Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2021

22.10.2021

Ontology-based Process Map for Metal Additive Manufacturing

verfasst von: Byeong-Min Roh, Soundar R. T. Kumara, Paul Witherell, Timothy W. Simpson

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Additive manufacturing (AM) is a layer-by-layer material deposition process that allows for more manufacturing flexibility and design complexity than traditional manufacturing processes. However, the print quality in metal AM is hard to be predicted and controlled due to its high process variability. Numerous process parameters are correlated/intertwined and have a direct/indirect relationship with the final build quality. However, these interconnections among the process parameters and print qualities are not yet fully understood and identified. To achieve a functional part without additional post-processing to improve the surface finish/mechanical properties, the comprehensive process model, which includes the semantic and qualitative connections among the process inputs-signatures-qualities, is urgently needed. Currently, surrogate models (regression models/ physical-based models) are widely used for predicting part qualities, specifically thermal distortion. These surrogate models can provide a simulated result based on the user-defined parameter settings. However, the reverse determination of the highly correlated parameters that can manage the print qualities in the desired standard cannot be achieved through these surrogate models. Understanding this interconnectivity is the top priority in building process models that will help to make the process more predictable and controllable. An ontology-based process map that captures the complicated metal AM processes, including all input parameters, physical, thermal model, and resultant build qualities (microstructure and mechanical properties), is provided in this manuscript. The connections among these factors are used to diagnose the relevant process variables regarding the specific build qualities, which can further combine with experimental data to contribute to a “printable” zone. The ontology-based process map links variable selection to quality requirements, creating a printable zone. A printable zone indicates the allowable process parameter selections, contributing to the desired part quality. Ultimately, the selected variable process data from the ontological process map will scope the parametrical analysis. The implementations of the ontology-based process map and printable zone are presented to demonstrate this proposed method's effectiveness by demonstrating that the proposed printable zone's validity and desired build quality can be achieved.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Huang, M.C. Leu, J. Mazumder, and A. Donmez, Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations, Trans. ASME, Ser. B, 137(1), (2015) Y. Huang, M.C. Leu, J. Mazumder, and A. Donmez, Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations, Trans. ASME, Ser. B, 137(1), (2015)
2.
Zurück zum Zitat Y. Zhai, D.A. Lados and J.L. LaGoy, Additive Manufacturing: Making Imagination the Major Limitation, JOM, 2014, 66(5), p 808–816. CrossRef Y. Zhai, D.A. Lados and J.L. LaGoy, Additive Manufacturing: Making Imagination the Major Limitation, JOM, 2014, 66(5), p 808–816. CrossRef
3.
Zurück zum Zitat Y. Xie, T.B. Chen, M. Lei, J. Yang, Q.J. Guo, B. Song and X.Y. Zhou, Spatial Distribution of Soil Heavy Metal Pollution Estimated by Different Interpolation Methods: Accuracy and Uncertainty Analysis, Chemosphere, 2011, 82(3), p 468–476. CrossRef Y. Xie, T.B. Chen, M. Lei, J. Yang, Q.J. Guo, B. Song and X.Y. Zhou, Spatial Distribution of Soil Heavy Metal Pollution Estimated by Different Interpolation Methods: Accuracy and Uncertainty Analysis, Chemosphere, 2011, 82(3), p 468–476. CrossRef
4.
Zurück zum Zitat C. Li, Z.Y. Liu, X.Y. Fang and Y.B. Guo, Residual Stress in Metal Additive Manufacturing, Procedia CIRP, 2018, 71, p 348–353. CrossRef C. Li, Z.Y. Liu, X.Y. Fang and Y.B. Guo, Residual Stress in Metal Additive Manufacturing, Procedia CIRP, 2018, 71, p 348–353. CrossRef
5.
Zurück zum Zitat B.M. Roh, S.R. Kumara, T.W Simpson, P. Michaleris, P. Witherell, and I. Assouroko, Ontology-based Laser and Thermal Metamodels for Metal-based Additive Manufacturing, ASME 2016 Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf., Aug. 21-24, Charlotte, NC, ASME, 50077, p V01AT02A043, (2016) B.M. Roh, S.R. Kumara, T.W Simpson, P. Michaleris, P. Witherell, and I. Assouroko, Ontology-based Laser and Thermal Metamodels for Metal-based Additive Manufacturing, ASME 2016 Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf., Aug. 21-24, Charlotte, NC, ASME, 50077, p V01AT02A043, (2016)
6.
