Skip to main content

2021 | OriginalPaper | Buchkapitel

2. Operation Management of Microgrid Clusters

verfasst von : Meisam Moradi, Asghar Akbari Foroud

Erschienen in: Microgrids

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter deals with the most significant characteristics of networked microgrid clusters (NMCs). The NMCs operation improves the reliability and resiliency through self-healing, enables the best utilization of DERs, and power exchange between MGs. In this chapter, in addition to the advantages and challenges of NMCs, the main objectives, architecture, control strategies, and operation of NMCs are described. Also, the overview of energy management strategies, modeling, and solution methods in the NMCs are presented. Finally, the energy management of NMCs by 24-hour scheduling, consisting of several distributed generations and loads in three scenarios, is tested on a standard case study. The simulation results are validated by MATLAB software and with the PSO algorithm. These results show that NMCs can decrease total cost and prevent load shedding by reducing the power dependence through exchanging power between MGs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
https://bronzevillecommunityofthefuture.com/
 
2
http://www.iitmicrogrid.net/microgrid.aspx
 
Literatur
1.
Zurück zum Zitat Alam, M. N., Chakrabarti, S., & Ghosh, A. (2019). Networked microgrids: State-of-the-art and future perspectives. IEEE Transactions on Industrial Informatics, 15(3), 1238–1250.CrossRef Alam, M. N., Chakrabarti, S., & Ghosh, A. (2019). Networked microgrids: State-of-the-art and future perspectives. IEEE Transactions on Industrial Informatics, 15(3), 1238–1250.CrossRef
2.
Zurück zum Zitat Tang, C., Liu, M., Dai, Y., Wang, Z., & Xie, M. (2019). Decentralized saddle-point dynamics solution for optimal power flow of distribution systems with multi-microgrids. Applied Energy, 252. Tang, C., Liu, M., Dai, Y., Wang, Z., & Xie, M. (2019). Decentralized saddle-point dynamics solution for optimal power flow of distribution systems with multi-microgrids. Applied Energy, 252.
3.
Zurück zum Zitat Liu, G., Starke, M. R., Ollis, B., & Xue, Y. (2016). Networked Microgrids Scoping Study. Oak Ridge National Laboratory (ORNL/TM-2016/294). Liu, G., Starke, M. R., Ollis, B., & Xue, Y. (2016). Networked Microgrids Scoping Study. Oak Ridge National Laboratory (ORNL/TM-2016/294).
4.
Zurück zum Zitat Backhaus, S., Dobriansky, L., et al. (2016). Networked microgrids scoping study. Los Alamos National Laboratory. Backhaus, S., Dobriansky, L., et al. (2016). Networked microgrids scoping study. Los Alamos National Laboratory.
5.
Zurück zum Zitat Hussain, A., Bui, V., & Kim, H. (2019). Resilience-oriented optimal operation of networked hybrid microgrids. IEEE Transactions on Smart Grid, 10(1), 204–215.CrossRef Hussain, A., Bui, V., & Kim, H. (2019). Resilience-oriented optimal operation of networked hybrid microgrids. IEEE Transactions on Smart Grid, 10(1), 204–215.CrossRef
6.
Zurück zum Zitat Zamora, R., & Srivastava, A. K. (2018). Multi-layer architecture for voltage and frequency control in networked microgrids. IEEE Transactions on Smart Grid, 9(3), 2076–2085. Zamora, R., & Srivastava, A. K. (2018). Multi-layer architecture for voltage and frequency control in networked microgrids. IEEE Transactions on Smart Grid, 9(3), 2076–2085.
7.
Zurück zum Zitat Wang, H., & Huang, J. (July). Incentivizing energy trading for interconnected microgrids. IEEE Transactions on Smart Grid, 9(4), 2647–2657. Wang, H., & Huang, J. (July). Incentivizing energy trading for interconnected microgrids. IEEE Transactions on Smart Grid, 9(4), 2647–2657.
8.
