Skip to main content

2022 | OriginalPaper | Buchkapitel

6. Opposed-Piston Gasoline Compression Ignition Engine

verfasst von : Fabien Redon, Laurence J. Fromm, Ashwin Salvi

Erschienen in: Gasoline Compression Ignition Technology

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Gasoline compression ignition (GCI) is an approach to achieving diesel-like efficiencies but with potentially lower cost and fewer emissions. Traditional challenges with GCI arise at low-load conditions due to low charge temperatures causing combustion instability and at high-load conditions due to peak cylinder pressure and noise limitations. The fundamental architecture of the two-stroke Opposed-Piston Engine (OP Engine) enables GCI by decoupling piston motion from cylinder scavenging, allowing for flexible and independent control of cylinder residual fraction and temperature leading to improved low-load combustion. In addition, the high peak cylinder pressure and noise challenges at high-load operation are mitigated by the lower BMEP operation and faster heat release for the same pressure rise rate of the OP engine. These advantages further solidify the performance benefits of the OP engine and demonstrate the near-term technical feasibility of advanced combustion technologies, enabled by the opposed-piston architecture. This chapter describes the architectural advantages of the OP engine for GCI and presents testing results of a 2.7L OP GCI multi-cylinder engine. A part of the recipe for successful GCI operation calls for high compression ratio, leading to higher combustion stability at low-loads, higher efficiencies, and lower cycle HC + NOx emissions. In addition, results on catalyst light-off mode with GCI are also presented. The OP engine’s architectural advantages enable faster and earlier catalyst light-off while producing low emissions, which further improves cycle emissions and fuel consumption over conventional engines.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Benajes J, Martin J, Novella R, De Lima D (2014) Analysis of the load effect on the partially premixed combustion concept in a 2-stroke HSDI diesel engine fueled with conventional gasoline. In: SAE world congress, Detroit, MI. SAE (No. 2014-01-1291). https://doi.org/10.4271/2014-01-1291 Benajes J, Martin J, Novella R, De Lima D (2014) Analysis of the load effect on the partially premixed combustion concept in a 2-stroke HSDI diesel engine fueled with conventional gasoline. In: SAE world congress, Detroit, MI. SAE (No. 2014-01-1291). https://​doi.​org/​10.​4271/​2014-01-1291
Zurück zum Zitat Dec JE, Yang Y, Dernotte J, Ji C (2015) Effects of gasoline reactivity and ethanol content on boosted, premixed and partially stratified low-temperature gasoline combustion (LTGC). SAE Int J Engines 8(3):935–955CrossRef Dec JE, Yang Y, Dernotte J, Ji C (2015) Effects of gasoline reactivity and ethanol content on boosted, premixed and partially stratified low-temperature gasoline combustion (LTGC). SAE Int J Engines 8(3):935–955CrossRef
Zurück zum Zitat Hanson R, Strauss S, Redon F, Salvi A (2017) Progress in light-duty OPGCI engine design and testing. In: SIA powertrain, Versailles, France Hanson R, Strauss S, Redon F, Salvi A (2017) Progress in light-duty OPGCI engine design and testing. In: SIA powertrain, Versailles, France