Zurück zum Zitat M. Mani, P. Witherell, and H. Jee, Design Rules for Additive Manufacturing: A Categorization, ASME 2017 Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf., Aug. 6-9, Cleveland, OH, ASME, 58110, p V001T02A035, (2017) M. Mani, P. Witherell, and H. Jee, Design Rules for Additive Manufacturing: A Categorization, ASME 2017 Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf., Aug. 6-9, Cleveland, OH, ASME, 58110, p V001T02A035, (2017)
7.
Zurück zum Zitat D.L. Bourell, J.J. Beaman, M.C. Leu, and D.W. Rosen, A Brief History of Additive Manufacturing and the 2009 Roadmap for Additive Manufacturing: Looking Back and Looking Ahead, Proceedings of RapidTech 2009: US-TURKEY Workshop on Rapid Technologies, Sept. 24–25, Istanbul, Turkey, p 1–8 (2009) D.L. Bourell, J.J. Beaman, M.C. Leu, and D.W. Rosen, A Brief History of Additive Manufacturing and the 2009 Roadmap for Additive Manufacturing: Looking Back and Looking Ahead, Proceedings of RapidTech 2009: US-TURKEY Workshop on Rapid Technologies, Sept. 24–25, Istanbul, Turkey, p 1–8 (2009)
8.
Zurück zum Zitat N. Guo and M.C. Leu, Additive Manufacturing: Technology, Applications and Research Needs, Front. Mech. Eng., 2013, 8(3), p 215–243. CrossRef N. Guo and M.C. Leu, Additive Manufacturing: Technology, Applications and Research Needs, Front. Mech. Eng., 2013, 8(3), p 215–243. CrossRef
9.
Zurück zum Zitat D.L. Bourell, M.C. Leu and D.W. Rosen, Roadmap for Additive Manufacturing—Identifying the Future of Freeform Processing, University of Texas, Austin, TX, 2009. D.L. Bourell, M.C. Leu and D.W. Rosen, Roadmap for Additive Manufacturing—Identifying the Future of Freeform Processing, University of Texas, Austin, TX, 2009.
10.
Zurück zum Zitat X. Xiao and S. Joshi, Process Planning for Five-Axis Support Free Additive Manufacturing, Addit. Manuf., 2020, 36, p 101569. X. Xiao and S. Joshi, Process Planning for Five-Axis Support Free Additive Manufacturing, Addit. Manuf., 2020, 36, p 101569.
11.
Zurück zum Zitat L. Qian, J. Mei, J. Liang and X. Wu, Influence of Position and Laser Power on Thermal History and Microstructure of Direct Laser Fabricated Ti–6Al–4V Samples, Mater. Sci. Technol., 2005, 21(5), p 597–605. CrossRef L. Qian, J. Mei, J. Liang and X. Wu, Influence of Position and Laser Power on Thermal History and Microstructure of Direct Laser Fabricated Ti–6Al–4V Samples, Mater. Sci. Technol., 2005, 21(5), p 597–605. CrossRef
12.
Zurück zum Zitat E. Brandl, C. Leyens and F. Palm, Mechanical Properties of Additive Manufactured Ti-6Al-4V using Wire and Powder based Processes, In IOP Conf, Ser. Mater. Sci. Eng, 2011, 26(1), p 012004. E. Brandl, C. Leyens and F. Palm, Mechanical Properties of Additive Manufactured Ti-6Al-4V using Wire and Powder based Processes, In IOP Conf, Ser. Mater. Sci. Eng, 2011, 26(1), p 012004.
13.
Zurück zum Zitat L.N. Soldatova and R.D. King, An Ontology of Scientific Experiments, J. R. Soc. Interface, 2006, 3(11), p 795–803. CrossRef L.N. Soldatova and R.D. King, An Ontology of Scientific Experiments, J. R. Soc. Interface, 2006, 3(11), p 795–803. CrossRef
14.
Zurück zum Zitat R. Arp, B. Smith, and A.D. Spear, Building Ontologies with basic Formal Ontology, Mit Press, (2015) R. Arp, B. Smith, and A.D. Spear, Building Ontologies with basic Formal Ontology, Mit Press, (2015)
15.
Zurück zum Zitat T.W. Simpson, J. Peplinski, P.N. Koch and J.K. Allen, Metamodels for Computer-Based Engineering Design: Survey and Recommendations, Eng. Comput., 2001, 17(2), p 129–150. CrossRef T.W. Simpson, J. Peplinski, P.N. Koch and J.K. Allen, Metamodels for Computer-Based Engineering Design: Survey and Recommendations, Eng. Comput., 2001, 17(2), p 129–150. CrossRef
16.
