Skip to main content
Erschienen in: Optical and Quantum Electronics 3/2024

Open Access 01.03.2024

Optical quantum conformable normalized and recursional model in Minkowski space

verfasst von: Talat Körpinar, Zeliha Körpinar, Hatice Özdemir

Erschienen in: Optical and Quantum Electronics | Ausgabe 3/2024

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we construct electromagnetic conformable timelike particles with Bishop model in Minkowski space. Also, we obtain conformable derivatives of \(\Gamma \left( {\textbf{t}}\right) \), \(\Gamma \left( {\textbf{m}}_{1}\right) \), \(\Gamma \left( {\textbf{m}}_{2}\right) \) Lorentz forces. Then, we compute normalizing and recursion operators of magnetic vector fields according to Bishop model. Finally, we determine F–W conformable derivatives for normalizing and recursional operators.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Magnetic trajectories play a notable role in many applications in differential and physical geometry. These trajectories are obtained thanks to the magnetic fields on Riemann manifold. Thus, magnetic trajectories are determined depending on the specific form of manifold. For instance, in Comtet (1987), Druta-Romaniuc and Munteanu (2011), Druta-Romaniuc and Munteanu (2013), Efimov (2005), Munteanu and Nistor (2012), Novikov (1982), Yeneroğlu (2016), authors have shown that trajectories of magnetic areas characterized on manifold with constant Gaussian curvature can be determined. Also, it is quite important that the dynamics of charged particles correspond to trajectories of a certain type of curve in electromagnetic areas. The motion charged particles in homogeneous electromagnetic fields have been studied by researchers (Honig et al. 1974).
Many researchers presented the work of curves in ordinary space. Also, some authors analyzed the definitions and features of helices in Minkowski space and gave differential equations with respect to Frenet-Serret vectors definitive helices (Ilarslan 2002). Moreover, differential equations which define the Frenet fibers in Minkowski space and ordinary space are acquired (Kocayigit 2004).
Bishop model, which is named parallel or alternative frame of curves, has been introduced by means of parallel vector areas. Newly, many works with respect to this approach have been studied in ordinary space. For instance, in Yilmaz (2009), researchers defined a new form for Bishop model and application for spherical indicators. Also, some researchers considered the Minkowski space (Yılmaz and Turgut 2010). The Bishop model has many implementations in computer graphics, geometrical physics, and biology. For instance, it may be feasible to calculate data about the form of a series of DNA utilizing a fiber defined with Bishop model. Bishop’s model ensures a new method to examine simulated cameras in PC animations (Büyükkütük and Öztürk 2015). Moreover, after defining this alternative frame, parallel transport frame has been characterized for non-null curves in Minkowski space (Özdemir and Ergin 2008). Also, in Kazan and Karadağ (2018), authors have defined magnetic non-null curves according to parallel transport frames in Minkowski space.
Fractional calculation has attracted the attention of many researchers in the last centuries and today (Samko et al. 1993; Podlubny et al. 2002; Kilbas et al. 2006). The effect of this calculation on applied subjects of science and engineering started to improve essentially during the last years. Many studies have started to be interested in the separate models of fractional calculus utilizing the theory of time system (Gray and Zhang 1988; Miller and Ross 1988; Atici and Eloe 2009; Abdeljawad and Atici 2012; Abdeljawad 2013).
Fermi–Walker carried systems are enormously substantial in various basic functions. Many experts improved areas such as quantum structures alternated to experts move through optional spherical particles on space-time. Completely, they altered these systems inside F–W transported constructions. Consequently, a simple instruction for the F–W transported frame out of an alternative class of areas has been demonstrated by many researchers (Maluf and Faria 2008).
In this work, magnetic timelike curves are examined using a Bishop model in Minkowski space. First, the conformable derivatives of \(\Gamma \left( {\textbf{t}}\right) \), \(\Gamma \left( {\textbf{m}}_{1}\right) \), \(\Gamma \left( {\textbf{m}}_{2}\right) \) Lorentz force have been calculated for these curves. Then, we compute normalizing and recursion operators of magnetic vector fields according to Bishop model. Finally, we have determined F–W conformable derivatives of normalizing and recursional operators.

2 Preliminaries

In this part, some fundamental definitions in Minkowski space are given.
Definition 1
Let \({\textbf{G}}\) be the magnetic field and \(\vartheta :I\rightarrow {{\mathbb {E}}}_{1}^{3}\) be a regular parametrized particle. Therefore, following equations is expressed
$$ \begin{gathered} D_{{\vartheta ^{\prime } }} {\mathbf{t}} = k_{1} {\mathbf{m}}_{1} + k_{2} {\mathbf{m}}_{2} , \hfill \\ D_{{\vartheta ^{\prime } }} {\mathbf{m}}_{1} = k_{1} {\mathbf{t}}, \hfill \\ D_{{\vartheta ^{\prime } }} {\mathbf{m}}_{2} = k_{2} {\mathbf{t}}, \hfill \\ \end{gathered} $$
(1)
where \(\left\{ {\textbf{t}},\text { }{\textbf{m}}_{1},\text { }\mathbf { m_{2}}\right\} \) is Bishop model for \(\vartheta \) timelike curve.
Definition 2
For magnetic timelike curve, the conformable derivatives are written as
$$\begin{aligned} D_{\vartheta {^{\prime }}}{\textbf{t}}= & {} k_{1}\varsigma ^{1-\theta }{\textbf{m}}_{1}+\varsigma ^{1-\theta }k_{2}{\textbf{m}}_{2}, \nonumber \\ D_{\vartheta {^{\prime }}}{\textbf{m}}_{1}= & {} k_{1}\varsigma ^{1-\theta }{\textbf{t}}, \\ D_{\vartheta {^{\prime }}}{\textbf{m}}_{2}= & {} k_{2}\varsigma ^{1-\theta }{\textbf{t}}. \nonumber \end{aligned}$$
(2)
Definition 3
The vector field \({\textbf{t}}\) of Bishop model providing Lorentz force equation
$$\nabla_{{\vartheta ^{\prime } }} {\mathbf{t}} = {\mathbf{G}} \times {\mathbf{t}} = \Gamma \left( {\mathbf{t}} \right),$$
is called timelike \(T{\textbf{t}}\)-magnetic curve.
Thus, the conformable derivatives are defined by \(T\mathbf {t-}\)magnetic curve
$$\begin{aligned} \begin{aligned} \Gamma ({\textbf{t}})&=k_{1}\varsigma ^{1-\theta }{\textbf{m}}_{1}+k_{2}\varsigma ^{1-\theta }{\textbf{m}}_{2}, \\ \Gamma ({\textbf{m}}_{1})&=k_{1}\varsigma ^{1-\theta }{\textbf{t}}+\rho {\textbf{m}}_{2}, \\ \Gamma ({\textbf{n}}_{2})&=k_{2}\varsigma ^{1-\theta }\mathbf {t-}\rho {\textbf{m}} _{1}, \end{aligned} \end{aligned}$$
(3)
where \(\rho =g(\Gamma \left( {\textbf{m}}_{1}\right) \), \({\textbf{m}} _{2})\) is certain potential.
Definition 4
The vector field \({\textbf{m}}_{1}\) of Bishop model providing the Lorentz force equation
$$ \nabla _{{\vartheta ^{\prime } }} {\mathbf{m}}_{1} = \Gamma \left( {{\mathbf{m}}_{1} } \right) = {\mathbf{G}} \times {\mathbf{m}}_{1} , $$
is named timelike \(T{\textbf{m}}_{1}\)-magnetic curve.
Then, the conformable derivatives are defined by \(T{\textbf{m}}_{1}\mathbf {-}\)magnetic curve
$$\begin{aligned} \Gamma \left( {\textbf{t}}\right)= & {} k_{1}\varsigma ^{1-\theta }{\textbf{m}}_{1} + \mu {\textbf{m}}_{2}, \\ \Gamma \left( {\textbf{m}}_{1}\right)= & {} k_{1}\varsigma ^{1-\theta }\textbf{t,}\\ \Gamma \left( {\textbf{m}}_{2}\right)= & {} \mu \textbf{t,} \end{aligned}$$
where \(\mu =g(\Gamma \left( {\textbf{t}}\right) \), \({\textbf{m}}_{2})\) is certain potential.
Definition 5
The vector field \({\textbf{m}}_{2}\) of Bishop model providing the Lorentz force equation
$$\nabla _{\vartheta {^{\prime }}}{\textbf{m}}_{2}=\Gamma \left( {\textbf{m}} _{2}\right) ={\textbf{G}}\times {\textbf{m}}_{2},$$
is named timelike \(T{\textbf{m}}_{2}\)-magnetic curve.
Thus, the conformable derivatives are defined by \(T{\textbf{m}}_{2}\mathbf {-}\)magnetic curve according to Bishop model
$$\begin{aligned} \Gamma \left( {\textbf{t}}\right)= & {} \gamma {\textbf{m}}_{1} + \varsigma ^{1-\theta }k_{2}{\textbf{m}}_{2}, \\ \Gamma \left( {\textbf{m}}_{1}\right)= & {} \gamma \textbf{t,} \\ \Gamma \left( {\textbf{m}}_{2}\right)= & {} \varsigma ^{1-\theta }k_{2}\textbf{t,} \end{aligned}$$
where \(\gamma =g(\Gamma \left( {\textbf{t}}\right) ,{\textbf{m}}_{1})\) is certain potential.
Then, inner and vector cross of vector fields are given as
$$\begin{aligned} \begin{aligned} -{\textbf{t}}={\textbf{m}}_{1}\times \mathbf {m_{2}},\quad {\textbf{m}}_{1}={\textbf{m}} _{2}\times \textbf{t},\quad {\textbf{m}}_{2}=\textbf{t}\times \mathbf {m_{1}}, \end{aligned} \end{aligned}$$
and
$$\begin{aligned} \langle {\textbf{m}}_{2},\textbf{m}_{2}\rangle =1, \quad \langle \textbf{t,t}\rangle =-1, \quad \langle \mathbf {m_{1},m_{1}}\rangle =1. \end{aligned}$$
Also, normalizing operators of \(\vartheta \) timelike curve is
$$\begin{aligned} \mathbb{N}\mathbb{F}=-{\textbf{I}}_{\theta }^{x}(h_{1}\varsigma ^{1-\theta }k_{1}+h_{2}\varsigma ^{1-\theta }k_{2}){\textbf{t}}+h_{1}{\textbf{n}}_{1}+h_{2} {\textbf{n}}_{2}. \end{aligned}$$
Here magnetic field is \({{\mathbb {F}}}=h_{0}{\textbf{t}}+h_{1}{\textbf{n}}_{1}+h_{2} {\textbf{n}}_{2}\). Recursion functions \({\varvec{R}}{{\mathbb {F}}}\)
$$\begin{aligned} -{{\mathbb {N}}}\left( {\textbf{t}}\times D_{\theta }{{\mathbb {F}}}\right) =\varvec{ R}{{\mathbb {F}}}, \end{aligned}$$
and \({\varvec{R}}^{2}{{\mathbb {F}}}\) are
$$\begin{aligned} -{{\mathbb {N}}}\left( {\textbf{t}}\times D_{\theta }{{\mathcal {R}}}{{\mathbb {F}}}\right) = {\varvec{R}}^{2}{{\mathbb {F}}}. \end{aligned}$$

