Skip to main content
Erschienen in: Optical and Quantum Electronics 14/2023

01.12.2023

Optical properties of hBN quantum dots for ammonia gas detection

verfasst von: Shahla Shojaee, Javad Karamdel, Masoud Berahman, Mohammad T. Ahmadi

Erschienen in: Optical and Quantum Electronics | Ausgabe 14/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Detecting ammonia gas in low concentration with proper selectivity is crucial due to its harmful effects on human health and industry. Even low ammonia concentrations can cause a rapid burning sensation in the eyes, nose, and throat. In addition, it can react with copper, silver, and other heavy metals. Hence, it is essential to detect low concentrations of ammonia gas with proper selectivity. Hexagonal boron nitride quantum dots have introduced new properties and potentials for engineering applications and gas-sensing devices. A small perturbation from gas molecules can drastically alter the band structure of quantum dots. When NH3 is attached to BNQD, under the influence of the Coulomb force created between the gas and the quantum dot, the length of the bonds varies, and then the energy levels change, resulting in the band gap reduction. These changes in sub-bands can be easily detected using the optical absorption spectrum. In the present study, the changes in the optical properties of hexagonal boron nitride quantum dots in the presence of ammonia gas molecules are studied, Using density functional theory. Results show that different ammonia concentrations can alter the maximum optical absorption to higher energies. In addition, a few peaks are observed related to the transitions due to ammonia molecules in the system. The selectivity of the different gas molecules is also investigated. Moreover, the size of quantum dots was increased from 32 to 168 atoms, and it was concluded that by increasing their size, similar properties could be achieved. As a result, the present paper not only provides insight into the optical properties of hexagonal boron nitride quantum dots, but also brings up the novel idea of designing gas sensors based on such structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bai, J., Shen, Y., Zhao, S., Chen, Y., Li, G., Han, C., Wei, D., Yuan, Z., Meng, F.: Flower-like MoS2 hierarchical architectures assembled by 2D nanosheets sensitized with SnO2 quantum dots for high-performance NH3 sensing at room temperature. Sens. Actuators B. 353, 131191 (2022). https://doi.org/10.1016/j.snb.2021.131191CrossRef Bai, J., Shen, Y., Zhao, S., Chen, Y., Li, G., Han, C., Wei, D., Yuan, Z., Meng, F.: Flower-like MoS2 hierarchical architectures assembled by 2D nanosheets sensitized with SnO2 quantum dots for high-performance NH3 sensing at room temperature. Sens. Actuators B. 353, 131191 (2022). https://​doi.​org/​10.​1016/​j.​snb.​2021.​131191CrossRef
Zurück zum Zitat Berahman, M., Asad, M., Sheikhi, M.H., Zarifkar, A., Gebauer, R., Taheri, M.: H2S gas sensor based on thin film graphene nanoribbons decorated with copper: a first principles study. Proceedings of the Ultrafine Grained and Nano-Structured Materials. 5–6 (2013). https://doi.org/10.13140/2.1.4612.6080 Berahman, M., Asad, M., Sheikhi, M.H., Zarifkar, A., Gebauer, R., Taheri, M.: H2S gas sensor based on thin film graphene nanoribbons decorated with copper: a first principles study. Proceedings of the Ultrafine Grained and Nano-Structured Materials. 5–6 (2013). https://​doi.​org/​10.​13140/​2.​1.​4612.​6080
Zurück zum Zitat Harrison, W.A.: Solid State Theory. Courier Corporation (1980) Harrison, W.A.: Solid State Theory. Courier Corporation (1980)
Zurück zum Zitat Özkan, A., Atar, N., Yola, M.L.: Enhanced surface plasmon resonance (SPR) signals based on immobilization of core-shell nanoparticles incorporated boron nitride nanosheets: Development of molecularly imprinted SPR nanosensor for anticancer drug, etoposide. Biosens. Bioelectron. 130, 293–298 (2019). https://doi.org/10.1016/j.bios.2019.01.053CrossRef Özkan, A., Atar, N., Yola, M.L.: Enhanced surface plasmon resonance (SPR) signals based on immobilization of core-shell nanoparticles incorporated boron nitride nanosheets: Development of molecularly imprinted SPR nanosensor for anticancer drug, etoposide. Biosens. Bioelectron. 130, 293–298 (2019). https://​doi.​org/​10.​1016/​j.​bios.​2019.​01.​053CrossRef
Metadaten
Titel
Optical properties of hBN quantum dots for ammonia gas detection
verfasst von
Shahla Shojaee
Javad Karamdel
Masoud Berahman
Mohammad T. Ahmadi
Publikationsdatum
01.12.2023
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 14/2023
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05405-4

Weitere Artikel der Ausgabe 14/2023

Optical and Quantum Electronics 14/2023 Zur Ausgabe

Neuer Inhalt