Zurück zum Zitat J.A. Goldak and M. Akhlaghi, Computational Welding Mechanics, Springer, New York, 2005. J.A. Goldak and M. Akhlaghi, Computational Welding Mechanics, Springer, New York, 2005.
17.
Zurück zum Zitat J.A. Slotwinski, E.J. Garboczi and K.M. Hebenstreit, Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control, J. Res. Natl. Inst. Stand. Technol., 2014, 119, p 494. CrossRef J.A. Slotwinski, E.J. Garboczi and K.M. Hebenstreit, Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control, J. Res. Natl. Inst. Stand. Technol., 2014, 119, p 494. CrossRef
18.
Zurück zum Zitat A. Basak and S. Das, Epitaxy and Microstructure Evolution in Metal Additive Manufacturing, Annu. Rev. Mater. Res., 2016, 46, p 125–149. CrossRef A. Basak and S. Das, Epitaxy and Microstructure Evolution in Metal Additive Manufacturing, Annu. Rev. Mater. Res., 2016, 46, p 125–149. CrossRef
19.
Zurück zum Zitat J. Gockel and J. Beuth, Understanding Ti-6Al-4V Microstructure Control in Additive Manufacturing via Process Maps, Austin, TX, The University of Texas, Solid Freeform Fabr. Symp. Proc., 2013, p 666–674 J. Gockel and J. Beuth, Understanding Ti-6Al-4V Microstructure Control in Additive Manufacturing via Process Maps, Austin, TX, The University of Texas, Solid Freeform Fabr. Symp. Proc., 2013, p 666–674
20.
Zurück zum Zitat P. Das, R. Chandran, R. Samant and S. Anand, Optimum Part Build Orientation In Additive Manufacturing For Minimizing Part Errors and Support Structures, Procedia Manuf., 2015, 1, p 343–354. CrossRef P. Das, R. Chandran, R. Samant and S. Anand, Optimum Part Build Orientation In Additive Manufacturing For Minimizing Part Errors and Support Structures, Procedia Manuf., 2015, 1, p 343–354. CrossRef
21.
Zurück zum Zitat H. Gong, K. Rafi, H. Gu, T. Starr and B. Stucker, Analysis of Defect Generation in Ti–6Al–4V Parts Made using Powder Bed Fusion Additive Manufacturing Processes, Addit. Manuf., 2014, 1, p 87–98. H. Gong, K. Rafi, H. Gu, T. Starr and B. Stucker, Analysis of Defect Generation in Ti–6Al–4V Parts Made using Powder Bed Fusion Additive Manufacturing Processes, Addit. Manuf., 2014, 1, p 87–98.
22.
Zurück zum Zitat X. Xiao, B.M. Roh, and F. Zhu, Strength Enhancement in Fused Filament Fabrication via the Isotropy Toolpath. Appl.Sci., 2021, 11(13), p 6100CrossRef X. Xiao, B.M. Roh, and F. Zhu, Strength Enhancement in Fused Filament Fabrication via the Isotropy Toolpath. Appl.Sci., 2021, 11(13), p 6100CrossRef
23.
Zurück zum Zitat P. Witherell, S. Feng, T.W. Simpson, D.B. Saint John, P. Michaleris, Z.K. Liu, L.Q. Chen, and R. Martukanitz, Toward Metamodels for Composable and Reusable Additive Manufacturing Process Models, Trans. ASME, Ser. B, 136(6) (2014) P. Witherell, S. Feng, T.W. Simpson, D.B. Saint John, P. Michaleris, Z.K. Liu, L.Q. Chen, and R. Martukanitz, Toward Metamodels for Composable and Reusable Additive Manufacturing Process Models, Trans. ASME, Ser. B, 136(6) (2014)
24.
Zurück zum Zitat T.H.C. Childs, C. Hauser and M. Badrossamay, Selective Laser Sintering (Melting) of Stainless and Tool Steel Powders: Experiments and Modelling, Proc. Inst. Mech. Eng., Part B, 2005, 219(4), p 339–357. CrossRef T.H.C. Childs, C. Hauser and M. Badrossamay, Selective Laser Sintering (Melting) of Stainless and Tool Steel Powders: Experiments and Modelling, Proc. Inst. Mech. Eng., Part B, 2005, 219(4), p 339–357. CrossRef
25.