3 Conformable derivative characterizations of magnetic timelike curves

In this section, definitions conformable fractional derivative and conformable integration of curves are presented. Then, we have given conformable derivatives of normalizing function and \(\Gamma \left( {\textbf{t}} \right) \), \(\Gamma \left( {\textbf{m}}_{1}\right) \), \(\Gamma \left( {\textbf{m}} _{2}\right) \) Lorentz physical energies for magnetic timelike curves.
Definition 6
The definition of conformable derivatives is defined by
$$\begin{aligned} (_{t_{0}}T_{\theta }f)(t) \ =\underset{\varepsilon \rightarrow 0}{lim }\dfrac{f((t-t_{0})^{1-\theta }\varepsilon +t)-f(t)}{\varepsilon }, \end{aligned}$$
where \(f:[t_{0},\infty )\rightarrow R\) of order \(\theta \in (0,1]\) and \(t>0\).
Definition 7
Corresponding conformable integration is characterized as
$$\begin{aligned} _{t_{0}}{\textbf{I}}^{\theta }(f)(t)={\textbf{I}}_{t}^{x}(t^{1-\theta }f)=\int _{t_{0}}^{t}\dfrac{f(t)}{(t-t_{0})^{1-\theta }}dt, \end{aligned}$$
\(\theta \in (0,1)\) and \(x\ge 0\).
Thus, the following conformable derivative equations for \(\left\{ {\textbf{t}}, {\textbf{m}}_{1}, \mathbf {m_{2}}\right\} \) Bishop model are given
$$\begin{aligned} \ D_{\theta }{\textbf{t}}= & {} k_{1}\varsigma ^{1-\theta } {\textbf{m}}_{1}+k_{2}\varsigma ^{1-\theta }{\textbf{m}}_{2}, \nonumber \\ D_{\theta }{\textbf{m}}_{1}= & {} k_{1}\varsigma ^{1-\theta }{\textbf{t}}, \\ D_{\theta }{\textbf{m}}_{2}= & {} k_{2}\varsigma ^{1-\theta }{\textbf{t}}. \nonumber \end{aligned}$$
(4)
  • Conformable derivatives of normalizing function for \(\Gamma \left( {\textbf{t}}\right) \), \(\Gamma \left( {\textbf{m}} _{1}\right) \), \(\Gamma \left( {\textbf{m}}_{2}\right) \) of timelike \(T{\textbf{t}}\)-magnetic curves are obtained as follows
    $$\begin{aligned} D_{\theta }\Gamma \left( {\textbf{t}}\right)= & {} \left( (k_{1}\varsigma ^{1-\theta })^{2}+(k_{2}\varsigma ^{1-\theta })^{2}\right) \textbf{t}+\left( \dfrac{dk_{1}}{d\varsigma }\varsigma ^{2-2\theta } +\varsigma ^{1-2\theta }(1-\theta )k_{1}\right) {\textbf{m}}_{1} \\{} & {} +\left( \varsigma ^{2-2\theta }\dfrac{dk_{2}}{d\varsigma }+(-\theta +1)\varsigma ^{1-2\theta }k_{2}\right) {\textbf{m}}_{2}, \\ D_{\theta }\Gamma \left( {\textbf{m}}_{1}\right)= & {} \left( k_{1}(-\theta +1)\varsigma ^{1-2\theta }+\dfrac{dk_{1}}{d\varsigma }\varsigma ^{2-2\theta }+\varsigma ^{1-\theta }\rho k_{2}\right) {\textbf{t}} \\{} & {} + (k_{1}\varsigma ^{1-\theta })^{2}{\textbf{m}}_{1}+\left( \dfrac{d\rho }{ d\varsigma }\varsigma ^{1-\theta }+k_{1}\varsigma ^{2-2\theta }k_{2}\right) \textbf{ m}_{2}, \\ D_{\theta }\Gamma \left( {\textbf{m}}_{2}\right)= & {} \left( (1-\theta )\varsigma ^{1-2\theta }k_{2}+\varsigma ^{2-2\theta }\dfrac{dk_{2}}{d\varsigma }-\rho \varsigma ^{1-\theta }k_{1}\right) {\textbf{t}} \\{} & {} + \left( \varsigma ^{2-2\theta }k_{1}k_{2}-\varsigma ^{1-\theta }\dfrac{ d\rho }{d\varsigma }\right) {\textbf{m}}_{1}+(\varsigma ^{1-\theta }k_{2})^{2}\textbf{ m}_{2}. \end{aligned}$$
    Then, normalizing functions of \(\Gamma \left( {\textbf{t}}\right) \), \(\Gamma \left( {\textbf{m}}_{1}\right) \), \(\Gamma \left( {\textbf{m}}_{2}\right) \) are
    $$\begin{aligned} {{\mathbb {N}}}\Gamma \left( {\textbf{t}}\right)= & {} -{\textbf{I}}_{\theta }^{x}((k_{1}\varsigma ^{1-\theta })^{2}+(k_{2}\varsigma ^{1-\theta })^{2}){\textbf{t}} \\{} & {} +\varsigma ^{1-\theta }k_{1}{\textbf{m}}_{1}+\varsigma ^{1-\theta }k_{2}{\textbf{m}}_{2}, \\ {{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{1}\right)= & {} -{\textbf{I}}_{\theta }^{x}(\rho k_{2}\varsigma ^{1-\theta }){\textbf{t}}+\rho {\textbf{m}}_{2}\textbf{,} \\ {{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{2}\right)= & {} {\textbf{I}}_{\theta }^{x}(\rho k_{1}\varsigma ^{1-\theta })\mathbf {t-}\rho {\textbf{m}}_{1}, \end{aligned}$$
    and
    $$\begin{aligned} {{\mathbb {N}}}\left( {\textbf{t}}\times D_{\theta }\Gamma \left( {\textbf{t}}\right) \right)= & {} -{\textbf{I}}_{\theta }^{x}\left( -k_{1}\varsigma ^{1-\theta }\left( (1-\theta )k_{2}\varsigma ^{1-2\theta }+\dfrac{dk_{2}}{d\varsigma }\varsigma ^{2-2\theta }\right) \right. \\{} & {} \left. +k_{2}\varsigma ^{1-\theta }\left( \varsigma ^{1-2\theta }k_{1}(1-\theta ) +\varsigma ^{2-2\theta }\dfrac{dk_{1}}{d\varsigma }\right) \right) {\textbf{t}}\\{} & {} -\left( (1-\theta )k_{2}\varsigma ^{1-2\theta }+\dfrac{dk_{2}}{d\varsigma }\varsigma ^{2-2\theta }\right) {\textbf{m}}_{1}\\{} & {} +\left( \varsigma ^{1-2\theta }k_{1}(1-\theta )+\varsigma ^{2-2\theta }\dfrac{dk_{1}}{d\varsigma }\right) {\textbf{m}}_{2}, \\ {{\mathbb {N}}}\left( {\textbf{t}}\times D_{\theta }\Gamma \left( {\textbf{m}} _{1}\right) \right)= & {} {\textbf{I}}_{\theta }^{x}\left( \dfrac{d\rho }{d\varsigma } \varsigma ^{2-2\theta }k_{1}\right) {\textbf{t}}-\left( k_{1}\varsigma ^{2-2\theta }k_{2}+\varsigma ^{1-\theta }\dfrac{d\rho }{d\varsigma }\right) {\textbf{m}} _{1}+(\varsigma ^{1-\theta }k_{1})^{2}{\textbf{m}}_{2}, \\ {{\mathbb {N}}}\left( {\textbf{t}}\times D_{\theta }\Gamma \left( {\textbf{m}} _{2}\right) \right)= & {} {\textbf{I}}_{\theta }^{x}\left( k_{2}\varsigma ^{2-2\theta } \dfrac{d\rho }{d\varsigma }\right) {\textbf{t}}-(\varsigma ^{1-\theta }k_{2})^{2} {\textbf{m}}_{1}+\left( k_{1}k_{2}\varsigma ^{2-2\theta }-\dfrac{d\rho }{d\varsigma } \varsigma ^{1-\theta }\right) {\textbf{m}}_{2}. \end{aligned}$$
    Moreover, we get recursions of \(\Gamma \left( {\textbf{t}}\right) \), \(\Gamma \left( {\textbf{m}}_{1}\right) \), \(\Gamma \left( {\textbf{m}}_{2}\right) \) vector fields
    $$\begin{aligned} {\varvec{R}}\Gamma \left( {\textbf{t}}\right)= & {} -{{\mathbb {N}}}\left( {\textbf{t}} \times D_{\theta }\Gamma \left( {\textbf{t}}\right) \right) \\= & {} {\textbf{I}} _{\theta }^{x}\left( -\varsigma ^{1-\theta }k_{1}\left( (1-\theta )k_{2}\varsigma ^{-2\theta +1}+\dfrac{dk_{2}}{d\varsigma }\varsigma ^{2-2\theta }\right) \right. \\{} & {} \left. +\varsigma ^{-\theta +1}k_{2}\left( k_{1}\varsigma ^{-2\theta +1}(1-\theta )+\dfrac{dk_{1}}{d\varsigma }\varsigma ^{2-2\theta }\right) \right) {\textbf{t}}\\{} & {} +\left( k_{2}(1-\theta )\varsigma ^{1-2\theta }+\dfrac{dk_{2}}{d\varsigma }\varsigma ^{2-2\theta }\right) {\textbf{m}}_{1}-\left( k_{1}(1-\theta )\varsigma ^{1-2\theta }+\varsigma ^{2-2\theta }\dfrac{dk_{1}}{d\varsigma }\right) {\textbf{m}}_{2}, \\ {\varvec{R}}\Gamma \left( {\textbf{m}}_{1}\right)= & {} -{{\mathbb {N}}}\left( \textbf{ t}\times D_{\theta }\Gamma \left( {\textbf{m}}_{1}\right) \right) =-{\textbf{I}} _{\theta }^{x}\left( k_{1}\varsigma ^{2-2\theta }\dfrac{d\rho }{d\varsigma }\right) {\textbf{t}} \\{} & {} +\left( k_{1}k_{2}\varsigma ^{2-2\theta }+\dfrac{d\rho }{d\varsigma }\varsigma ^{1-\theta }\right) {\textbf{m}}_{1}-(\varsigma ^{1-\theta }k_{1})^{2}{\textbf{m}}_{2},\\ {\varvec{R}}\Gamma \left( {\textbf{m}}_{2}\right)= & {} -{{\mathbb {N}}}\left( \textbf{ t}\times D_{\theta }\Gamma \left( {\textbf{m}}_{2}\right) \right) =-{\textbf{I}} _{\theta }^{x}\left( k_{2}\varsigma ^{2-2\theta }\dfrac{d\rho }{d\varsigma }\right) {\textbf{t}} \\{} & {} +(\varsigma ^{1-\theta }k_{2})^{2}{\textbf{m}}_{1}-\left( k_{1}k_{2}\varsigma ^{2-2\theta }-\dfrac{d\rho }{d\varsigma }\varsigma ^{1-\theta }\right) {\textbf{m}} _{2}. \end{aligned}$$
  • Conformable derivatives of normalizing function for \(\Gamma \left( {\textbf{t}}\right) \), \(\Gamma \left( {\textbf{m}} _{1}\right) \), \(\Gamma \left( {\textbf{m}}_{2}\right) \) of timelike \(T{\textbf{m}}_{1}\)-magnetic curves are obtained
    $$\begin{aligned} {{\mathbb {N}}}\Gamma \left( {\textbf{t}}\right)= & {} -{\textbf{I}}_{\theta }^{x}(\varsigma ^{2-2\theta }k_{1}{}^{2}+\varsigma ^{1-\theta }\mu k_{2}) {\textbf{t}} \\{} & {} +\varsigma ^{1-\theta }k_{1}{\textbf{m}}_{1} + \mu {\textbf{m}}_{2}, \\ {{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{1}\right)= & {} d_{0}\textbf{t,} \\ {{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{2}\right)= & {} d_{1}{\textbf{t}}, \end{aligned}$$