Zurück zum Zitat Hanson R, Salvi A, Redon F, Regner G (2018) Experimental comparison of GCI and diesel combustion in a medium-duty opposed-piston engine. In: ASME ICEF, San Diego, CA. ICEF’2018, p 9701 Hanson R, Salvi A, Redon F, Regner G (2018) Experimental comparison of GCI and diesel combustion in a medium-duty opposed-piston engine. In: ASME ICEF, San Diego, CA. ICEF’2018, p 9701
Zurück zum Zitat Kalebjian, C., Redon, F., and Wahl, M. H., “Low Emissions and Rapid Catalyst Light-Off Capability for Upcoming Emissions Regulations with an Opposed-Piston, Two-Stroke Diesel Engine,” in Emissions 2012 Conference. Kalebjian, C., Redon, F., and Wahl, M. H., “Low Emissions and Rapid Catalyst Light-Off Capability for Upcoming Emissions Regulations with an Opposed-Piston, Two-Stroke Diesel Engine,” in Emissions 2012 Conference.
Zurück zum Zitat Kalghatgi G, Risberg P, Ångström H-E (2007) Partially pre-mixed auto-ignition of gasoline to attain low smoke and low NOx at high load in a compression ignition engine and comparison with a diesel fuel. In: Fuels and emission conference, Cape Town, South Africa. SAE (No. 2007-01-23). https://doi.org/10.4271/2007-01-0006 Kalghatgi G, Risberg P, Ångström H-E (2007) Partially pre-mixed auto-ignition of gasoline to attain low smoke and low NOx at high load in a compression ignition engine and comparison with a diesel fuel. In: Fuels and emission conference, Cape Town, South Africa. SAE (No. 2007-01-23). https://​doi.​org/​10.​4271/​2007-01-0006
Zurück zum Zitat Kolodziej CP, Sellnau M, Cho K, Cleary D (2016) Operation of a gasoline direct injection compression ignition engine on naphtha and E10 gasoline fuels. SAE Int J Engines 9(2):979–1001CrossRef Kolodziej CP, Sellnau M, Cho K, Cleary D (2016) Operation of a gasoline direct injection compression ignition engine on naphtha and E10 gasoline fuels. SAE Int J Engines 9(2):979–1001CrossRef
Zurück zum Zitat Manente V, Zander C-G, Johansson B, Tunestal P, Cannella W (2010) An advanced internal combustion engine concept for low emissions and high efficiency from idle to max load using gasoline partially premixed combustion. In: SAE powertrains fuels and lubricants meeting. SAE (No. 2010-01-2198). https://doi.org/10.4271/2010-01-2198 Manente V, Zander C-G, Johansson B, Tunestal P, Cannella W (2010) An advanced internal combustion engine concept for low emissions and high efficiency from idle to max load using gasoline partially premixed combustion. In: SAE powertrains fuels and lubricants meeting. SAE (No. 2010-01-2198). https://​doi.​org/​10.​4271/​2010-01-2198
Zurück zum Zitat Mattarelli E, Cantore G, Rinaldini CA, Savioli T (2017) Combustion system development of an opposed piston 2-stroke diesel engine. Energy Procedia 126:1003–1010CrossRef Mattarelli E, Cantore G, Rinaldini CA, Savioli T (2017) Combustion system development of an opposed piston 2-stroke diesel engine. Energy Procedia 126:1003–1010CrossRef
Zurück zum Zitat Patil S, Ghazi A, Redon F, Sharp C, Schum D, Headley J (2018) Cold start HD FTP test results on multi-cylinder opposed-piston engine demonstrating rapid exhaust enthalpy rise to achieve ultra low NOx. In: SAE world congress experience, Detroit, MI. SAE (No. 2018-01-1378). https://doi.org/10.4271/2018-01-1378 Patil S, Ghazi A, Redon F, Sharp C, Schum D, Headley J (2018) Cold start HD FTP test results on multi-cylinder opposed-piston engine demonstrating rapid exhaust enthalpy rise to achieve ultra low NOx. In: SAE world congress experience, Detroit, MI. SAE (No. 2018-01-1378). https://​doi.​org/​10.​4271/​2018-01-1378