Zurück zum Zitat N.J. Harrison, I. Todd and K. Mumtaz, Reduction of Micro-cracking in Nickel Superalloys Processed by Selective Laser Melting: A Fundamental Alloy Design Approach, Acta Mater., 2015, 94, p 59–68. CrossRef N.J. Harrison, I. Todd and K. Mumtaz, Reduction of Micro-cracking in Nickel Superalloys Processed by Selective Laser Melting: A Fundamental Alloy Design Approach, Acta Mater., 2015, 94, p 59–68. CrossRef
26.
Zurück zum Zitat A. du Plessis, I. Yadroitsava and I. Yadroitsev, Effects of Defects on Mechanical Properties in Metal Additive Manufacturing: A Review Focusing on X-ray Tomography Insights, Mater. Des, 2020, 187, p 108385. CrossRef A. du Plessis, I. Yadroitsava and I. Yadroitsev, Effects of Defects on Mechanical Properties in Metal Additive Manufacturing: A Review Focusing on X-ray Tomography Insights, Mater. Des, 2020, 187, p 108385. CrossRef
27.
Zurück zum Zitat I. Yadroitsev, L. Thivillon, P. Bertrand and I. Smurov, Strategy of Manufacturing Components with Designed Internal Structure by Selective Laser Melting of Metallic Powder, Appl. Surf. Sci., 2007, 254(4), p 980–983. CrossRef I. Yadroitsev, L. Thivillon, P. Bertrand and I. Smurov, Strategy of Manufacturing Components with Designed Internal Structure by Selective Laser Melting of Metallic Powder, Appl. Surf. Sci., 2007, 254(4), p 980–983. CrossRef
28.
Zurück zum Zitat M. Tang, P.C. Pistorius and J.L. Beuth, Prediction of Lack-of-Fusion Porosity for Powder Bed Fusion, Addit. Manuf., 2017, 14, p 39–48. M. Tang, P.C. Pistorius and J.L. Beuth, Prediction of Lack-of-Fusion Porosity for Powder Bed Fusion, Addit. Manuf., 2017, 14, p 39–48.
29.
Zurück zum Zitat L.E. Criales, Y.M. Arısoy, B. Lane, S. Moylan, A. Donmez and T. Özel, Laser Powder Bed Fusion of Nickel Alloy 625: Experimental Investigations of Effects of Process Parameters on Melt Pool Size and Shape with Spatter Analysis, Int. J. Mach. Tools Manuf., 2017, 121, p 22–36. CrossRef L.E. Criales, Y.M. Arısoy, B. Lane, S. Moylan, A. Donmez and T. Özel, Laser Powder Bed Fusion of Nickel Alloy 625: Experimental Investigations of Effects of Process Parameters on Melt Pool Size and Shape with Spatter Analysis, Int. J. Mach. Tools Manuf., 2017, 121, p 22–36. CrossRef
30.
Zurück zum Zitat J.P. Oliveira, A. LaLonde and J. Ma, Processing Parameters in Laser Powder bed Fusion Metal Additive Manufacturing, Mater. Des., p 108762 (2020) J.P. Oliveira, A. LaLonde and J. Ma, Processing Parameters in Laser Powder bed Fusion Metal Additive Manufacturing, Mater. Des., p 108762 (2020)
31.
Zurück zum Zitat C. Li, Y.B. Guo and J.B. Zhao, Interfacial Phenomena and Characteristics between the Deposited Material and Substrate in Selective Laser Melting Inconel 625, J. Mater. Process. Technol., 2017, 243, p 269–281. CrossRef C. Li, Y.B. Guo and J.B. Zhao, Interfacial Phenomena and Characteristics between the Deposited Material and Substrate in Selective Laser Melting Inconel 625, J. Mater. Process. Technol., 2017, 243, p 269–281. CrossRef
32.
Zurück zum Zitat T.G. Spears and S.A. Gold, In-process Sensing in Selective Laser Melting (SLM) Additive Manufacturing, Integr. Mater. Manuf. Innov., 2016, 5(1), p 16–40. CrossRef T.G. Spears and S.A. Gold, In-process Sensing in Selective Laser Melting (SLM) Additive Manufacturing, Integr. Mater. Manuf. Innov., 2016, 5(1), p 16–40. CrossRef
33.
Zurück zum Zitat C. Chan, J. Mazumder and M. Chen, A two-dimensional Transient Model for Convection in Laser Melting Pool, Metall. Mater. Trans. A, 1984, 15(12), p 1984–2175. CrossRef C. Chan, J. Mazumder and M. Chen, A two-dimensional Transient Model for Convection in Laser Melting Pool, Metall. Mater. Trans. A, 1984, 15(12), p 1984–2175. CrossRef
34.