    where \(d_{0}\) and \(d_{1}\) are recursion constants and moreover, derivatives of \(\Gamma \left( {\textbf{t}}\right) \), \(\Gamma \left( {\textbf{m}}_{1}\right) , \) \(\Gamma \left( {\textbf{m}}_{2}\right) \) are
    $$\begin{aligned} D_{\theta }\Gamma \left( {\textbf{t}}\right)= & {} ((k_{1}\varsigma ^{1-\theta })^{2}+\varsigma ^{1-\theta }\mu k_{2})\textbf{t}+\left( \varsigma ^{2-2\theta } \dfrac{dk_{1}}{d\varsigma } +(1-\theta )\varsigma ^{1-2\theta }k_{1}\right) {\textbf{m}}_{1}+\varsigma ^{1-\theta }\dfrac{d\mu }{d\varsigma }{\textbf{m}}_{2}, \\ D_{\theta }\Gamma \left( {\textbf{m}}_{1}\right)= & {} \left( (1-\theta )\varsigma ^{1-2\theta }k_{1}+\dfrac{dk_{1}}{d\varsigma }\varsigma ^{2-2\theta }\right) {\textbf{t}} + k_{1}^{2}\varsigma ^{2-2\theta }{\textbf{m}}_{1}+k_{1}k_{2}\varsigma ^{2-2\theta }{\textbf{m}}_{2}, \\ D_{\theta }\Gamma \left( {\textbf{m}}_{2}\right)= & {} \varsigma ^{1-\theta }\dfrac{ d\mu }{d\varsigma }\textbf{t}+\mu \varsigma ^{1-\theta }k_{1}{\textbf{m}} _{1}+k_{2}\varsigma ^{1-\theta }\mu {\textbf{m}}_{2}. \end{aligned}$$
    We have that
    $$\begin{aligned} {{\mathbb {N}}}\left( {\textbf{t}}\times D_{\theta }\Gamma \left( {\textbf{t}}\right) \right)= & {} -{{\textbf{I}}}_{\theta }^{x}\left( -\varsigma ^{2-2\theta }\dfrac{ d\mu }{d\varsigma }+\varsigma ^{1-\theta }k_{2}(\varsigma ^{2-2\theta }\dfrac{dk_{1}}{d\varsigma } +(1-\theta )\varsigma ^{1-2\theta }k_{1})\right) {{\textbf{t}}}\\{} & {} -\varsigma ^{1-\theta }\dfrac{d\mu }{d\varsigma }{\textbf{m}}_{1}+\left( \varsigma ^{2-2\theta }\dfrac{dk_{1}}{d\varsigma }+(1-\theta )\varsigma ^{1-2\theta }k_{1}\right) {\textbf{m}}_{2}, \\ {{\mathbb {N}}}\left( {\textbf{t}}\times D_{\theta }\Gamma \left( {\textbf{m}} _{1}\right) \right)= & {} -d_{2}{{\textbf{t}}}-k_{1}\varsigma ^{-2\theta +2}k_{2}{\textbf{m}}_{1}+(k_{1}\varsigma ^{1-\theta })^{2}{\textbf{m}}_{2}, \\ {{\mathbb {N}}}\left( {\textbf{t}}\times D_{\theta }\Gamma \left( {\textbf{m}} _{2}\right) \right)= & {} -d_{3}{{\textbf{t}}}-\mu \varsigma ^{1-\theta }k_{2}{\textbf{m}}_{1}+\mu k_{1}\varsigma ^{1-\theta }{\textbf{m}}_{2}. \end{aligned}$$
    Thus, we get
    $$\begin{aligned} {\varvec{R}}\Gamma \left( {\textbf{t}}\right)= & {} -{{\mathbb {N}}}\left( {\textbf{t}} \times D_{\theta }\Gamma \left( {\textbf{t}}\right) \right) \\= & {} {{\textbf{I}} }_{\theta }^{x}\left( -\dfrac{d\mu }{d\varsigma }\varsigma ^{2-2\theta }+\varsigma ^{1-\theta }k_{2}\left( \dfrac{dk_{1}}{d\varsigma }\varsigma ^{2-2\theta } +(1-\theta )\varsigma ^{1-2\theta }k_{1}\right) \right) {{\textbf{t}}}\\{} & {} +\varsigma ^{1-\theta }\dfrac{d\mu }{d\varsigma }{\textbf{m}}_{1}-\left( \varsigma ^{2-2\theta }\dfrac{dk_{1}}{d\varsigma }+(1-\theta )\varsigma ^{1-2\theta }k_{1}\right) {\textbf{m}}_{2}, \\ {\varvec{R}}\Gamma \left( {\textbf{m}}_{1}\right)= & {} -{{\mathbb {N}}}\left( \textbf{ t}\times D_{\theta }\Gamma \left( {\textbf{m}}_{1}\right) \right) =d_{2} {{\textbf{t}}}+\varsigma ^{2-2\theta }k_{1}k_{2}{\textbf{m}} _{1}-(\varsigma ^{1-\theta }k_{1})^{2}{\textbf{m}}_{2}, \\ {\varvec{R}}\Gamma \left( {\textbf{m}}_{2}\right)= & {} -{{\mathbb {N}}}\left( \textbf{ t}\times D_{\theta }\Gamma \left( {\textbf{m}}_{2}\right) \right) =d_{3} {{\textbf{t}}}+\mu \varsigma ^{1-\theta }k_{2}{\textbf{m}}_{1}-\mu k_{1}\varsigma ^{1-\theta }{\textbf{m}}_{2}, \end{aligned}$$
    where \(d_{2}\) and \(d_{3}\) are recursion constants.
  • Conformable derivatives of normalizing function for timelike \(T{\textbf{m}}_{2}\)-magnetic curves are obtained
    $$\begin{aligned} D_{\theta }\Gamma \left( {\textbf{t}}\right)= & {} \left( (\varsigma ^{1-\theta }k_{2})^{2}+\gamma \varsigma ^{1-\theta }k_{1}\right) \textbf{t}+\varsigma ^{1-\theta }\dfrac{d\gamma }{d\varsigma }{\textbf{m}}_{1} \\{} & {} +\left( \varsigma ^{2-2\theta }\dfrac{dk_{2}}{d\varsigma }+(1-\theta )\varsigma ^{1-2\theta }k_{2}\right) {\textbf{m}}_{2}, \\ D_{\theta }\Gamma \left( {\textbf{m}}_{1}\right)= & {} \varsigma ^{1-\theta }\dfrac{ d\gamma }{d\varsigma }\textbf{t}+\gamma k_{1}\varsigma ^{1-\theta }{\textbf{m}} _{1}+\gamma k_{2}\varsigma ^{1-\theta }{\textbf{m}}_{2}, \\ D_{\theta }\Gamma \left( {\textbf{m}}_{2}\right)= & {} \left( (1-\theta )\varsigma ^{1-2\theta }k_{2}+\varsigma ^{2-2\theta }\dfrac{dk_{2}}{d\varsigma }\right) {\textbf{t}} \\{} & {} + \varsigma ^{2-2\theta }k_{1}k_{2}{\textbf{m}}_{1}+(\varsigma ^{1-\theta }k_{2})^{2}{\textbf{m}}_{2}. \end{aligned}$$
    Then, normalizing functions of \(\Gamma \left( {\textbf{t}}\right) \), \(\Gamma \left( {\textbf{m}}_{1}\right) \), \(\Gamma \left( {\textbf{m}}_{2}\right) \) are
    $$\begin{aligned} {{\mathbb {N}}}\Gamma \left( {\textbf{t}}\right)= & {} -{\textbf{I}}_{\theta }^{x}(\varsigma ^{2-2\theta }k_{2}^{2}+k_{1}\varsigma ^{1-\theta }\gamma ){\textbf{t}} \\{} & {} +\gamma {\textbf{m}}_{1} + \varsigma ^{-\theta +1}k_{2}{\textbf{m}}_{2}, \\ {{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{1}\right)= & {} d_{4}\textbf{t,} \\ {{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{2}\right)= & {} d_{5}{\textbf{t}}, \end{aligned}$$
    where \(d_{4}\) and \(d_{5}\) are recursion constants and moreover, we give that
    $$\begin{aligned} {{\mathbb {N}}}\left( {\textbf{t}}\times D_{\theta }\Gamma \left( {\textbf{t}}\right) \right)= & {} -{\textbf{I}}_{\theta }^{x}\left( -\varsigma ^{1-\theta }k_{1} \left( \dfrac{dk_{2}}{d\varsigma }\varsigma ^{2-2\theta }+(-\theta +1)\varsigma ^{1-2\theta }k_{2}\right) +k_{2}\varsigma ^{2-2\theta }\dfrac{d\gamma }{d\varsigma }\right) \textbf{t}\\{} & {} -\left( \varsigma ^{2-2\theta }\dfrac{dk_{2}}{d\varsigma }+(1-\theta )\varsigma ^{1-2\theta }k_{2}\right) {{\textbf{m}}_{1}+}\varsigma ^{1-\theta }\dfrac{ d\gamma }{d\varsigma }{{\textbf{m}}_{2},} \\ {{\mathbb {N}}}\left( {\textbf{t}}\times D_{\theta }\Gamma \left( {\textbf{m}} _{1}\right) \right)= & {} -d_{6}\mathbf {t-}\gamma k_{2}\varsigma ^{1-\theta } {\textbf{m}}_{1}-\gamma k_{1}\varsigma ^{1-\theta }{\textbf{m}}_{2}, \\ {{\mathbb {N}}}\left( {\textbf{t}}\times D_{\theta }\Gamma \left( {\textbf{m}} _{2}\right) \right)= & {} -d_{7}\mathbf {t-}(\varsigma ^{1-\theta }k_{2})^{2} {{\textbf{m}}_{1}\mathbf {-}}\varsigma ^{2-2\theta }k_{1}k_{2}\mathbf { {\textbf{m}}_{2}.} \end{aligned}$$
    Recursions for \(\Gamma \left( {\textbf{t}}\right) \), \(\Gamma \left( {\textbf{m}} _{1}\right) \), \(\Gamma \left( {\textbf{m}}_{2}\right) \) are
    $$\begin{aligned} {\varvec{R}}\Gamma \left( {\textbf{t}}\right)= & {} -{{\mathbb {N}}}\left( {\textbf{t}} \times D_{\theta }\Gamma \left( {\textbf{t}}\right) \right) \\= & {} {\textbf{I}} _{\theta }^{x}\left( -\varsigma ^{1-\theta }k_{1}(\dfrac{dk_{2}}{ d\varsigma }\varsigma ^{2-2\theta }+\varsigma ^{1-2\theta }(1-\theta )k_{2}) +k_{2}\varsigma ^{2-2\theta }\dfrac{d\gamma }{d\varsigma }\right) \textbf{t}\\{} & {} +\left( \dfrac{dk_{2}}{d\varsigma }\varsigma ^{2-2\theta }+(1-\theta )\varsigma ^{1-2\theta }k_{2}\right) {{\textbf{m}}_{1}-}\dfrac{d\gamma }{d\varsigma } \varsigma ^{1-\theta }{{\textbf{m}}_{2},} \\ {\varvec{R}}\Gamma \left( {\textbf{m}}_{1}\right)= & {} -{{\mathbb {N}}}\left( \textbf{ t}\times D_{\theta }\Gamma \left( {\textbf{m}}_{1}\right) \right) =d_{6} \mathbf {t+}\gamma k_{2}\varsigma ^{1-\theta }{\textbf{m}}_{1}+\gamma k_{1}\varsigma ^{1-\theta }{\textbf{m}}_{2}, \\ {\varvec{R}}\Gamma \left( {\textbf{m}}_{2}\right)= & {} -{{\mathbb {N}}}\left( \textbf{ t}\times D_{\theta }\Gamma \left( {\textbf{m}}_{2}\right) \right) =d_{7} \mathbf {t+}(\varsigma ^{1-\theta }k_{2})^{2}{{\textbf{m}}_{1}+} \varsigma ^{2-2\theta }k_{1}k_{2}{{\textbf{m}}_{2},} \end{aligned}$$
    where \(d_{6}\) and \(d_{7}\) are recursion constants.

