroxide (H2O2) sensors on the basis of Polyvinylpyrrolidone-reduced graphene oxide-palladium nanoparticles (PVP-rGO-Pd NPs)-modified glassy carbon (GC) electrode. One-step wet-chemical method was applied for preparing PVP-rGO-Pd NPs. The synergic effect of nanocomposites provided an advantageous micro-environment for facilitating electro-catalysis of H2O2 sensors. The nanocomposites were characterized by transmission electron microscopy, scan electron, and energy-dispersive X-ray spectroscopy. Electro-catalytic ability of the nanocomposites was evaluated by cyclic voltammetry and chronoamperometric methods. Several critical parameters which could affect the performance of the proposed sensor were taken into consideration and optimized. Under the optimal conditions, the as-fabricated sensor has wide linear range from 0.005 to 1.2 mM with the high sensitivity of 694.3 μA mM−1 cm−2 and low detection limit of 0.025 μM. Besides, it also exhibited excellent selectivity, superior reproducibility, and long-term stability. The present work could afford a viable method and efficient platform for fabricating amperometric sensors and biosensors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cao L, Liu Y, Zhang B et al (2010) In situ controllable growth of Prussian blue nanocubes on reduced graphene oxide: facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. ACS Appl Mater Interfaces 2:2339–2346CrossRef Cao L, Liu Y, Zhang B et al (2010) In situ controllable growth of Prussian blue nanocubes on reduced graphene oxide: facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. ACS Appl Mater Interfaces 2:2339–2346CrossRef
2.
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef
3.
Zurück zum Zitat Compton OC, Kim S, Pierre C et al (2010) Crumpled graphene nanosheets as highly effective barrier property enhancers. Adv Mater 22:4759–4763CrossRef Compton OC, Kim S, Pierre C et al (2010) Crumpled graphene nanosheets as highly effective barrier property enhancers. Adv Mater 22:4759–4763CrossRef
4.
Zurück zum Zitat Zhu J, Chen M, He Q et al (2013) An overview of the engineered graphene nanostructures and nanocomposite. RSC Adv 3:22790–22824CrossRef Zhu J, Chen M, He Q et al (2013) An overview of the engineered graphene nanostructures and nanocomposite. RSC Adv 3:22790–22824CrossRef
5.
Zurück zum Zitat Du X, Skachko I, Barker A et al (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3:491–495CrossRef Du X, Skachko I, Barker A et al (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3:491–495CrossRef
6.
Zurück zum Zitat Li D, Muller MB, Gilje S et al (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef Li D, Muller MB, Gilje S et al (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef
7.
Zurück zum Zitat Li Y, Zhou Z, Yu G et al (2010) CO catalytic oxidation on iron-embedded graphene: computational quest for low-cost nanocatalysts. J Phys Chem C 114:6250–6254CrossRef Li Y, Zhou Z, Yu G et al (2010) CO catalytic oxidation on iron-embedded graphene: computational quest for low-cost nanocatalysts. J Phys Chem C 114:6250–6254CrossRef
8.
Zurück zum Zitat Aizawa T, Souda R, Otani S et al (1990) Anomalous bond of monolayer graphite on transition-metal carbide surfaces. Phys Rev Lett 64:768–771CrossRef Aizawa T, Souda R, Otani S et al (1990) Anomalous bond of monolayer graphite on transition-metal carbide surfaces. Phys Rev Lett 64:768–771CrossRef
9.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
10.
Zurück zum Zitat Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef
11.
Zurück zum Zitat Lotya M, Hernandez Y, King PJ et al (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131:3611–3620CrossRef Lotya M, Hernandez Y, King PJ et al (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131:3611–3620CrossRef
12.
Zurück zum Zitat Shen J, Shi M, Li N et al (2010) Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res 3:339–349CrossRef Shen J, Shi M, Li N et al (2010) Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res 3:339–349CrossRef
13.
Zurück zum Zitat Hassan HMA, Abdelsayed V, Khder AERS et al (2009) Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J Mater Chem 19:3832–3837CrossRef Hassan HMA, Abdelsayed V, Khder AERS et al (2009) Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J Mater Chem 19:3832–3837CrossRef
14.
Zurück zum Zitat Zhang Y, Zhang C, Zhang D et al (2016) Nano-assemblies consisting of Pd/Pt nanodendrites and poly(diallyldimethylammonium chloride)-coated reduced grapheme oxide on glassy carbon electrode for hydrogen peroxide sensors. Mater Sci Eng C 58:1246–1254CrossRef Zhang Y, Zhang C, Zhang D et al (2016) Nano-assemblies consisting of Pd/Pt nanodendrites and poly(diallyldimethylammonium chloride)-coated reduced grapheme oxide on glassy carbon electrode for hydrogen peroxide sensors. Mater Sci Eng C 58:1246–1254CrossRef
15.
