Skip to main content
Erschienen in: Optical and Quantum Electronics 3/2024

01.03.2024

Optical solitons in birefringent fibers for perturbed complex Ginzburg–Landau equation with polynomial law of nonlinearity

verfasst von: Yu-Hang Jiang, Chun-yan Wang

Erschienen in: Optical and Quantum Electronics | Ausgabe 3/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we go deeply into the complex Ginzburg–Landau equation with highly dispersive perturbed birefringent fibers having a polynomial law of nonlinearity and acquire three modes of solutions, including solitary wave modes, singular modes, and elliptic function double periodic modes, by using the trial equation method and the complete discrimination system for polynomials. In order to digest the dynamic properties of the model better, we study accurate two-dimensional and three-dimensional images of solutions at specific values. The study of this equation is of great significance for the research and application of superconductors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdou, A., Soliman, A.A., Biswas, A., et al.: Dark singular combo optical solitons with fractional complex Ginzburg Landau equation. Optik 171, 463–467 (2018)ADSCrossRef Abdou, A., Soliman, A.A., Biswas, A., et al.: Dark singular combo optical solitons with fractional complex Ginzburg Landau equation. Optik 171, 463–467 (2018)ADSCrossRef
Zurück zum Zitat Ahmad, A., Seadawy, A.R., Ahmed, S., et al.: Dynamical forms of breathers, rogue waves, lump and their interactions for Schrödinger-Hirota equation. Opt. Quant. Electron. 55(8), 730 (2023)CrossRef Ahmad, A., Seadawy, A.R., Ahmed, S., et al.: Dynamical forms of breathers, rogue waves, lump and their interactions for Schrödinger-Hirota equation. Opt. Quant. Electron. 55(8), 730 (2023)CrossRef
Zurück zum Zitat Ahmed, S., Seadawy, A.R., Rizvi, S.T.R., et al.: Homoclinic breathers and soliton propagations for the nonlinear (3+ 1)-dimensional Geng dynamical equation. Results Phys. 52, 106822 (2023a)CrossRef Ahmed, S., Seadawy, A.R., Rizvi, S.T.R., et al.: Homoclinic breathers and soliton propagations for the nonlinear (3+ 1)-dimensional Geng dynamical equation. Results Phys. 52, 106822 (2023a)CrossRef
Zurück zum Zitat Ahmed, S., Seadawy, A.R., Rizvi, S.T.R.: Envelope solitons, multi-peak solitons and breathers in optical fibers via Chupin Liu’s theorem and polynomial law of nonlinearity. Opt. Quantum Electron. 55(7), 632 (2023b)CrossRef Ahmed, S., Seadawy, A.R., Rizvi, S.T.R.: Envelope solitons, multi-peak solitons and breathers in optical fibers via Chupin Liu’s theorem and polynomial law of nonlinearity. Opt. Quantum Electron. 55(7), 632 (2023b)CrossRef
Zurück zum Zitat Akhmediev, N.N., Ankiewicz, A.: Nonlinear pulses and beams. Chapman and Hall, London (1997) Akhmediev, N.N., Ankiewicz, A.: Nonlinear pulses and beams. Chapman and Hall, London (1997)
Zurück zum Zitat Akram, G., Mahak, N.: Application of the first integral method for solving (1+1)-dimensional cubic quintic complex Ginzburg-Landau equation. Optik 164, 210–217 (2018)ADSCrossRef Akram, G., Mahak, N.: Application of the first integral method for solving (1+1)-dimensional cubic quintic complex Ginzburg-Landau equation. Optik 164, 210–217 (2018)ADSCrossRef
Zurück zum Zitat Arnous, A.H., Biswas, A., Ekici, M., et al.: Optical solitons and conservation laws of Kudryashov’s equation with improved modified extended tanh-function. Optik 225, 165406 (2021)ADSCrossRef Arnous, A.H., Biswas, A., Ekici, M., et al.: Optical solitons and conservation laws of Kudryashov’s equation with improved modified extended tanh-function. Optik 225, 165406 (2021)ADSCrossRef
Zurück zum Zitat Arshed, S., Arif, A.: Soliton solutions of higher-order nonlinear Schrödinger equation (NLSE) and nonlinear kudryashov’s equation. Optik 209, 164588 (2020)ADSCrossRef Arshed, S., Arif, A.: Soliton solutions of higher-order nonlinear Schrödinger equation (NLSE) and nonlinear kudryashov’s equation. Optik 209, 164588 (2020)ADSCrossRef
Zurück zum Zitat Biswas, A.: Chirp-free bright optical solitons and conservation laws for complex Ginzburg-Landau equation with three nonlinear forms. Optik 174, 207–215 (2018)ADSCrossRef Biswas, A.: Chirp-free bright optical solitons and conservation laws for complex Ginzburg-Landau equation with three nonlinear forms. Optik 174, 207–215 (2018)ADSCrossRef