4 Fermi–Walker conformable derivative

In this part, we have computed F–W conformable fractional derivative for some characterization of magnetic timelike curves correlated to a given magnetic field in Minkowski space.
Let \(\rho \) be a unit speed magnetic curve lying on space. Thus, the F–W conformable relation to \(\rho \), \({\widetilde{D}}_{\theta }\) is stated by
$$\begin{aligned} {\widetilde{D}}_{\theta }X=\langle D_{\theta }\rho ,X\rangle D_{\theta } \mathbf {t+}D_{\theta }X\mathbf {-}\langle D_{\theta }{\textbf{t}},X\rangle D_{\theta }\rho , \end{aligned}$$
(5)
where X is a vector field along \(\rho \).

4.1 F–W conformable derivative for normalizing function

  • Conformable derivative of normalizing functions of timelike \(T{\textbf{t}}\)-magnetic curves are given as follows
    $$\begin{aligned} D_{\theta }{{\mathbb {N}}}\Gamma \left( {\textbf{t}}\right)= & {} \left( \dfrac{dk_{1}}{ d\varsigma }\varsigma ^{-2\theta +2}+k_{1}\varsigma ^{1-\theta }{\textbf{I}} _{\theta }^{x}((\varsigma ^{1-\theta }k_{1})^{2}+(\varsigma ^{1-\theta }k_{2})^{2})\right) {\textbf{m}}_{1} \\{} & {} +\left( \varsigma ^{2-2\theta }\dfrac{dk_{2}}{d\varsigma }+k_{2}\varsigma ^{1-\theta }{\textbf{I}}_{\theta }^{x}((\varsigma ^{1-\theta }k_{1}) ^{2}+(\varsigma ^{1-\theta }k_{2})^{2}){\textbf{m}}_{2}, \right. \\ D_{\theta }{{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{1}\right)= & {} -\varsigma ^{1-\theta }k_{1}{\textbf{I}}_{\theta }^{x}(\rho \varsigma ^{1-\theta }k_{2}) {\textbf{m}}_{1}+\left( \dfrac{d\rho }{d\varsigma }\varsigma ^{1-\theta }-\varsigma ^{1-\theta }k_{2}{\textbf{I}}_{\theta }^{x}(k_{2}\rho \varsigma ^{1-\theta })\right) {\textbf{m}}_{2}, \\ D_{\theta }{{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{2}\right)= & {} \left( \varsigma ^{1-\theta }k_{1}{\textbf{I}}_{\theta }^{x}(k_{1}\rho \varsigma ^{1-\theta })-\varsigma ^{1-\theta }\dfrac{d\rho }{d\varsigma }\right) {\textbf{m}} _{1}+\varsigma ^{1-\theta }k_{2}{\textbf{I}}_{\theta }^{x}(k_{1}\rho \varsigma ^{1-\theta }){\textbf{m}}_{2}. \end{aligned}$$
    Moreover, F–W conformable derivative for \({{\mathbb {N}}}\Gamma \left( {\textbf{t}} \right) \), \({{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{1}\right) \), \({{\mathbb {N}}} \Gamma \left( {\textbf{m}}_{2}\right) \) normalizing functions are obtained
    $$\begin{aligned} {\widetilde{D}}_{\theta }{{\mathbb {N}}}\Gamma \left( {\textbf{t}}\right)= & {} -(\varsigma ^{3-3\theta }k_{1}^{2}+\varsigma ^{3-3\theta }k_{2}^{2})\textbf{t}+\left( \dfrac{dk_{1}}{d\varsigma }\varsigma ^{2-2\theta } \right. \\{} & {} +\varsigma ^{1-\theta }k_{1}{\textbf{I}}_{\theta }^{x}((\varsigma ^{1-\theta }k_{1})^{2}+(\varsigma ^{1-\theta }k_{2})^{2})+\varsigma ^{2-2\theta }k_{1}{\textbf{I}}_{\theta }^{x}((\varsigma ^{1-\theta }k_{1} )^{2} \\{} & {} +(k_{2}\varsigma ^{1-\theta })^{2})){\textbf{m}}_{1}+\left( \varsigma ^{2-2\theta }\dfrac{dk_{2}}{d\varsigma }+k_{2}\varsigma ^{1-\theta }\textbf{I }_{\theta }^{x}((\varsigma ^{1-\theta }k_{1})^{2} \right. \\{} & {} +(k_{2}\varsigma ^{1-\theta })^{2})-\varsigma ^{2-2\theta }k_{2} {\textbf{I}}_{\theta }^{x}((\varsigma ^{1-\theta }k_{1}) ^{2}+(\varsigma ^{1-\theta }k_{2})^{2})){\textbf{m}}_{2}, \\ {\widetilde{D}}_{\theta }{{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{1}\right)= & {} -k_{2}\rho \varsigma ^{2-2\theta }{\textbf{t}}+(-\varsigma ^{1-\theta }k_{1} {\textbf{I}}_{\theta }^{x}(k_{2}\rho \varsigma ^{1-\theta }) \\{} & {} +k_{1}\varsigma ^{2-2\theta }{\textbf{I}}_{\theta }^{x}(k_{2}\rho \varsigma ^{1-\theta })){\textbf{m}}_{1}+\left( \dfrac{d\rho }{d\varsigma }\varsigma ^{1-\theta } \right. \\{} & {} \left. \left. -k_{2}\varsigma ^{1-\theta }{\textbf{I}}_{\theta }^{x}(\rho k_{2}\varsigma ^{1-\theta })+k_{2}\varsigma ^{2-2\theta }{\textbf{I}}_{\theta }^{x}(\rho k_{2}\varsigma ^{1-\theta }\right) \right) {\textbf{m}}_{2}, \\ {\widetilde{D}}_{\theta }{{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{2}\right)= & {} k_{1}\rho \varsigma ^{2-2\theta }\textbf{t}-(k_{1}\varsigma ^{1-\theta }{\textbf{I}}_{\theta }^{x}(\rho k_{1}\varsigma ^{1-\theta }) \\{} & {} \left. \left. +\dfrac{d\rho }{d\varsigma }\varsigma ^{1-\theta }+\varsigma ^{2-2\theta }k_{1}{\textbf{I}}_{\theta }^{x}(\rho k_{1}\varsigma ^{1-\theta }\right) \right) {\textbf{m}} _{1} \\{} & {} +(\varsigma ^{2-2\theta }k_{2}{\textbf{I}}_{\theta }^{x}(k_{1}\rho \varsigma ^{1-\theta })+\varsigma ^{1-\theta }k_{2}{\textbf{I}}_{\theta }^{x}(k_{1}\rho \varsigma ^{1-\theta })){\textbf{m}}_{2}. \end{aligned}$$
  • Conformable derivative of normalizing functions of timelike \(T{\textbf{m}}_{1}\)-magnetic curves are given
    $$\begin{aligned} D_{\theta }{{\mathbb {N}}}\Gamma \left( {\textbf{t}}\right)= & {} (\varsigma ^{2-2\theta }\dfrac{dk_{1}}{d\varsigma }-k_{1}\varsigma ^{1-\theta }{\textbf{I}}_{\theta }^{x}((k_{1}\varsigma ^{1-\theta })^{2} \\{} & {} +\mu k_{2}\varsigma ^{1-\theta })+\varsigma ^{1-2\theta }(1-\theta )k_{1}){\textbf{m}}_{1} \\{} & {} +(-k_{2}\varsigma ^{1-\theta }{\textbf{I}}_{\theta }^{x}((k_{1}\varsigma ^{1-\theta })^{2}+\mu k_{2}\varsigma ^{1-\theta })+\dfrac{d\mu }{ d\varsigma }\varsigma ^{1-\theta }){\textbf{m}}_{2}, \\ D_{\theta }{{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{1}\right)= & {} k_{1}d_{0}\varsigma ^{1-\theta }{\textbf{m}}_{1}+k_{2}d_{0}\varsigma ^{1-\theta }{\textbf{m}}_{2}, \\ D_{\theta }{{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{2}\right)= & {} k_{1}d_{1}\varsigma ^{1-\theta }{\textbf{m}}_{1}+k_{2}d_{1}\varsigma ^{1-\theta }{\textbf{m}}_{2}. \end{aligned}$$
    F–W conformable derivative for \({{\mathbb {N}}}\Gamma \left( {\textbf{t}}\right) \), \({{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{1}\right) \), \({{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{2}\right) \) normalizing functions are obtained
    $$\begin{aligned} {\widetilde{D}}_{\theta }{{\mathbb {N}}}\Gamma \left( {\textbf{t}}\right)= & {} (-\varsigma ^{3-3\theta }k_{1}^{2}-k_{2}\mu \varsigma ^{2-2\theta })\textbf{t} \\{} & {} +\left( \dfrac{dk_{1}}{d\varsigma }\varsigma ^{2-2\theta }+\varsigma ^{1-\theta }k_{1}{\textbf{I}}_{\theta }^{x}((k_{1}\varsigma ^{1-\theta }) ^{2}+k_{2}\mu \varsigma ^{1-\theta })+\varsigma ^{1-2\theta }(1-\theta )k_{1}\right. \\{} & {} +\varsigma ^{2-2\theta }k_{1}{\textbf{I}}_{\theta }^{x}((k_{1}\varsigma ^{1-\theta })^{2}+k_{2}\mu \varsigma ^{1-\theta })){\textbf{m}} _{1}+(\varsigma ^{1-\theta }k_{2}{\textbf{I}}_{\theta }^{x}((k_{1}\varsigma ^{1-\theta })^{2} \\{} & {} +\mu k_{2}\varsigma ^{1-\theta })+\dfrac{d\mu }{d\varsigma }\varsigma ^{1-\theta }+k_{2}\varsigma ^{2-2\theta }{\textbf{I}}_{\theta }^{x}((k_{1}\varsigma ^{1-\theta })^{2}+\mu k_{2}\varsigma ^{1-\theta })){\textbf{m}}_{2}, \\ {\widetilde{D}}_{\theta }{{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{1}\right)= & {} (k_{1}d_{0}\varsigma ^{1-\theta }-k_{1}d_{0}\varsigma ^{2-2\theta })\textbf{ m}_{1}+(k_{2}d_{0}\varsigma ^{1-\theta }-k_{1}d_{0}\varsigma ^{2-2\theta }) {\textbf{m}}_{2}, \\ {\widetilde{D}}_{\theta }{{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{2}\right)= & {} (k_{1}d_{1}\varsigma ^{1-\theta }-k_{1}d_{1}\varsigma ^{2-2\theta })\textbf{ m}_{1}+(k_{2}d_{1}\varsigma ^{1-\theta }-k_{1}d_{1}\varsigma ^{2-2\theta }) {\textbf{m}}_{2}. \end{aligned}$$
  • Conformable derivative of normalizing functions of timelike \(T{\textbf{m}}_{2}\)-magnetic curves are obtained
    $$\begin{aligned} D_{\theta }{{\mathbb {N}}}\Gamma \left( {\textbf{t}}\right)= & {} \left( \dfrac{d\gamma }{ d\varsigma }\varsigma ^{1-\theta }-k_{1}\varsigma ^{1-\theta }{\textbf{I}} _{\theta }^{x}(\gamma k_{1}\varsigma ^{1-\theta } \right. \\{} & {} \left. +(k_{2}\varsigma ^{1-\theta })^{2})\right) {\textbf{m}}_{1}+\left( -k_{2}\varsigma ^{1-\theta }{\textbf{I}}_{\theta }^{x}(\gamma k_{1}\varsigma ^{1-\theta }\right. \\{} & {} \left. +(k_{2}\varsigma ^{1-\theta })^{2})+\varsigma ^{1-2\theta }(1-\theta )k_{2}+\varsigma ^{2-2\theta }\dfrac{dk_{2}}{d\varsigma }\right) {\textbf{m}}_{2}, \\ D_{\theta }{{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{1}\right)= & {} k_{1}d_{4}\varsigma ^{1-\theta }{\textbf{m}}_{1}+k_{2}d_{4}\varsigma ^{1-\theta }{\textbf{m}}_{2}, \\ D_{\theta }{{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{2}\right)= & {} k_{1}d_{5}\varsigma ^{1-\theta }{\textbf{m}}_{1}+k_{2}d_{5}\varsigma ^{1-\theta }{\textbf{m}}_{2}. \end{aligned}$$
    F–W conformable derivative for \({{\mathbb {N}}}\Gamma \left( {\textbf{t}}\right) \), \({{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{1}\right) \), \({{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{2}\right) \) normalizing functions are obtained
    $$\begin{aligned} {\widetilde{D}}_{\theta }{{\mathbb {N}}}\Gamma \left( {\textbf{t}}\right)= & {} (k_{2}^{2}\varsigma ^{3-3\theta }+k_{1}\gamma \varsigma ^{2-2\theta }) {\textbf{t}}+\left( \dfrac{d\gamma }{d\varsigma }\varsigma ^{1-\theta }+k_{1}\varsigma ^{1-\theta }{\textbf{I}}_{\theta }^{x}(\gamma k_{1}\varsigma ^{1-\theta }+(k_{2}\varsigma ^{1-\theta })^{2}\right) \\{} & {} +k_{1}\varsigma ^{2-2\theta }{\textbf{I}}_{\theta }^{x}(k_{1}\gamma \varsigma ^{1-\theta }+(\varsigma ^{1-\theta }k_{2})^{2}){\textbf{m}}_{1}+(-k_{2} \varsigma ^{1-\theta }{\textbf{I}}_{\theta }^{x}(\gamma k_{1}\varsigma ^{1-\theta }+(k_{2}\varsigma ^{1-\theta })^{2}) \\{} & {} +\varsigma ^{1-2\theta }(1-\theta )k_{2}+\varsigma ^{2-2\theta }\dfrac{dk_{2} }{d\varsigma }+k_{2}\varsigma ^{2-2\theta }{\textbf{I}}_{\theta }^{x}(\varsigma ^{2-2\theta }k_{2}^{2}+k_{1}\gamma \varsigma ^{1-\theta })) {\textbf{m}}_{2}, \\ {\widetilde{D}}_{\theta }{{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{1}\right)= & {} (k_{1}d_{4}\varsigma ^{1-\theta }-k_{1}d_{4}\varsigma ^{2-2\theta })\textbf{ m}_{1}+(k_{2}d_{4}\varsigma ^{1-\theta }-k_{1}d_{4}\varsigma ^{2-2\theta }) {\textbf{m}}_{2}, \\ {\widetilde{D}}_{\theta }{{\mathbb {N}}}\Gamma \left( {\textbf{m}}_{2}\right)= & {} (k_{1}d_{5}\varsigma ^{1-\theta }-k_{1}d_{5}\varsigma ^{2-2\theta })\textbf{ m}_{1}+(k_{2}d_{5}\varsigma ^{1-\theta }-k_{1}d_{5}\varsigma ^{2-2\theta }) {\textbf{m}}_{2}. \end{aligned}$$