Zurück zum Zitat Zhang C, Zhang Y, Miao Z et al (2016) Dual-function amperometric sensors based on poly(diallydimethylammoniun chloride)-functionalized reduced grapheme oxide/manganese dioxide/gold nanoparticles nanocomposite. Sens Actuators B 222:663–673CrossRef Zhang C, Zhang Y, Miao Z et al (2016) Dual-function amperometric sensors based on poly(diallydimethylammoniun chloride)-functionalized reduced grapheme oxide/manganese dioxide/gold nanoparticles nanocomposite. Sens Actuators B 222:663–673CrossRef
16.
Zurück zum Zitat Park S, An JH, Jung IW et al (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597CrossRef Park S, An JH, Jung IW et al (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597CrossRef
17.
Zurück zum Zitat Guo SJ, Dong SJ, Wang E (2010) Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 4:547–555CrossRef Guo SJ, Dong SJ, Wang E (2010) Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 4:547–555CrossRef
18.
Zurück zum Zitat Bourlinos AB, Georgakilas V, Zboril R et al (2009) Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes. Solid State Commun 149:2172–2176CrossRef Bourlinos AB, Georgakilas V, Zboril R et al (2009) Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes. Solid State Commun 149:2172–2176CrossRef
19.
Zurück zum Zitat Sophia J, Muralidharan G (2015) Polyvinylpyrrolidone stabilized palladium nanospheres as simple and novel electrochemical sensor for amperometric hydrogen peroxide detection. J Electroanal Chem 739:115–121CrossRef Sophia J, Muralidharan G (2015) Polyvinylpyrrolidone stabilized palladium nanospheres as simple and novel electrochemical sensor for amperometric hydrogen peroxide detection. J Electroanal Chem 739:115–121CrossRef
20.
Zurück zum Zitat Atiweena K, Pattarachai S, Santamon L et al (2014) Palladium nanoparticles decorated on reduced graphene oxide rotating disk electrodes toward ultrasensitive hydrazine detection: effects of particle size and hydrodynamic diffusion. Anal Chem 86:12272–12278CrossRef Atiweena K, Pattarachai S, Santamon L et al (2014) Palladium nanoparticles decorated on reduced graphene oxide rotating disk electrodes toward ultrasensitive hydrazine detection: effects of particle size and hydrodynamic diffusion. Anal Chem 86:12272–12278CrossRef
21.
Zurück zum Zitat Sun Y, Wang HH (2007) High-performance, flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles. Adv Mater 19:2818–2823CrossRef Sun Y, Wang HH (2007) High-performance, flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles. Adv Mater 19:2818–2823CrossRef
22.
Zurück zum Zitat Kolmakov A, Klenov DO, Lilach Y et al (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett 5:667–673CrossRef Kolmakov A, Klenov DO, Lilach Y et al (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett 5:667–673CrossRef
23.
Zurück zum Zitat Langea U, Hirsch T, Mirsky VM et al (2011) Hydrogen sensor based on a graphene–palladium nanocomposite. Electrochim Acta 56:3707–3712CrossRef Langea U, Hirsch T, Mirsky VM et al (2011) Hydrogen sensor based on a graphene–palladium nanocomposite. Electrochim Acta 56:3707–3712CrossRef
24.
Zurück zum Zitat Wang P, Wang J, Wang X et al (2013) One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity. Appl Catal B 132–133:452–459CrossRef Wang P, Wang J, Wang X et al (2013) One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity. Appl Catal B 132–133:452–459CrossRef
25.
Zurück zum Zitat Luo D, Zhang G, Liu J et al (2011) Evaluation criteria for reduced graphene oxide. J Phys Chem C 115:11327–11335CrossRef Luo D, Zhang G, Liu J et al (2011) Evaluation criteria for reduced graphene oxide. J Phys Chem C 115:11327–11335CrossRef
26.
Zurück zum Zitat Wang H, Robinson J, Li X et al (2009) Solvothermal reduction of chemically exfoliated graphene sheets. J Am Chem Soc 131:9910–9911CrossRef Wang H, Robinson J, Li X et al (2009) Solvothermal reduction of chemically exfoliated graphene sheets. J Am Chem Soc 131:9910–9911CrossRef
27.
Zurück zum Zitat Moon IK, Lee J, Ruoff RS et al (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73CrossRef Moon IK, Lee J, Ruoff RS et al (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73CrossRef
28.
Zurück zum Zitat Li Y, Yuan R, Chai Y et al (2011) Electrodeposition of gold–platinum alloy nanoparticles on carbon nanotubes as electrochemical sensing interface for sensitive detection of tumor marker. Electrochim Acta 56:6715–6721CrossRef Li Y, Yuan R, Chai Y et al (2011) Electrodeposition of gold–platinum alloy nanoparticles on carbon nanotubes as electrochemical sensing interface for sensitive detection of tumor marker. Electrochim Acta 56:6715–6721CrossRef
29.
Zurück zum Zitat Gao X, Wei W, Yang L et al (2006) Carbon nanotubes/poly(1,2-diaminobenzene) nanoporous composite film electrode prepared by multipulse potentiostatic electropolymerisation and its application to determination of trace heavy metal ions. Electroanalysis 18:485–492CrossRef Gao X, Wei W, Yang L et al (2006) Carbon nanotubes/poly(1,2-diaminobenzene) nanoporous composite film electrode prepared by multipulse potentiostatic electropolymerisation and its application to determination of trace heavy metal ions. Electroanalysis 18:485–492CrossRef
30.