Zurück zum Zitat J. Goldak, A. Chakravarti and M. Bibby, A New Finite Element Model for Welding Heat Sources, Metall. Trans. B, 1984, 15(2), p 299–305. CrossRef J. Goldak, A. Chakravarti and M. Bibby, A New Finite Element Model for Welding Heat Sources, Metall. Trans. B, 1984, 15(2), p 299–305. CrossRef
35.
Zurück zum Zitat J. Alda, Laser and Gaussian Beam Propagation and Transformation, Encyclopedia of Optical Engineering, p 999-1013 (2003) J. Alda, Laser and Gaussian Beam Propagation and Transformation, Encyclopedia of Optical Engineering, p 999-1013 (2003)
36.
Zurück zum Zitat V.D. Manvatkar, A.A. Gokhale, G.J. Reddy, A. Venkataramana and A. De, Estimation of Melt Pool Dimensions, Thermal Cycle, and Hardness Distribution in the Laser-Engineered Net Shaping Process of Austenitic Stainless Steel, Metall. Mater. Trans. A, 2011, 42(13), p 4080–4087. CrossRef V.D. Manvatkar, A.A. Gokhale, G.J. Reddy, A. Venkataramana and A. De, Estimation of Melt Pool Dimensions, Thermal Cycle, and Hardness Distribution in the Laser-Engineered Net Shaping Process of Austenitic Stainless Steel, Metall. Mater. Trans. A, 2011, 42(13), p 4080–4087. CrossRef
37.
Zurück zum Zitat R.B. Patil and V. Yadava, Finite Element Analysis of Temperature Distribution in Single Metallic Powder Layer during Metal Laser Sintering, Int. J. Mach. Tools Manuf., 2007, 47(7–8), p 1069–1080. CrossRef R.B. Patil and V. Yadava, Finite Element Analysis of Temperature Distribution in Single Metallic Powder Layer during Metal Laser Sintering, Int. J. Mach. Tools Manuf., 2007, 47(7–8), p 1069–1080. CrossRef
38.
Zurück zum Zitat J. Yin, H. Zhu, K. Linda, W. Lei, C. Dai and D. Zuo, Simulation of Temperature Distribution in Single Metallic Powder Layer for Laser Micro-Sintering, Comput. Mater. Sci., 2012, 53(1), p 333–339. CrossRef J. Yin, H. Zhu, K. Linda, W. Lei, C. Dai and D. Zuo, Simulation of Temperature Distribution in Single Metallic Powder Layer for Laser Micro-Sintering, Comput. Mater. Sci., 2012, 53(1), p 333–339. CrossRef
39.
Zurück zum Zitat I.A. Roberts, C.J. Wang, R. Esterlein, M. Stanford and D.J. Mynors, A Three-dimensional Finite Element Analysis of the Temperature Field during Laser Melting of Metal Powders in Additive Layer Manufacturing, Int. J. Mach. Tools Manuf., 2009, 49(12), p 916–923. CrossRef I.A. Roberts, C.J. Wang, R. Esterlein, M. Stanford and D.J. Mynors, A Three-dimensional Finite Element Analysis of the Temperature Field during Laser Melting of Metal Powders in Additive Layer Manufacturing, Int. J. Mach. Tools Manuf., 2009, 49(12), p 916–923. CrossRef
40.
Zurück zum Zitat J. Zhang, D. Li, L. Zhao and M. Zhao, Simulation of Temperature Field in Selective Laser Sintering of Copper Powder, 2010 International Conference on Mechanic Automation and Control Engineering, June 26-28, Wuhan, China, IEEE, p 3282-3285 (2010) J. Zhang, D. Li, L. Zhao and M. Zhao, Simulation of Temperature Field in Selective Laser Sintering of Copper Powder, 2010 International Conference on Mechanic Automation and Control Engineering, June 26-28, Wuhan, China, IEEE, p 3282-3285 (2010)
41.
Zurück zum Zitat B. Song, S. Dong, H. Liao and C. Coddet, Process Parameter Selection for Selective Laser Melting of Ti6Al4V based on Temperature Distribution Simulation and Experimental Sintering, Int. J. Adv. Manuf. Technol., 2011, 61(9–12), p 967–974. B. Song, S. Dong, H. Liao and C. Coddet, Process Parameter Selection for Selective Laser Melting of Ti6Al4V based on Temperature Distribution Simulation and Experimental Sintering, Int. J. Adv. Manuf. Technol., 2011, 61(9–12), p 967–974.