Zurück zum Zitat Biswas, A., Alqahtani, R.T.: Optical soliton perturbation with complex Ginzburg-Landau equation by semi-inverse variational principle. Optik 147, 77–81 (2017)ADSCrossRef Biswas, A., Alqahtani, R.T.: Optical soliton perturbation with complex Ginzburg-Landau equation by semi-inverse variational principle. Optik 147, 77–81 (2017)ADSCrossRef
Zurück zum Zitat Biswas, A., Yildirim, Y., Yasar, E., et al.: Optical soliton perturbation for complex Ginzburg Landau equation with modified simple equation method. Optik 158, 399–415 (2018)ADSCrossRef Biswas, A., Yildirim, Y., Yasar, E., et al.: Optical soliton perturbation for complex Ginzburg Landau equation with modified simple equation method. Optik 158, 399–415 (2018)ADSCrossRef
Zurück zum Zitat Biswas, A., Asma, M., Guggilla, P., et al.: Optical soliton perturbation with Kudryashov’s equation by semi-inverse variational principle. Phys. Lett. A 384, 126830 (2020a)MathSciNetCrossRef Biswas, A., Asma, M., Guggilla, P., et al.: Optical soliton perturbation with Kudryashov’s equation by semi-inverse variational principle. Phys. Lett. A 384, 126830 (2020a)MathSciNetCrossRef
Zurück zum Zitat Biswas, A., Sonmezoglu, A., Ekici, M., et al.: Cubic-quartic optical solitons with differential group delay for Kudryashov’s model by extended trial function. J. Commun. Technol. Electron. 65, 1384–1398 (2020b)CrossRef Biswas, A., Sonmezoglu, A., Ekici, M., et al.: Cubic-quartic optical solitons with differential group delay for Kudryashov’s model by extended trial function. J. Commun. Technol. Electron. 65, 1384–1398 (2020b)CrossRef
Zurück zum Zitat Cong, H., Liu, J., Yuan, X.: Quasi periodic solutions for the cubic complex Ginzburg Landau equation. J. Math. Phys. 50, 435 (2009)CrossRef Cong, H., Liu, J., Yuan, X.: Quasi periodic solutions for the cubic complex Ginzburg Landau equation. J. Math. Phys. 50, 435 (2009)CrossRef
Zurück zum Zitat Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993)ADSCrossRef Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993)ADSCrossRef
Zurück zum Zitat Efremidis, N.K., Christodoulides, D.N.: Discrete Ginzburg-Landau solitons. Phys. Rev. E 67, 026606 (2003)ADSCrossRef Efremidis, N.K., Christodoulides, D.N.: Discrete Ginzburg-Landau solitons. Phys. Rev. E 67, 026606 (2003)ADSCrossRef
Zurück zum Zitat García-Morales, V., Krischer, K.: The complex Ginzburg-Landau equation: an introduction. Contemp. Phys. 53, 79–95 (2012)ADSCrossRef García-Morales, V., Krischer, K.: The complex Ginzburg-Landau equation: an introduction. Contemp. Phys. 53, 79–95 (2012)ADSCrossRef
Zurück zum Zitat Gepreel, K.A., Zayed, E.M.E., Alngar, M.E.M.: New optical solitons perturbation in the birefringent fibers for the CGL equation with kerr law nonlinearity using two integral schemes methods. Optik 227, 166099 (2021)ADSCrossRef Gepreel, K.A., Zayed, E.M.E., Alngar, M.E.M.: New optical solitons perturbation in the birefringent fibers for the CGL equation with kerr law nonlinearity using two integral schemes methods. Optik 227, 166099 (2021)ADSCrossRef
Zurück zum Zitat Hyder, A.A., Soliman, A.H.: Exact solutions of space-time local fractal nonlinear evolution equations generalized comformable derivative approach. Results Phys. 17, 103135 (2020)CrossRef Hyder, A.A., Soliman, A.H.: Exact solutions of space-time local fractal nonlinear evolution equations generalized comformable derivative approach. Results Phys. 17, 103135 (2020)CrossRef
Zurück zum Zitat Kudryashov, N.A.: Solitary wave solutions of hierarchy with non-local nonlinearity. Appl. Math. Lett. 103, 106155 (2020)MathSciNetCrossRef Kudryashov, N.A.: Solitary wave solutions of hierarchy with non-local nonlinearity. Appl. Math. Lett. 103, 106155 (2020)MathSciNetCrossRef
Zurück zum Zitat Kudryashov, N.A.: Optical solitons of the resonant nonlinear Schrödinger equation with arbitrary index. Optik 235, 166626 (2021a)ADSCrossRef Kudryashov, N.A.: Optical solitons of the resonant nonlinear Schrödinger equation with arbitrary index. Optik 235, 166626 (2021a)ADSCrossRef
Zurück zum Zitat Kudryashov, N.A.: Optical solitons of mathematical model with arbitrary refractive index. Optik 231, 166443 (2021b)ADSCrossRef Kudryashov, N.A.: Optical solitons of mathematical model with arbitrary refractive index. Optik 231, 166443 (2021b)ADSCrossRef