Zurück zum Zitat Jadhav, A. M., & Patne, N. R. (2017). Priority-based energy scheduling in a smart distributed network with multiple microgrids. IEEE Transactions on Industrial Informatics, 13(6), 3134–3143.CrossRef Jadhav, A. M., & Patne, N. R. (2017). Priority-based energy scheduling in a smart distributed network with multiple microgrids. IEEE Transactions on Industrial Informatics, 13(6), 3134–3143.CrossRef
9.
Zurück zum Zitat Wang, Z., Chen, B., Wang, J., Begovic, M. M., & Chen, C. (2015). Coordinated energy Management of Networked Microgrids in distribution systems. IEEE Transactions on Smart Grid, 6(1), 45–53.CrossRef Wang, Z., Chen, B., Wang, J., Begovic, M. M., & Chen, C. (2015). Coordinated energy Management of Networked Microgrids in distribution systems. IEEE Transactions on Smart Grid, 6(1), 45–53.CrossRef
10.
Zurück zum Zitat Wang, Z., Chen, B., Wang, J., & kim, J. (2016). Decentralized energy management system for networked microgrids in grid-connected and islanded modes. IEEE Transactions on Smart Grid, 7(2), 1097–1105.CrossRef Wang, Z., Chen, B., Wang, J., & kim, J. (2016). Decentralized energy management system for networked microgrids in grid-connected and islanded modes. IEEE Transactions on Smart Grid, 7(2), 1097–1105.CrossRef
11.
Zurück zum Zitat Gao, H., Liu, J., Wang, L., & Wei, Z. (2018). Decentralized energy Management for Networked Microgrids in future distribution systems. IEEE Transactions on Power Systems, 33(4), 3599–3610.CrossRef Gao, H., Liu, J., Wang, L., & Wei, Z. (2018). Decentralized energy Management for Networked Microgrids in future distribution systems. IEEE Transactions on Power Systems, 33(4), 3599–3610.CrossRef
12.
Zurück zum Zitat Ma, W., Wang, J., Gupta, V., & Chen, C. (2018). Distributed energy Management for Networked Microgrids Using Online ADMM with regret. IEEE Transactions on Smart Grid, 9(2), 847–856.CrossRef Ma, W., Wang, J., Gupta, V., & Chen, C. (2018). Distributed energy Management for Networked Microgrids Using Online ADMM with regret. IEEE Transactions on Smart Grid, 9(2), 847–856.CrossRef
13.
Zurück zum Zitat Yuan, W., Wang, J., Qiu, F., Chen, C., Kang, C., & Zeng, B. (2016). Robust optimization-based resilient distribution network planning against natural disasters. IEEE Transactions on Smart Grid, 7(6), 2817–2826.CrossRef Yuan, W., Wang, J., Qiu, F., Chen, C., Kang, C., & Zeng, B. (2016). Robust optimization-based resilient distribution network planning against natural disasters. IEEE Transactions on Smart Grid, 7(6), 2817–2826.CrossRef
14.
Zurück zum Zitat Abhinav, S., Modares, H., Lewis, F. L., Ferrese, F., & Davoudi, A. (2018). Synchrony in networked microgrids under attacks. IEEE Transactions on Smart Grid, 9(6), 6731–6741.CrossRef Abhinav, S., Modares, H., Lewis, F. L., Ferrese, F., & Davoudi, A. (2018). Synchrony in networked microgrids under attacks. IEEE Transactions on Smart Grid, 9(6), 6731–6741.CrossRef
15.
Zurück zum Zitat Wang, Z., Chen, B., Wang, J., & Chen, C. (2016). Networked microgrids for self-healing power systems. IEEE Transactions on Smart Grid, 7(1), 310–319.CrossRef Wang, Z., Chen, B., Wang, J., & Chen, C. (2016). Networked microgrids for self-healing power systems. IEEE Transactions on Smart Grid, 7(1), 310–319.CrossRef
16.
Zurück zum Zitat Li, Y., Zhang, P., & Luh, P. B. (2018). Formal analysis of networked microgrids dynamics. IEEE Transactions on Power Systems, 33(3), 3418–3427.CrossRef Li, Y., Zhang, P., & Luh, P. B. (2018). Formal analysis of networked microgrids dynamics. IEEE Transactions on Power Systems, 33(3), 3418–3427.CrossRef
17.
Zurück zum Zitat Hu, X., & Liu, T. (2017). Co-optimisation for distribution networks with multi-microgrids based on a two-stage optimisation model with dynamic electricity pricing. IET generation, Transmission & Distribution, 11(9), 2251–2259.CrossRef Hu, X., & Liu, T. (2017). Co-optimisation for distribution networks with multi-microgrids based on a two-stage optimisation model with dynamic electricity pricing. IET generation, Transmission & Distribution, 11(9), 2251–2259.CrossRef