42.
Zurück zum Zitat J. Ready, Effects of High-Power Laser Radiation, Elsevier, (2012) J. Ready, Effects of High-Power Laser Radiation, Elsevier, (2012)
43.
Zurück zum Zitat K. Zeng, D. Pal, and B. Stucker, A Review of Thermal Analysis Methods in Laser Sintering and Selective Laser Melting, Solid Freeform Fabr. Symp. Proc., Austin, TX, The University of Texas, p 796-814 (2012) K. Zeng, D. Pal, and B. Stucker, A Review of Thermal Analysis Methods in Laser Sintering and Selective Laser Melting, Solid Freeform Fabr. Symp. Proc., Austin, TX, The University of Texas, p 796-814 (2012)
44.
Zurück zum Zitat A. Raghavan, H.L. Wei, T.A. Palmer and T. DebRoy, Heat Transfer and Fluid Flow in Additive Manufacturing, J. Laser Appl., 2013, 25(5), p 052006. CrossRef A. Raghavan, H.L. Wei, T.A. Palmer and T. DebRoy, Heat Transfer and Fluid Flow in Additive Manufacturing, J. Laser Appl., 2013, 25(5), p 052006. CrossRef
45.
Zurück zum Zitat I. Gibson, D.W. Rosen and B. Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer, p 237-258 (2010) I. Gibson, D.W. Rosen and B. Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer, p 237-258 (2010)
46.
Zurück zum Zitat C. Konrad, Y. Zhang and B. Xiao, Analysis of Melting and Resolidification in a Two-component Metal Powder Bed Subjected to Temporal Gaussian Heat Flux, Int. J. Heat Mass Trans., 2005, 48(19–20), p 3932–3944. CrossRef C. Konrad, Y. Zhang and B. Xiao, Analysis of Melting and Resolidification in a Two-component Metal Powder Bed Subjected to Temporal Gaussian Heat Flux, Int. J. Heat Mass Trans., 2005, 48(19–20), p 3932–3944. CrossRef
47.
Zurück zum Zitat J.C. Heigel, P. Michaleris and E.W. Reutzel, Thermo-Mechanical Model Development and Validation of Directed Energy Deposition Additive Manufacturing of Ti–6Al–4V, Addit. Manuf., 2015, 5, p 9–19. J.C. Heigel, P. Michaleris and E.W. Reutzel, Thermo-Mechanical Model Development and Validation of Directed Energy Deposition Additive Manufacturing of Ti–6Al–4V, Addit. Manuf., 2015, 5, p 9–19.
48.
Zurück zum Zitat B. Schoinochoritis, D. Chantzis and K. Salonitis, Simulation of Metallic Powder Bed Additive Manufacturing Processes with the Finite Element method: A Critical Review, Proc. Inst. Mech. Eng. B, 2017, 231(1), p 96–117. CrossRef B. Schoinochoritis, D. Chantzis and K. Salonitis, Simulation of Metallic Powder Bed Additive Manufacturing Processes with the Finite Element method: A Critical Review, Proc. Inst. Mech. Eng. B, 2017, 231(1), p 96–117. CrossRef
49.
Zurück zum Zitat W. Zhang, G.G. Roy, J.W. Elmer and T. DebRoy, Modeling of Heat Transfer and Fluid Flow during Gas Tungsten Arc Spot Welding of Low Carbon Steel, J. Appl. Phys, 2003, 93, p 3022–3033. CrossRef W. Zhang, G.G. Roy, J.W. Elmer and T. DebRoy, Modeling of Heat Transfer and Fluid Flow during Gas Tungsten Arc Spot Welding of Low Carbon Steel, J. Appl. Phys, 2003, 93, p 3022–3033. CrossRef
50.
Zurück zum Zitat Y.S. Lee, and W. Zhang, Mesoscopic Simulation of Heat Transfer and Fluid Flow in Laser Powder Bed Additive Manufacturing, Solid Freeform Fabr. Symp. Proc., Austin, TX, The University of Texas, p 1154-1165 , (2015) Y.S. Lee, and W. Zhang, Mesoscopic Simulation of Heat Transfer and Fluid Flow in Laser Powder Bed Additive Manufacturing, Solid Freeform Fabr. Symp. Proc., Austin, TX, The University of Texas, p 1154-1165 , (2015)
51.