4.2 F–W conformable derivative for recursion function

  • Recursion functions of \(\Gamma \left( {\textbf{t}}\right) ,\Gamma \left( {\textbf{m}}_{1}\right) ,\Gamma \left( {\textbf{m}}_{2}\right) \) of timelike \(T{\textbf{t}}\)-magnetic curves are given
    $$\begin{aligned} {\varvec{R}}\Gamma \left( {\textbf{t}}\right)= & {} -{{\mathbb {N}}}\left( {\textbf{t}} \times D_{\theta }\Gamma \left( {\textbf{t}}\right) \right) \\= & {} {\textbf{I}} _{\theta }^{x}\left( -\varsigma ^{1-\theta }k_{1}\left( (1-\theta )k_{2}\varsigma ^{-2\theta +1}+\dfrac{dk_{2}}{d\varsigma }\varsigma ^{2-2\theta }\right) +\varsigma ^{-\theta +1}k_{2}\left( k_{1}\varsigma ^{-2\theta +1}\right. \right. \\{} & {} \left. \left. (1-\theta )+\dfrac{dk_{1}}{d\varsigma }\varsigma ^{2-2\theta }\right) \right) {\textbf{t}} +\left( k_{2}(1-\theta )\varsigma ^{1-2\theta }+\dfrac{dk_{2}}{d\varsigma } \varsigma ^{2-2\theta }\right) {\textbf{m}}_{1}\\{} & {} -\left( k_{1}(1-\theta )\varsigma ^{1-2\theta }+\varsigma ^{2-2\theta }\dfrac{dk_{1}}{d\varsigma }\right) {\textbf{m}} _{2}, \\ {\varvec{R}}\Gamma \left( {\textbf{m}}_{1}\right)= & {} -{{\mathbb {N}}}\left( \textbf{ t}\times D_{\theta }\Gamma \left( {\textbf{m}}_{1}\right) \right) \\= & {} -{\textbf{I}} _{\theta }^{x}\left( k_{1}\varsigma ^{2-2\theta }\dfrac{d\rho }{d\varsigma }\right) {\textbf{t}}+\left( k_{1}k_{2}\varsigma ^{2-2\theta }+\dfrac{d\rho }{d\varsigma } \varsigma ^{1-\theta }\right) {\textbf{m}}_{1}-(\varsigma ^{1-\theta }k_{1})^{2} {\textbf{m}}_{2}, \\ {\varvec{R}}\Gamma \left( {\textbf{m}}_{2}\right)= & {} -{{\mathbb {N}}}\left( \textbf{ t}\times D_{\theta }\Gamma \left( {\textbf{m}}_{2}\right) \right) \\= & {} -{\textbf{I}} _{\theta }^{x}\left( k_{2}\varsigma ^{2-2\theta }\dfrac{d\rho }{d\varsigma }\right) {\textbf{t}}+(\varsigma ^{1-\theta }k_{2})^{2}{\textbf{m}}_{1}-\left( k_{1}k_{2} \varsigma ^{2-2\theta }-\dfrac{d\rho }{d\varsigma }\varsigma ^{1-\theta }\right) {\textbf{m}}_{2}. \end{aligned}$$
    F–W conformable derivative for \({\varvec{R}}\Gamma \left( {\textbf{t}} \right) \), \({\varvec{R}}\Gamma \left( {\textbf{m}}_{1}\right) \), \( {\varvec{R}}\Gamma \left( {\textbf{m}}_{2}\right) \) recursion functions are obtained
    $$\begin{aligned} {\widetilde{D}}_{\theta }{\varvec{R}}\Gamma \left( {\textbf{t}}\right)= & {} \left( -\varsigma ^{2-2\theta }k_{1}{\textbf{I}}_{\theta }^{x}\left( -\varsigma ^{1-\theta }k_{1}\left( (1-\theta )k_{2}\varsigma ^{-2\theta +1}+\dfrac{dk_{2}}{ d\varsigma }\varsigma ^{2-2\theta }\right) \right. \right. \\{} & {} +\varsigma ^{-\theta +1}k_{2}\left( k_{1}\varsigma ^{-2\theta +1}(1-\theta )+\dfrac{dk_{1}}{d\varsigma }\varsigma ^{2-2\theta }\right) +\varsigma ^{-\theta +1}\dfrac{d}{d\varsigma }(k_{2}(1-\theta )\varsigma ^{1-2\theta }\\{} & {} \left. \left. +\dfrac{dk_{2}}{d\varsigma }\varsigma ^{2-2\theta }\right) \right) {{\textbf{m}}_{1}} +\left( -\varsigma ^{2-2\theta }k_{2}{\textbf{I}}_{\theta }^{x}\left( -\varsigma ^{1-\theta }k_{1}\left( (1-\theta )k_{2}\varsigma ^{-2\theta +1}+\dfrac{dk_{2}}{ d\varsigma }\varsigma ^{2-2\theta }\right) \right. \right. \\{} & {} +\varsigma ^{-\theta +1}k_{2}\left( k_{1}\varsigma ^{-2\theta +1}(1-\theta )+\dfrac{dk_{1}}{d\varsigma }\varsigma ^{2-2\theta }\right) -\varsigma ^{-\theta +1}\dfrac{d}{d\varsigma }(k_{1}(1-\theta )\varsigma ^{1-2\theta } \\{} & {} +\varsigma ^{2-2\theta }\dfrac{dk_{1}}{d\varsigma })){{\textbf{m}}_{2}} +\left( -\varsigma ^{2-2\theta }k_{1}\left( \dfrac{dk_{2}}{d\varsigma }\varsigma ^{2-2\theta }\right) +\varsigma ^{2-2\theta }k_{2}\left( \varsigma ^{2-2\theta } \dfrac{dk_{1}}{d\varsigma }\right) \right. \\{} & {} -\varsigma ^{1-\theta }k_{1}\left( (1-\theta )k_{2}\varsigma ^{-2\theta +1}+\dfrac{ dk_{2}}{d\varsigma }\varsigma ^{2-2\theta }\right) +\varsigma ^{-\theta +1}k_{2} \left( k_{1}\varsigma ^{-2\theta +1}(1 \right. \\{} & {} \left. -\theta )+\dfrac{dk_{1}}{d\varsigma }\varsigma ^{2-2\theta }\right) + \varsigma ^{-\theta +1}k_{1}\left( k_{2}(1-\theta )\varsigma ^{1-2\theta }+\dfrac{ dk_{2}}{d\varsigma }\varsigma ^{2-2\theta }\right) \\{} & {} \left. -\varsigma ^{-\theta +1}k_{2}\left( k_{1}(1-\theta )\varsigma ^{1-2\theta }+\varsigma ^{2-2\theta }\dfrac{dk_{1}}{d\varsigma }\right) \right) \textbf{t}, \\ {\widetilde{D}}_{\theta }{\varvec{R}}\Gamma \left( {\textbf{m}}_{1}\right)= & {} \varsigma ^{-\theta +1}k_{2}\left( k_{1}\varsigma ^{2-2\theta }\dfrac{d\rho }{ d\varsigma }\right) \textbf{t}+\left( \varsigma ^{2-2\theta }k_{1}{\textbf{I}}_{\theta }^{x}\left( k_{1}\varsigma ^{2-2\theta }\dfrac{d\rho }{d\varsigma }\right) \right. \\{} & {} \left. +\varsigma ^{-\theta +1}\dfrac{d}{d\varsigma }\left( k_{1}k_{2}\varsigma ^{2-2\theta }+\dfrac{d\rho }{d\varsigma }\varsigma ^{1-\theta }\right) -\varsigma ^{1-\theta }k_{1}{\textbf{I}}_{\theta }^{x}\left( k_{1}\varsigma ^{2-2\theta }\dfrac{ d\rho }{d\varsigma }\right) \right) {{\textbf{m}}_{1}} \\{} & {} +\left( \varsigma ^{2-2\theta }k_{2}{\textbf{I}}_{\theta }^{x}\left( k_{1}\varsigma ^{2-2\theta }\dfrac{d\rho }{d\varsigma }\right) -\varsigma ^{-\theta +1}\dfrac{d}{ d\varsigma }(\varsigma ^{1-\theta }k_{1})^{2}-\varsigma ^{1-\theta }k_{2} {\textbf{I}}_{\theta }^{x}\left( k_{1}\varsigma ^{2-2\theta }\dfrac{d\rho }{ d\varsigma }\right) \right) {{\textbf{m}}_{2},} \\ {\widetilde{D}}_{\theta }{\varvec{R}}\Gamma \left( {\textbf{m}}_{2}\right)= & {} -k_{2}\varsigma ^{2-2\theta }\left( \varsigma ^{1-\theta }\dfrac{d\rho }{ d\varsigma }\right) \textbf{t}+\left( k_{1}\varsigma ^{2-2\theta }{\textbf{I}}_{\theta }^{x}\left( k_{2}\varsigma ^{2-2\theta }\dfrac{d\rho }{d\varsigma }\right) \right. \\{} & {} \left. -\varsigma ^{-\theta +1}k_{1}{\textbf{I}}_{\theta }^{x}\left( k_{2}\varsigma ^{2-2\theta }\dfrac{d\rho }{d\varsigma }\right) +\varsigma ^{-\theta +1}\dfrac{d}{ d\varsigma }(\varsigma ^{1-\theta }k_{2})^{2}\right) {{\textbf{m}}_{1}} +\left( k_{2}\varsigma ^{2-2\theta }{\textbf{I}}_{\theta }^{x}\left( k_{2}\varsigma ^{2-2\theta }\dfrac{d\rho }{d\varsigma }\right) \right. \\{} & {} \left. -\varsigma ^{-\theta +1}k_{2}{\textbf{I}}_{\theta }^{x}\left( k_{2}\varsigma ^{2-2\theta }\dfrac{d\rho }{d\varsigma }\right) -\varsigma ^{-\theta +1}\dfrac{d}{ d\varsigma }\left( k_{1}k_{2}\varsigma ^{2-2\theta }-\dfrac{d\rho }{d\varsigma } \varsigma ^{1-\theta }\right) \right) {{\textbf{m}}_{2}.