18.
Zurück zum Zitat Arif, A., & Wang, Z. (2017). Networked microgrids for service restoration in resilient distribution systems. IET generation, Transmission & Distribution, 11(14), 3612–3619.CrossRef Arif, A., & Wang, Z. (2017). Networked microgrids for service restoration in resilient distribution systems. IET generation, Transmission & Distribution, 11(14), 3612–3619.CrossRef
19.
Zurück zum Zitat Shahnia, F., Chandrasena, R. P. S., Rajakaruna, S., & Ghosh, A. (2014). Primary control level of parallel distributed energy resources converters in system of multiple interconnected autonomous microgrids within self-healing networks. IET Generation, Transmission & Distribution, 8(2), 203–222.CrossRef Shahnia, F., Chandrasena, R. P. S., Rajakaruna, S., & Ghosh, A. (2014). Primary control level of parallel distributed energy resources converters in system of multiple interconnected autonomous microgrids within self-healing networks. IET Generation, Transmission & Distribution, 8(2), 203–222.CrossRef
20.
Zurück zum Zitat Golsorkhi, M. S., Hill, D. J., & Karshenas, H. R. (2018). Distributed voltage control and power Management of Networked Microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 6(4), 1892–1902.CrossRef Golsorkhi, M. S., Hill, D. J., & Karshenas, H. R. (2018). Distributed voltage control and power Management of Networked Microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 6(4), 1892–1902.CrossRef
21.
Zurück zum Zitat Wang, Z., & Wang, J. (2017). Service restoration based on AMI and networked MGs under extreme weather events. IET generation, Transmission & Distribution, 11(2), 401–408.CrossRef Wang, Z., & Wang, J. (2017). Service restoration based on AMI and networked MGs under extreme weather events. IET generation, Transmission & Distribution, 11(2), 401–408.CrossRef
22.
Zurück zum Zitat Zhang, F., Zhao, H., & Hong, M. (2015). Operation of networked microgrids in a distribution system. CSEE Journal of Power and Energy Systems, 1(4), 12–21.CrossRef Zhang, F., Zhao, H., & Hong, M. (2015). Operation of networked microgrids in a distribution system. CSEE Journal of Power and Energy Systems, 1(4), 12–21.CrossRef
23.
Zurück zum Zitat Tian, P., Xiao, X., Wang, K., & Ding, R. (2016). A hierarchical energy management system based on hierarchical optimization for microgrid community economic operation. IEEE Transactions on Smart Grid, 7(5), 2230–2241.CrossRef Tian, P., Xiao, X., Wang, K., & Ding, R. (2016). A hierarchical energy management system based on hierarchical optimization for microgrid community economic operation. IEEE Transactions on Smart Grid, 7(5), 2230–2241.CrossRef
24.
Zurück zum Zitat Che, L., Shahidehpour, M., Alabdulwahab, A., & Al-Turki, Y. (2015). Hierarchical coordination of a community microgrid with AC and DC microgrids. IEEE Transactions on Smart Grid, 6(6), 3042–3051.CrossRef Che, L., Shahidehpour, M., Alabdulwahab, A., & Al-Turki, Y. (2015). Hierarchical coordination of a community microgrid with AC and DC microgrids. IEEE Transactions on Smart Grid, 6(6), 3042–3051.CrossRef
25.
Zurück zum Zitat Chiu, W., Sun, H., & Poor, H. V. (2015). A multiobjective approach to Multimicrogrid system design. IEEE Transactions on Smart Grid, 6(5), 2263–2272.CrossRef Chiu, W., Sun, H., & Poor, H. V. (2015). A multiobjective approach to Multimicrogrid system design. IEEE Transactions on Smart Grid, 6(5), 2263–2272.CrossRef
26.
Zurück zum Zitat Hussain, A., Bui, V., & Kim, H. (2018). A resilient and privacy-preserving energy management strategy for networked microgrids. IEEE Transactions on Smart Grid, 9(3), 2127–2139.CrossRef Hussain, A., Bui, V., & Kim, H. (2018). A resilient and privacy-preserving energy management strategy for networked microgrids. IEEE Transactions on Smart Grid, 9(3), 2127–2139.CrossRef