Zurück zum Zitat W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah and A.M. Rubenchik, Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges, Appl. Phys. Rev, 2015, 2(4), p 041304. CrossRef W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah and A.M. Rubenchik, Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges, Appl. Phys. Rev, 2015, 2(4), p 041304. CrossRef
52.
Zurück zum Zitat J. Trapp, A.M. Rubenchik, G. Guss and M.J. Matthews, In situ Absorptivity Measurements of Metallic Powders during Laser Powder-Bed Fusion Additive Manufacturing, Appl. Mater. Today, 2017, 9, p 341–349. CrossRef J. Trapp, A.M. Rubenchik, G. Guss and M.J. Matthews, In situ Absorptivity Measurements of Metallic Powders during Laser Powder-Bed Fusion Additive Manufacturing, Appl. Mater. Today, 2017, 9, p 341–349. CrossRef
53.
Zurück zum Zitat R. Pederson, “Microstructure and Phase Transformation of Ti-6Al-4V,” Ph.D. Thesis, Luleå tekniska universitet, (2002) R. Pederson, “Microstructure and Phase Transformation of Ti-6Al-4V,” Ph.D. Thesis, Luleå tekniska universitet, (2002)
54.
Zurück zum Zitat J. Sieniawski, R. Filip and W. Ziaja, The Effect of Microstructure on the Mechanical Properties of Two-Phase Titanium Alloys, Mater. Des., 1997, 18(4–6), p 361–363. CrossRef J. Sieniawski, R. Filip and W. Ziaja, The Effect of Microstructure on the Mechanical Properties of Two-Phase Titanium Alloys, Mater. Des., 1997, 18(4–6), p 361–363. CrossRef
55.
Zurück zum Zitat K. Kubiak and J. Sieniawski, Development of the Microstructure and Fatigue Strength of Two Phase Titanium Alloys in the Processes of Forging and Heat Treatment, J. Mater. Process. Technol., 1998, 78(1–3), p 117–121. CrossRef K. Kubiak and J. Sieniawski, Development of the Microstructure and Fatigue Strength of Two Phase Titanium Alloys in the Processes of Forging and Heat Treatment, J. Mater. Process. Technol., 1998, 78(1–3), p 117–121. CrossRef
56.
Zurück zum Zitat P. Nie, O.A. Ojo and Z. Li, Numerical Modeling of Microstructure Evolution during Laser Additive Manufacturing of a Nickel-Based Superalloy, Acta Mater., 2014, 77, p 85–95. CrossRef P. Nie, O.A. Ojo and Z. Li, Numerical Modeling of Microstructure Evolution during Laser Additive Manufacturing of a Nickel-Based Superalloy, Acta Mater., 2014, 77, p 85–95. CrossRef
57.
Zurück zum Zitat M. Megahed, H.W. Mindt, N. N’Dri, H. Duan and O. Desmaison, Metal Additive-Manufacturing Process and Residual Stress Modeling, Integr. Mater. Manuf. Innov., 2016, 5(1), p 61–93. CrossRef M. Megahed, H.W. Mindt, N. N’Dri, H. Duan and O. Desmaison, Metal Additive-Manufacturing Process and Residual Stress Modeling, Integr. Mater. Manuf. Innov., 2016, 5(1), p 61–93. CrossRef
58.
Zurück zum Zitat A.V. Gusarov, M. Pavlov and I. Smurov, Residual Stresses At Laser Surface Re-melting and Additive Manufacturing, Phys. Procedia, 2011, 12, p 248–254. CrossRef A.V. Gusarov, M. Pavlov and I. Smurov, Residual Stresses At Laser Surface Re-melting and Additive Manufacturing, Phys. Procedia, 2011, 12, p 248–254. CrossRef
59.
Zurück zum Zitat W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath and A.M. Rubenchik, Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing”, J. Mater. Process. Technol., 2014, 214(12), p 2915–2925. CrossRef W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath and A.M. Rubenchik, Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing”, J. Mater. Process. Technol., 2014, 214(12), p 2915–2925. CrossRef
60.
Zurück zum Zitat S. Kou, Fluid Flow and Solidification in Welding: Three Decades of Fundamental Research at the University of Wisconsin, Weld. J., 2012, 91(11), p 287S-302S. S. Kou, Fluid Flow and Solidification in Welding: Three Decades of Fundamental Research at the University of Wisconsin, Weld. J., 2012, 91(11), p 287S-302S.
61.