} \end{aligned}$$
  • Recursion functions of \(\Gamma \left( {\textbf{t}}\right) ,\Gamma \left( {\textbf{m}}_{1}\right) ,\Gamma \left( {\textbf{m}}_{2}\right) \) of timelike \(T{\textbf{m}} _{1}\)-magnetic curves are presented
    $$\begin{aligned} {\varvec{R}}\Gamma \left( {\textbf{t}}\right)= & {} -{{\mathbb {N}}}\left( {\textbf{t}} \times D_{\theta }\Gamma \left( {\textbf{t}}\right) \right) \\= & {} {{\textbf{I}} }_{\theta }^{x}\left( -\dfrac{d\mu }{d\varsigma }\varsigma ^{2-2\theta }+k_{2}\varsigma ^{1-\theta }\left( \dfrac{dk_{1}}{d\varsigma }\varsigma ^{2-2\theta } \right. \right. \\{} & {} \left. \left. +(1-\theta )\varsigma ^{1-2\theta }k_{1}\right) \right) {{\textbf{t}}}+\varsigma ^{1-\theta }\dfrac{d\mu }{d\varsigma }{\textbf{m}}_{1}-\left( \dfrac{dk_{1} }{d\varsigma }\varsigma ^{2-2\theta }+\varsigma ^{1-2\theta }(1-\theta )k_{1}\right) {\textbf{m}}_{2}, \\ {\varvec{R}}\Gamma \left( {\textbf{m}}_{1}\right)= & {} -{{\mathbb {N}}}\left( \textbf{ t}\times D_{\theta }\Gamma \left( {\textbf{m}}_{1}\right) \right) =d_{2} {{\textbf{t}}}+\varsigma ^{2-2\theta }k_{1}k_{2}{\textbf{m}} _{1}-(\varsigma ^{1-\theta }k_{1})^{2}{\textbf{m}}_{2}, \\ {\varvec{R}}\Gamma \left( {\textbf{m}}_{2}\right)= & {} -{{\mathbb {N}}}\left( \textbf{ t}\times D_{\theta }\Gamma \left( {\textbf{m}}_{2}\right) \right) =d_{3} {{\textbf{t}}}+\mu \varsigma ^{1-\theta }k_{2}{\textbf{m}}_{1}-\mu k_{1}\varsigma ^{1-\theta }{\textbf{m}}_{2}. \end{aligned}$$
    F–W conformable derivative for \({\varvec{R}}\Gamma \left( {\textbf{t}} \right) \), \({\varvec{R}}\Gamma \left( {\textbf{m}}_{1}\right) \), \( {\varvec{R}}\Gamma \left( {\textbf{m}}_{2}\right) \) recursion functions are obtained
    $$\begin{aligned} {\widetilde{D}}_{\theta }{\varvec{R}}\Gamma \left( {\textbf{t}}\right)= & {} \left( \left( - \dfrac{d\mu }{d\varsigma }\varsigma ^{2-2\theta }+\varsigma ^{1-\theta }k_{2} \left( \dfrac{dk_{1}}{d\varsigma }\varsigma ^{2-2\theta }+(1-\theta )\varsigma ^{1-2\theta }k_{1}\right) \right. \right. \\{} & {} +\varsigma ^{2-2\theta }\dfrac{d\mu }{d\varsigma }k_{1}-\varsigma ^{1-\theta }k_{2}\left( \varsigma ^{2-2\theta }\dfrac{dk_{1}}{d\varsigma }+(1-\theta )\varsigma ^{1-2\theta }k_{1}\right) -\varsigma ^{2-2\theta }k_{1}\varsigma ^{1-\theta }\dfrac{d\mu }{d\varsigma } \\{} & {} \left. +\varsigma ^{2-2\theta }k_{2}\left( \varsigma ^{2-2\theta }\dfrac{dk_{1}}{ d\varsigma }+(1-\theta )\varsigma ^{1-2\theta }k_{1}\right) \right) {{\textbf{t}}} +\left( \varsigma ^{1-\theta }k_{1}{{\textbf{I}}}_{\theta }^{x}\left( -\dfrac{d\mu }{d\varsigma }\varsigma ^{2-2\theta } \right. \right. \\{} & {} \left. +\varsigma ^{1-\theta }k_{2}\left( \dfrac{dk_{1}}{d\varsigma }\varsigma ^{2-2\theta }+(1-\theta )\varsigma ^{1-2\theta }k_{1}\right) \right) +\varsigma ^{1-\theta }\dfrac{d}{d\varsigma }\left( \varsigma ^{1-\theta }\dfrac{d\mu }{d\varsigma }\right) \\{} & {} \left. -\varsigma ^{2-2\theta }k_{1}{{\textbf{I}}}_{\theta }^{x}\left( -\dfrac{d\mu }{d\varsigma }\varsigma ^{2-2\theta }+\varsigma ^{1-\theta }k_{2}\left( \dfrac{dk_{1}}{d\varsigma }\varsigma ^{2-2\theta }+(1-\theta )\varsigma ^{1-2\theta }k_{1}\right) \right) \right) {\textbf{m}}_{1} \\{} & {} +\left( \varsigma ^{1-\theta }k_{2}{{\textbf{I}}}_{\theta }^{x}\left( -\dfrac{d\mu }{d\varsigma }\varsigma ^{2-2\theta }+\varsigma ^{1-\theta }k_{2}\left( \dfrac{dk_{1}}{d\varsigma }\varsigma ^{2-2\theta }+(1-\theta )\varsigma ^{1-2\theta }k_{1}\right) \right) \right. \\{} & {} -\varsigma ^{1-\theta }\dfrac{d}{d\varsigma }\left( \varsigma ^{2-2\theta }\dfrac{dk_{1}}{d\varsigma }+(1-\theta )\varsigma ^{1-2\theta }k_{1}\right) -\varsigma ^{2-2\theta }k_{2}{{\textbf{I}}}_{\theta }^{x}\left( - \dfrac{d\mu }{d\varsigma }\varsigma ^{2-2\theta } \right. \\{} & {} \left. \left. +\varsigma ^{1-\theta }k_{2}\left( \dfrac{dk_{1}}{d\varsigma }\varsigma ^{2-2\theta }+(1-\theta )\varsigma ^{1-2\theta }k_{1}\right) \right) \right) {\textbf{m}}_{2}, \\ {\widetilde{D}}_{\theta }{\varvec{R}}\Gamma \left( {\textbf{m}}_{1}\right)= & {} \left( k_{1}d_{2}\varsigma ^{1-\theta }+\varsigma ^{1-\theta }\dfrac{d}{ d\varsigma }(\varsigma ^{2-2\theta }k_{1}k_{2})-\varsigma ^{2-2\theta }d_{2}k_{1}\right) {\textbf{m}}_{1} \\{} & {} +\left( -\varsigma ^{2-2\theta }d_{2}k_{2}+k_{2}d_{2}\varsigma ^{1-\theta }-\varsigma ^{1-\theta }\dfrac{d}{d\varsigma }(\varsigma ^{1-\theta }k_{1})^{2}\right) {\textbf{m}}_{2}, \\ {\widetilde{D}}_{\theta }{\varvec{R}}\Gamma \left( {\textbf{m}}_{2}\right)= & {} \left( k_{1}d_{3}\varsigma ^{1-\theta }+\varsigma ^{1-\theta }\dfrac{d}{ d\varsigma }(\mu \varsigma ^{1-\theta }k_{2})-\varsigma ^{2-2\theta }d_{3}k_{1}\right) {\textbf{m}}_{1} \\{} & {} \left( k_{2}d_{3}\varsigma ^{1-\theta }-\varsigma ^{2-2\theta }d_{3}k_{2}-\varsigma ^{1-\theta }\dfrac{d}{d\varsigma }(\mu k_{1}\varsigma ^{1-\theta })\right) {\textbf{m}}_{2}. \end{aligned}$$