Zurück zum Zitat Ra Y, Loeper P, Andrie M, Krieger R, Foster DE, Reitz RD, Durrett R (2012) Gasoline DICI engine operation in the LTC regime using triple-pulse injection. SAE Int J Engines 5(3):1109–1132CrossRef Ra Y, Loeper P, Andrie M, Krieger R, Foster DE, Reitz RD, Durrett R (2012) Gasoline DICI engine operation in the LTC regime using triple-pulse injection. SAE Int J Engines 5(3):1109–1132CrossRef
Zurück zum Zitat Redon F, Kalebjian C, Kessler J, Rakovec N, Headley J, Regner G, Koszewnik J (2014) Meeting stringent 2025 emissions and fuel efficiency regulations with an opposed-piston, light-duty diesel engine. SAE (No. 2014-01-1187). https://doi.org/10.4271/2014-01-1187 Redon F, Kalebjian C, Kessler J, Rakovec N, Headley J, Regner G, Koszewnik J (2014) Meeting stringent 2025 emissions and fuel efficiency regulations with an opposed-piston, light-duty diesel engine. SAE (No. 2014-01-1187). https://​doi.​org/​10.​4271/​2014-01-1187
Zurück zum Zitat Redon F (2016) Exploring the next frontier in efficiency with the opposed-piston engine. In: SIA powertrain, Rouen, France (No. R-2016-01-29) Redon F (2016) Exploring the next frontier in efficiency with the opposed-piston engine. In: SIA powertrain, Rouen, France (No. R-2016-01-29)
Zurück zum Zitat Regner G, Koszewnik J, Venugopal R (2014) Optimizing combustion in an opposed-piston, two-stroke (OP2S) diesel engine. In: Liebl J (ed) Internationaler Motorenkongress 2014: Antriebstechnik im Fahrzeug. Springer Fachmedien Wiesbaden, Wiesbaden, pp 657–659CrossRef Regner G, Koszewnik J, Venugopal R (2014) Optimizing combustion in an opposed-piston, two-stroke (OP2S) diesel engine. In: Liebl J (ed) Internationaler Motorenkongress 2014: Antriebstechnik im Fahrzeug. Springer Fachmedien Wiesbaden, Wiesbaden, pp 657–659CrossRef
Zurück zum Zitat Sellnau M, Sinnamon J, Hoyer K, Husted H (2011) Gasoline direct injection compression ignition (GDCI)—diesel-like efficiency with low CO2 emissions. SAE Int J Engines 4(1):2010–2022CrossRef Sellnau M, Sinnamon J, Hoyer K, Husted H (2011) Gasoline direct injection compression ignition (GDCI)—diesel-like efficiency with low CO2 emissions. SAE Int J Engines 4(1):2010–2022CrossRef
Zurück zum Zitat Sellnau M, Hoyer K, Moore W, Foster M, Sinnamon J, Klemm W (2018) Advancement of GDCI engine technology for US 2025 CAFE and tier 3 emissions. In: SAE world congress experience, Detroit, MI. SAE (No. 2018-01-0901). https://doi.org/10.4271/2018-01-0901 Sellnau M, Hoyer K, Moore W, Foster M, Sinnamon J, Klemm W (2018) Advancement of GDCI engine technology for US 2025 CAFE and tier 3 emissions. In: SAE world congress experience, Detroit, MI. SAE (No. 2018-01-0901). https://​doi.​org/​10.​4271/​2018-01-0901
Zurück zum Zitat Subramanian SN, Ciatti S (2011) Low cetane fuels in compression ignition engine to achieve LTC, vol 44427, pp 317–326 Subramanian SN, Ciatti S (2011) Low cetane fuels in compression ignition engine to achieve LTC, vol 44427, pp 317–326
Zurück zum Zitat Youngchul R, Loeper P, Andrie M, Krieger R, Foster DE, Reitz RD, Durrett R (2012) Gasoline DICI engine operation in the LTC regime using triple-pulse injection. SAE Int J Engines 5(3):1109–1132CrossRef Youngchul R, Loeper P, Andrie M, Krieger R, Foster DE, Reitz RD, Durrett R (2012) Gasoline DICI engine operation in the LTC regime using triple-pulse injection. SAE Int J Engines 5(3):1109–1132CrossRef
Metadaten
Titel
Opposed-Piston Gasoline Compression Ignition Engine
verfasst von
Fabien Redon
Laurence J. Fromm
Ashwin Salvi
Copyright-Jahr
2022
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-16-8735-8_6

    Premium Partner