Zurück zum Zitat M.C. Tsai and S. Kou, Marangoni Convection in Weld Pools with a Free Surface, Int. J. Numer. Methods Fluids, 1989, 9(12), p 1503–1516. CrossRef M.C. Tsai and S. Kou, Marangoni Convection in Weld Pools with a Free Surface, Int. J. Numer. Methods Fluids, 1989, 9(12), p 1503–1516. CrossRef
62.
Zurück zum Zitat A. Hussan, K. Latif, A.T. Rextin, A. Hayat and M. Alam, Scalable Visualization of Semantic Nets using Power-Law Graphs, Appl. Math. Inf. Sci., 2014, 8(1), p 355–367. CrossRef A. Hussan, K. Latif, A.T. Rextin, A. Hayat and M. Alam, Scalable Visualization of Semantic Nets using Power-Law Graphs, Appl. Math. Inf. Sci., 2014, 8(1), p 355–367. CrossRef
63.
Zurück zum Zitat M. Bastian, S. Heymann and M. Jacomy, Gephi: an Open Source Software for Exploring and Manipulating Networks, Proc. Int. AAAI Conf. Weblogs Soc. Media, 2009, 3(1), p 2009. M. Bastian, S. Heymann and M. Jacomy, Gephi: an Open Source Software for Exploring and Manipulating Networks, Proc. Int. AAAI Conf. Weblogs Soc. Media, 2009, 3(1), p 2009.
64.
Zurück zum Zitat R. Sivakumar, and P.V. Arivoli, Ontology Visualization PROTÉGÉ Tools–A Review, Int. J. Adv. Sci. Technol., 1 (2011) R. Sivakumar, and P.V. Arivoli, Ontology Visualization PROTÉGÉ Tools–A Review, Int. J. Adv. Sci. Technol., 1 (2011)
65.
Zurück zum Zitat R. Diestel, Graduate Texts in Mathematics, Springer, Graph Theory, 2000. R. Diestel, Graduate Texts in Mathematics, Springer, Graph Theory, 2000.
66.
Zurück zum Zitat J. Sieniawski, W. Ziaja, K. Kubiak and M. Motyka, Microstructure and Mechanical Properties of High Strength Two-Phase Titanium Alloys, Titanium Alloys-Advances in Properties Control, IntechOpen, p 69-80 (2013) J. Sieniawski, W. Ziaja, K. Kubiak and M. Motyka, Microstructure and Mechanical Properties of High Strength Two-Phase Titanium Alloys, Titanium Alloys-Advances in Properties Control, IntechOpen, p 69-80 (2013)
67.
Zurück zum Zitat M. Letenneur, A. Kreitcberg and V. Brailovski, Optimization of Laser Powder Bed Fusion Processing using a Combination of Melt Pool Modeling and Design of Experiment Approaches: Density Control, J. Manuf. Mater. Process., 2019, 3(1), p 21. M. Letenneur, A. Kreitcberg and V. Brailovski, Optimization of Laser Powder Bed Fusion Processing using a Combination of Melt Pool Modeling and Design of Experiment Approaches: Density Control, J. Manuf. Mater. Process., 2019, 3(1), p 21.
68.
Zurück zum Zitat Z. Wang, Z. Xiao, Y. Tse, C. Huang and W. Zhang, Optimization of Processing Parameters and Establishment of a Relationship between Microstructure and Mechanical Properties of SLM Titanium Alloy, Opt. Laser Technol., 2019, 112, p 159–167.CrossRef Z. Wang, Z. Xiao, Y. Tse, C. Huang and W. Zhang, Optimization of Processing Parameters and Establishment of a Relationship between Microstructure and Mechanical Properties of SLM Titanium Alloy, Opt. Laser Technol., 2019, 112, p 159–167.CrossRef
69.
Zurück zum Zitat H. Gong, K. Rafi, T. Starr and B. Stucker, August. The Effects of Processing Parameters on Defect Regularity in Ti-6Al-4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting, Solid Freeform Fabr. Symp. Proc., Austin, TX, The University of Texas, p 424-439 (2013) H. Gong, K. Rafi, T. Starr and B. Stucker, August. The Effects of Processing Parameters on Defect Regularity in Ti-6Al-4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting, Solid Freeform Fabr. Symp. Proc., Austin, TX, The University of Texas, p 424-439 (2013)
Metadaten
Titel
Ontology-based Process Map for Metal Additive Manufacturing
verfasst von
Byeong-Min Roh
Soundar R. T. Kumara
Paul Witherell
Timothy W. Simpson
Publikationsdatum
22.10.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06274-2

Weitere Artikel der Ausgabe 12/2021

Journal of Materials Engineering and Performance 12/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.