  • Recursion functions of \(\Gamma \left( {\textbf{t}}\right) ,\Gamma \left( {\textbf{m}}_{1}\right) ,\Gamma \left( {\textbf{m}}_{2}\right) \) of timelike \(T{\textbf{m}} _{2}\)-magnetic curves are presented
    $$\begin{aligned} {\varvec{R}}\Gamma \left( {\textbf{t}}\right)= & {} -{{\mathbb {N}}}\left( {\textbf{t}} \times D_{\theta }\Gamma \left( {\textbf{t}}\right) \right) \\= & {} {\textbf{I}} _{\theta }^{x}\left( -\varsigma ^{1-\theta }k_{1}\left( \dfrac{dk_{2}}{ d\varsigma }\varsigma ^{2-2\theta }+\varsigma ^{1-2\theta }(1-\theta )k_{2}\right) \right. \\{} & {} \left. +k_{2}\varsigma ^{2-2\theta }\dfrac{d\gamma }{d\varsigma }\right) \textbf{t}+ \left( \dfrac{dk_{2}}{d\varsigma }\varsigma ^{2-2\theta }+(1-\theta )\varsigma ^{1-2\theta }k_{2}\right) {{\textbf{m}}_{1}-}\dfrac{d\gamma }{d\varsigma } \varsigma ^{1-\theta }{{\textbf{m}}_{2},} \\ {\varvec{R}}\Gamma \left( {\textbf{m}}_{1}\right)= & {} -{{\mathbb {N}}}\left( \textbf{ t}\times D_{\theta }\Gamma \left( {\textbf{m}}_{1}\right) \right) =d_{6} \textbf{t}+\gamma k_{2}\varsigma ^{1-\theta }{\textbf{m}}_{1}+\gamma k_{1}\varsigma ^{1-\theta }{\textbf{m}}_{2}, \\ {\varvec{R}}\Gamma \left( {\textbf{m}}_{2}\right)= & {} -{{\mathbb {N}}}\left( \textbf{ t}\times D_{\theta }\Gamma \left( {\textbf{m}}_{2}\right) \right) =d_{7} \textbf{t}+(\varsigma ^{1-\theta }k_{2})^{2}{{\textbf{m}}_{1}+} \varsigma ^{2-2\theta }k_{1}k_{2}{{\textbf{m}}_{2}.} \end{aligned}$$
    F–W conformable derivative for \({\varvec{R}}\Gamma \left( {\textbf{t}} \right) \), \({\varvec{R}}\Gamma \left( {\textbf{m}}_{1}\right) \), \( {\varvec{R}}\Gamma \left( {\textbf{m}}_{2}\right) \) recursion functions are given
    $$\begin{aligned} {\widetilde{D}}_{\theta }{\varvec{R}}\Gamma \left( {\textbf{t}}\right)= & {} \left( \left( -\varsigma ^{1-\theta }k_{1}(\varsigma ^{2-2\theta } \dfrac{dk_{2}}{d\varsigma }+(-\theta +1)\varsigma ^{1-2\theta }k_{2})+k_{2}\varsigma ^{2-2\theta }\dfrac{d\gamma }{d\varsigma }\right) \right. \\{} & {} +k_{1}\varsigma ^{1-\theta }\left( \dfrac{dk_{2}}{d\varsigma } \varsigma ^{2-2\theta }+(1-\theta )\varsigma ^{1-2\theta }k_{2}\right) -k_{2}\varsigma ^{2-2\theta }\dfrac{d\gamma }{d\varsigma } \\{} & {} -\varsigma ^{2-2\theta }k_{1}\left( \varsigma ^{2-2\theta } \dfrac{dk_{2}}{d\varsigma }+(1-\theta )\varsigma ^{1-2\theta }k_{2}\right) +\varsigma ^{3-3\theta }k_{2}\dfrac{d\gamma }{d\varsigma }){\textbf{t}}\\{} & {} +\left( \varsigma ^{1-\theta }k_{1}{\textbf{I}}_{\theta }^{x}\left( -\varsigma ^{1-\theta }k_{1}\left( \varsigma ^{2-2\theta }\dfrac{dk_{2}}{d\varsigma } +(1-\theta )\varsigma ^{1-2\theta }k_{2}\right) +k_{2}\varsigma ^{2-2\theta }\dfrac{ d\gamma }{d\varsigma }\right) \right. \\{} & {} +\varsigma ^{1-\theta }\dfrac{d}{d\varsigma }\left( \dfrac{dk_{2} }{d\varsigma }\varsigma ^{2-2\theta }+(1-\theta )\varsigma ^{1-2\theta }k_{2}\right) -\varsigma ^{2-2\theta }k_{1}{\textbf{I}}_{\theta }^{x}\left( -\varsigma ^{1-\theta }k_{1}\left( \varsigma ^{2-2\theta }\dfrac{dk_{2}}{ d\varsigma } \right. \right. \\{} & {} \left. \left. \left. +\varsigma ^{1-2\theta }(1-\theta )k_{2}\right) +k_{2}\varsigma ^{2-2\theta }\dfrac{ d\gamma }{d\varsigma }\right) \right) {{\textbf{m}}_{1}}+\left( \varsigma ^{1-\theta }k_{2} {\textbf{I}}_{\theta }^{x}\left( -\varsigma ^{1-\theta }k_{1}\left( \varsigma ^{2-2\theta }\dfrac{dk_{2}}{d\varsigma } \right. \right. \right. \\{} & {} \left. \left. +\varsigma ^{1-2\theta }(1-\theta )k_{2}\right) +k_{2}\varsigma ^{2-2\theta }\dfrac{ d\gamma }{d\varsigma }\right) -\varsigma ^{1-\theta }\dfrac{d}{d\varsigma }\left( \dfrac{ d\gamma }{d\varsigma }\varsigma ^{1-\theta }\right) \\{} & {} \left. \left. -\varsigma ^{2-2\theta }k_{2}{\textbf{I}}_{\theta }^{x}(-\varsigma ^{1-\theta }k_{1}\left( \dfrac{dk_{2}}{d\varsigma }\varsigma ^{2-2\theta }+\varsigma ^{1-2\theta }(1-\theta )k_{2}\right) +\varsigma ^{2-2\theta }\dfrac{ d\gamma }{d\varsigma }k_{2}\right) \right) {\textbf{m}}_{2}, \\ {\widetilde{D}}_{\theta }{\varvec{R}}\Gamma \left( {\textbf{m}}_{1}\right)= & {} \left( k_{1}d_{6}\varsigma ^{1-\theta } + \varsigma ^{1-\theta }\dfrac{d}{ d\varsigma }(\gamma k_{2}\varsigma ^{1-\theta })\mathbf {-}\varsigma ^{2-2\theta }k_{1}d_{6}\right) {\textbf{m}}_{1} \\{} & {} +\left( k_{2}d_{6}\varsigma ^{1-\theta }+\varsigma ^{1-\theta }\dfrac{d}{ d\varsigma }(\gamma k_{1}\varsigma ^{1-\theta })-k_{2}d_{6}\varsigma ^{2-2\theta }\right) {\textbf{m}}_{2}, \\ {\widetilde{D}}_{\theta }{\varvec{R}}\Gamma \left( {\textbf{m}}_{2}\right)= & {} \left( k_{1}d_{7}\varsigma ^{1-\theta } + \varsigma ^{1-\theta }\dfrac{d}{ d\varsigma }(\varsigma ^{1-\theta }k_{2})^{2}\mathbf {-}\varsigma ^{2-2\theta }d_{7}k_{1}\right) {\textbf{m}}_{1} \\{} & {} +\left( k_{2}d_{7}\varsigma ^{1-\theta } + \varsigma ^{1-\theta }\dfrac{d}{ d\varsigma }(\varsigma ^{2-2\theta }k_{1}k_{2})-d_{7}k_{2}\varsigma ^{2-2\theta }\right) {\textbf{m}}_{2}. \end{aligned}$$
Numerically the effects of conformable axial heat conduction manipulation of fluids at the conformable microscale, typically in channels or chambers with dimensions on the order of solid micrometers with simultaneously modeling laminar flow for \({\varvec{R}}\Gamma \left( {\textbf{t}}\right) \), \({\varvec{R}}\Gamma \left( {\textbf{m}}_{1}\right) \), \( {\varvec{R}}\Gamma \left( {\textbf{m}}_{2}\right) \) Figs. 1, 2 and 3.