27.
Zurück zum Zitat Cintuglu, M. H., & Mohammed, O. A. (2017). Behavior modeling and auction architecture of networked microgrids for frequency support. IEEE Transactions on Industrial Informatics, 13(4), 1772–1782.CrossRef Cintuglu, M. H., & Mohammed, O. A. (2017). Behavior modeling and auction architecture of networked microgrids for frequency support. IEEE Transactions on Industrial Informatics, 13(4), 1772–1782.CrossRef
28.
Zurück zum Zitat Parisio, A., Wiezorek, C., Kyntaja, T., Elo, J., Strunz, K., & Johansson, K. H. (2017). Cooperative MPC-based energy management for networked microgrids. IEEE Transactions on Smart Grid, 8(6), 3066–3074.CrossRef Parisio, A., Wiezorek, C., Kyntaja, T., Elo, J., Strunz, K., & Johansson, K. H. (2017). Cooperative MPC-based energy management for networked microgrids. IEEE Transactions on Smart Grid, 8(6), 3066–3074.CrossRef
29.
Zurück zum Zitat Mojtahedzadeh, S., Ravadanegh, S. N., & Haghifam, M. (2017). Optimal multiple microgrids based forming of greenfield distribution network under uncertainty. IET Renewable Power Generation, 11(7), 1059–1068.CrossRef Mojtahedzadeh, S., Ravadanegh, S. N., & Haghifam, M. (2017). Optimal multiple microgrids based forming of greenfield distribution network under uncertainty. IET Renewable Power Generation, 11(7), 1059–1068.CrossRef
30.
Zurück zum Zitat Nikmehr, N., Najafi-Ravadanegh, S., & Khodaei, A. (2017). Probabilistic optimal scheduling of networked microgrids considering time-based demand response programs under uncertainty. Applied Energy, 198, 267–269.15.CrossRef Nikmehr, N., Najafi-Ravadanegh, S., & Khodaei, A. (2017). Probabilistic optimal scheduling of networked microgrids considering time-based demand response programs under uncertainty. Applied Energy, 198, 267–269.15.CrossRef
31.
Zurück zum Zitat Bullich-Massague, E., Díaz-González, F., et al. (2018). Microgrid clustering architectures. Applied Energy, 212, 340–361.CrossRef Bullich-Massague, E., Díaz-González, F., et al. (2018). Microgrid clustering architectures. Applied Energy, 212, 340–361.CrossRef
32.
Zurück zum Zitat Hu, M., Wang, Y.-W., Xiao, J.-W., & Lin, X. (2019). Multi-energy management with hierarchical distributed multi-scale strategy for pelagic islanded microgrid clusters. Energy, 185, 910–92115.CrossRef Hu, M., Wang, Y.-W., Xiao, J.-W., & Lin, X. (2019). Multi-energy management with hierarchical distributed multi-scale strategy for pelagic islanded microgrid clusters. Energy, 185, 910–92115.CrossRef
33.
Zurück zum Zitat Antoniadou-Plytaria, K. E., Kouveliotis-Lysikatos, I. N., Georgilakis, P. S., & Hatziargyriou, N. D. (2017). Distributed and decentralized voltage control of smart distribution networks: Models, methods, and future research. IEEE Transactions on Smart Grid, 8(6), 2999–3008.CrossRef Antoniadou-Plytaria, K. E., Kouveliotis-Lysikatos, I. N., Georgilakis, P. S., & Hatziargyriou, N. D. (2017). Distributed and decentralized voltage control of smart distribution networks: Models, methods, and future research. IEEE Transactions on Smart Grid, 8(6), 2999–3008.CrossRef
34.
Zurück zum Zitat Ajoulabadi, A., Ravadanegh, S. N., & Ivatloo, B. M. (2020). Flexible scheduling of reconfigurable microgrid-based distribution networks considering demand response program. Energy, 196, 1.CrossRef Ajoulabadi, A., Ravadanegh, S. N., & Ivatloo, B. M. (2020). Flexible scheduling of reconfigurable microgrid-based distribution networks considering demand response program. Energy, 196, 1.CrossRef
Metadaten
Titel
Operation Management of Microgrid Clusters
verfasst von
Meisam Moradi
Asghar Akbari Foroud
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-59750-4_2