Zurück zum Zitat Mukouyama Y, Nakanishi S, Konishi H et al (2001) Observation of two stationary states of low and high H2O2-reduction currents at a Pt electrode, arising from the occurrence of a positive feedback mechanism including solution-stirring by gas evolution. Phys Chem Chem Phys 3:3284–3289CrossRef Mukouyama Y, Nakanishi S, Konishi H et al (2001) Observation of two stationary states of low and high H2O2-reduction currents at a Pt electrode, arising from the occurrence of a positive feedback mechanism including solution-stirring by gas evolution. Phys Chem Chem Phys 3:3284–3289CrossRef
31.
Zurück zum Zitat Lavion E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19CrossRef Lavion E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19CrossRef
32.
Zurück zum Zitat Andrieux CP, Save´ant JM (1978) Heterogenous (chemically modified electrodes, polymer electrodes) vs. homogeneous catalysis of electrochemical reactions. J Electroanal Chem 93:163–168CrossRef Andrieux CP, Save´ant JM (1978) Heterogenous (chemically modified electrodes, polymer electrodes) vs. homogeneous catalysis of electrochemical reactions. J Electroanal Chem 93:163–168CrossRef
33.
Zurück zum Zitat Harrison JA, Khan ZA (1970) The oxidation of hydrazine on platinum in acid solution. J Electroanal Chem 28:131–138CrossRef Harrison JA, Khan ZA (1970) The oxidation of hydrazine on platinum in acid solution. J Electroanal Chem 28:131–138CrossRef
34.
Zurück zum Zitat Shan C, Yang H, Han D et al (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25:1070–1074CrossRef Shan C, Yang H, Han D et al (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25:1070–1074CrossRef
35.
Zurück zum Zitat Fang Y, Zhang D, Qin X et al (2012) A non-enzymatic hydrogen peroxide sensor based on poly(vinyl alcohol)-multiwalled carbon nanotubes-platinum nanoparticles hybrids modified glassy carbon electrode. Electrochim Acta 70:266–271CrossRef Fang Y, Zhang D, Qin X et al (2012) A non-enzymatic hydrogen peroxide sensor based on poly(vinyl alcohol)-multiwalled carbon nanotubes-platinum nanoparticles hybrids modified glassy carbon electrode. Electrochim Acta 70:266–271CrossRef
36.
Zurück zum Zitat Li L, Du Z, Liu S et al (2010) A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta 82:1637–1641CrossRef Li L, Du Z, Liu S et al (2010) A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta 82:1637–1641CrossRef
37.
Zurück zum Zitat Palanisamy S, Chen S, Sarawathi R (2012) A novel nonenzymatic hydrogen peroxide sensor based on reduced graphene oxide/ZnO composite modified electrode. Sens Actuators B 166–167:372–377CrossRef Palanisamy S, Chen S, Sarawathi R (2012) A novel nonenzymatic hydrogen peroxide sensor based on reduced graphene oxide/ZnO composite modified electrode. Sens Actuators B 166–167:372–377CrossRef
38.
Zurück zum Zitat Ye Y, Kong T, Yu X et al (2012) Enhanced nonenzymatic hydrogen peroxide sensing with reduced graphene oxide/ferroferric oxide nanocomposites. Talanta 89:417–421CrossRef Ye Y, Kong T, Yu X et al (2012) Enhanced nonenzymatic hydrogen peroxide sensing with reduced graphene oxide/ferroferric oxide nanocomposites. Talanta 89:417–421CrossRef
39.
Zurück zum Zitat Lu D, Zhang Y, Lin S et al (2013) Synthesis of PtAu bimetallic nanoparticles on graphene-carbon nanotube hybrid nanomaterials for nonenzymatic hydrogen peroxide sensor. Talanta 112:111–116CrossRef Lu D, Zhang Y, Lin S et al (2013) Synthesis of PtAu bimetallic nanoparticles on graphene-carbon nanotube hybrid nanomaterials for nonenzymatic hydrogen peroxide sensor. Talanta 112:111–116CrossRef
40.
Zurück zum Zitat Galus Z (1976) Fundamentals of Electrochemical Analysis. Ellis Hor-wood, New York, pp 247–248 Galus Z (1976) Fundamentals of Electrochemical Analysis. Ellis Hor-wood, New York, pp 247–248
Metadaten
Titel
One-step synthesis of Polyvinylpyrrolidone-reduced graphene oxide-Pd nanoparticles for electrochemical sensing
verfasst von
Yanyan Zhang
Cong Zhang
Weizhen Wang
Xin Du
Wenhao Dong
Bingkai Han
Qiang Chen
Publikationsdatum
11.04.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 13/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-9949-9

Weitere Artikel der Ausgabe 13/2016

Journal of Materials Science 13/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.