5 Conclusions

In this section, magnetic timelike curves are examined using Bishop model in Minkowski space. First, the conformable derivatives of \(\Gamma \left( {\textbf{t}}\right) \), \(\Gamma \left( {\textbf{m}}_{1}\right) \), \(\Gamma \left( {\textbf{m}}_{2}\right) \) Lorentz force are calculated for these curves. Furthermore, we have computed normalizing and recursion operators of magnetic vector fields according to Bishop model. Finally, we have determined F–W conformable derivatives of normalizing and recursion operators.

Declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The contents of this manuscript have not been copyrighted or published previously; The contents of this manuscript are not now under consideration for publication elsewhere.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
Zurück zum Zitat Abdeljawad, T., Atici, F.: On the definitions of nabla fractional differences. Abstr. Appl. Anal. 406757 (2012) Abdeljawad, T., Atici, F.: On the definitions of nabla fractional differences. Abstr. Appl. Anal. 406757 (2012)
Zurück zum Zitat Abdeljawad, T.: Dual identities in fractional difference calculus within Riemann. Adv. Differ. Equ. 2013, 36 (2013)MathSciNetCrossRef Abdeljawad, T.: Dual identities in fractional difference calculus within Riemann. Adv. Differ. Equ. 2013, 36 (2013)MathSciNetCrossRef
Zurück zum Zitat Atici, F., Eloe, P.: Initial value problems in discrete fractional calculus. Proceed. Am. Math. Soc. 137(3), 981–989 (2009)MathSciNetCrossRef Atici, F., Eloe, P.: Initial value problems in discrete fractional calculus. Proceed. Am. Math. Soc. 137(3), 981–989 (2009)MathSciNetCrossRef
Zurück zum Zitat Büyükkütük, S., Öztürk, G.: Constant ratio curves according to Bishop frame in Euclidean 3-space. Gen. Math. Notes 28(1), 81–91 (2015) Büyükkütük, S., Öztürk, G.: Constant ratio curves according to Bishop frame in Euclidean 3-space. Gen. Math. Notes 28(1), 81–91 (2015)
Zurück zum Zitat Druta-Romaniuc, S.L., Munteanu, M.I.: Magnetic curves corresponding to Killing magnetic fields in \(E^{3}\) (2011). arXiv preprint arXiv:1106.3673 Druta-Romaniuc, S.L., Munteanu, M.I.: Magnetic curves corresponding to Killing magnetic fields in \(E^{3}\) (2011). arXiv preprint arXiv:​1106.​3673
Zurück zum Zitat Druta-Romaniuc, S.L., Munteanu, M.I.: Killing magnetic curves in a Minkowski 3-space. Nonlinear Anal. Real World Appl. 14(1), 383–396 (2013)MathSciNetCrossRef Druta-Romaniuc, S.L., Munteanu, M.I.: Killing magnetic curves in a Minkowski 3-space. Nonlinear Anal. Real World Appl. 14(1), 383–396 (2013)MathSciNetCrossRef
Zurück zum Zitat Efimov, D.I.: The magnetic geodesic flow on a homogeneous symplectic manifold. Sib. Math. J. 46(1), 83–93 (2005)MathSciNetCrossRef Efimov, D.I.: The magnetic geodesic flow on a homogeneous symplectic manifold. Sib. Math. J. 46(1), 83–93 (2005)MathSciNetCrossRef
Zurück zum Zitat Gray, H.L., Zhang, N.F.: On a new definition of the fractional difference. Math. Comput. 50(182), 513–529 (1988)MathSciNetCrossRef Gray, H.L., Zhang, N.F.: On a new definition of the fractional difference. Math. Comput. 50(182), 513–529 (1988)MathSciNetCrossRef
Zurück zum Zitat Honig, E., Schucking, E.L., Vishveshwara, C.V.: Motion of charged particles in homogeneous electromagnetic fields. J. Math. Phys. 15(6), 774–781 (1974)ADSMathSciNetCrossRef Honig, E., Schucking, E.L., Vishveshwara, C.V.: Motion of charged particles in homogeneous electromagnetic fields. J. Math. Phys. 15(6), 774–781 (1974)ADSMathSciNetCrossRef
Zurück zum Zitat Ilarslan, K.: Some special curves on non-Euclidean manifolds. PhD, Ankara University, Ankara, Turkey (2002) Ilarslan, K.: Some special curves on non-Euclidean manifolds. PhD, Ankara University, Ankara, Turkey (2002)
Zurück zum Zitat Kazan, A., Karadağ, H.: Magnetic non-null curves according to parallel transport frame in Minkowski 3-space. Commun. Faculty Sci. Univ. Ankara A1 Math. Stat. 67(1), 147–160 (2018)MathSciNetCrossRef Kazan, A., Karadağ, H.: Magnetic non-null curves according to parallel transport frame in Minkowski 3-space. Commun. Faculty Sci. Univ. Ankara A1 Math. Stat. 67(1), 147–160 (2018)MathSciNetCrossRef
Zurück zum Zitat Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations, vol. 204. Elsevier, Amsterdam (2006)CrossRef Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations, vol. 204. Elsevier, Amsterdam (2006)CrossRef
Zurück zum Zitat Kocayigit, H.: Lorentz Manifoldlarında Biharmonik Egriler ve Kontak Geometri. Doctoral dissertation, Ph. D. Thesis, Ankara University (2004) Kocayigit, H.: Lorentz Manifoldlarında Biharmonik Egriler ve Kontak Geometri. Doctoral dissertation, Ph. D. Thesis, Ankara University (2004)
Zurück zum Zitat Maluf, J.W., Faria, F.F.: On the construction of Fermi–Walker transported frames. Ann. Phys. 17(5), 326–335 (2008)MathSciNetCrossRef Maluf, J.W., Faria, F.F.: On the construction of Fermi–Walker transported frames. Ann. Phys. 17(5), 326–335 (2008)MathSciNetCrossRef
Zurück zum Zitat Miller, K.S., Ross, B.: Fractional difference calculus. In: Proceedings of the international symposium on univalent functions, fractional calculus and their applications, pp 139–152 (1988) Miller, K.S., Ross, B.: Fractional difference calculus. In: Proceedings of the international symposium on univalent functions, fractional calculus and their applications, pp 139–152 (1988)
Zurück zum Zitat Munteanu, M.I., Nistor, A.I.: The classification of Killing magnetic curves in \(S^{2}\times \)\(R\). J. Geom. Phys. 62(2), 170–182 (2012)ADSMathSciNetCrossRef Munteanu, M.I., Nistor, A.I.: The classification of Killing magnetic curves in \(S^{2}\times \)\(R\). J. Geom. Phys. 62(2), 170–182 (2012)ADSMathSciNetCrossRef
Zurück zum Zitat Novikov, S.P.: The Hamiltonian formalism and a many-valued analogue of Morse theory. Russ. Math. Surv. 37(5), 1 (1982)CrossRef Novikov, S.P.: The Hamiltonian formalism and a many-valued analogue of Morse theory. Russ. Math. Surv. 37(5), 1 (1982)CrossRef
Zurück zum Zitat Özdemir, M., Ergin, A.A.: Parallel frames of non-lightlike curves. Missouri J. Math. Sci. 20(2), 127–137 (2008)CrossRef Özdemir, M., Ergin, A.A.: Parallel frames of non-lightlike curves. Missouri J. Math. Sci. 20(2), 127–137 (2008)CrossRef
Zurück zum Zitat Podlubny, I., Petras, I., Vinagre, B.M., O’Leary, P., Dorcak, Ľ: Analogue realizations of fractional-order controllers. Nonlinear Dyn. 29, 281–296 (2002)MathSciNetCrossRef Podlubny, I., Petras, I., Vinagre, B.M., O’Leary, P., Dorcak, Ľ: Analogue realizations of fractional-order controllers. Nonlinear Dyn. 29, 281–296 (2002)MathSciNetCrossRef
Zurück zum Zitat Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives, vol. 1. Gordon and breach science publishers, Yverdon, Yverdon-les-Bains, Switzerland (1993) Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives, vol. 1. Gordon and breach science publishers, Yverdon, Yverdon-les-Bains, Switzerland (1993)
Zurück zum Zitat Yeneroğlu, M.: On new characterization of inextensible flows of space-like curves in de Sitter space. Open Math. 14(1), 946–954 (2016)MathSciNetCrossRef Yeneroğlu, M.: On new characterization of inextensible flows of space-like curves in de Sitter space. Open Math. 14(1), 946–954 (2016)MathSciNetCrossRef
Zurück zum Zitat Yilmaz, S.: Position vectors of some special space-like curves according to Bishop frame in Minkowski 3-space. Scientia Magna 5(1), 47 (2009)MathSciNet Yilmaz, S.: Position vectors of some special space-like curves according to Bishop frame in Minkowski 3-space. Scientia Magna 5(1), 47 (2009)MathSciNet
Zurück zum Zitat Yılmaz, S., Turgut, M.: A new version of Bishop frame and an application to spherical images. J. Math. Anal. Appl. 371(2), 764–776 (2010)MathSciNetCrossRef Yılmaz, S., Turgut, M.: A new version of Bishop frame and an application to spherical images. J. Math. Anal. Appl. 371(2), 764–776 (2010)MathSciNetCrossRef
Metadaten
Titel
Optical quantum conformable normalized and recursional model in Minkowski space
verfasst von
Talat Körpinar
Zeliha Körpinar
Hatice Özdemir
Publikationsdatum
01.03.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 3/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05828-z

Weitere Artikel der Ausgabe 3/2024

Optical and Quantum Electronics 3/2024 Zur Ausgabe

Neuer Inhalt