Zurück zum Zitat Kumar, S., Malik, S., Biswas, A., et al.: Optical solitons with Kudryashov’s equation by lie symmetry analysis. Phys. Wave Phenom. 28, 299–304 (2020)ADSCrossRef Kumar, S., Malik, S., Biswas, A., et al.: Optical solitons with Kudryashov’s equation by lie symmetry analysis. Phys. Wave Phenom. 28, 299–304 (2020)ADSCrossRef
Zurück zum Zitat Kuramoto, Y.: Chemical waves. In: Chemical oscillations, waves, and turbulence, 89–110 (1984) Kuramoto, Y.: Chemical waves. In: Chemical oscillations, waves, and turbulence, 89–110 (1984)
Zurück zum Zitat Lega, J.: Traveling hole solutions of the complex Ginzburg Landau equation: a review. Phys. D Nonlinear Phenom. 152, 269–287 (2001)ADSMathSciNetCrossRef Lega, J.: Traveling hole solutions of the complex Ginzburg Landau equation: a review. Phys. D Nonlinear Phenom. 152, 269–287 (2001)ADSMathSciNetCrossRef
Zurück zum Zitat Liu, C.S.: Travelling wave solutions of triple Sine-Gordon equation. Chin. Phys. Lett. 21, 2369 (2004)ADSCrossRef Liu, C.S.: Travelling wave solutions of triple Sine-Gordon equation. Chin. Phys. Lett. 21, 2369 (2004)ADSCrossRef
Zurück zum Zitat Liu, C.S.: Exact traveling wave solutions for a kind of generalized Ginzburg-Landau equation. Commun. Theor. Phys. 43, 787–790 (2005)ADSMathSciNetCrossRef Liu, C.S.: Exact traveling wave solutions for a kind of generalized Ginzburg-Landau equation. Commun. Theor. Phys. 43, 787–790 (2005)ADSMathSciNetCrossRef
Zurück zum Zitat Liu, C.S.: All single traveling wave solutions to (3+1)-dimensional Nizhnok-Novikov-Veselov equation. Commun. Theor. Phys. 45, 991–992 (2006)ADSMathSciNetCrossRef Liu, C.S.: All single traveling wave solutions to (3+1)-dimensional Nizhnok-Novikov-Veselov equation. Commun. Theor. Phys. 45, 991–992 (2006)ADSMathSciNetCrossRef
Zurück zum Zitat Liu, C.S.: The classification of travelling wave solutions and superposition of multi-solutions to Camassa-Holm equation with dispersion. Chin. Phys. 16, 1832 (2007)CrossRef Liu, C.S.: The classification of travelling wave solutions and superposition of multi-solutions to Camassa-Holm equation with dispersion. Chin. Phys. 16, 1832 (2007)CrossRef
Zurück zum Zitat Liu, C.S.: Exponential function rational expansion method for nonlinear differential-difference equations. Chaos Solitons Fractals 40, 708–716 (2009a)ADSMathSciNetCrossRef Liu, C.S.: Exponential function rational expansion method for nonlinear differential-difference equations. Chaos Solitons Fractals 40, 708–716 (2009a)ADSMathSciNetCrossRef
Zurück zum Zitat Liu, C.S.: Canonical-like transformation method and exact solutions to a class of diffusion equations. Chaos Solitons Fractals 42, 441–446 (2009b)ADSCrossRef Liu, C.S.: Canonical-like transformation method and exact solutions to a class of diffusion equations. Chaos Solitons Fractals 42, 441–446 (2009b)ADSCrossRef
Zurück zum Zitat Liu, C.S.: Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations. Comput. Phys. Commun. 181, 317–324 (2010)ADSMathSciNetCrossRef Liu, C.S.: Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations. Comput. Phys. Commun. 181, 317–324 (2010)ADSMathSciNetCrossRef
Zurück zum Zitat Liu, C.S.: The essence of the generalized Taylor theorem as the foundation of the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 16, 1254–1262 (2011)ADSMathSciNetCrossRef Liu, C.S.: The essence of the generalized Taylor theorem as the foundation of the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 16, 1254–1262 (2011)ADSMathSciNetCrossRef
Zurück zum Zitat Liu, C.S.: Two model equations with a second degree logarithmic nonlinearity and their Gaussian solutions. Commun. Theor. Phys. 73, 045007 (2021)ADSMathSciNetCrossRef Liu, C.S.: Two model equations with a second degree logarithmic nonlinearity and their Gaussian solutions. Commun. Theor. Phys. 73, 045007 (2021)ADSMathSciNetCrossRef
Zurück zum Zitat Manneville, P.: Dissipative structures and weak turbulence. In: Garbaczewski, P., Wolf, M., Weron, A. (eds.) Chaos—the interplay between stochastic and deterministic behaviour, pp. 257–272. Springer, Berlin, Heidelberg (2005) Manneville, P.: Dissipative structures and weak turbulence. In: Garbaczewski, P., Wolf, M., Weron, A. (eds.) Chaos—the interplay between stochastic and deterministic behaviour, pp. 257–272. Springer, Berlin, Heidelberg (2005)
Zurück zum Zitat Mirzazadeh, M., Ekici, M., Sonmezoglu, A., et al.: Optical solitons with complex Ginzburg-Landau equation. Nonlinear Dyn. 85, 1979–2016 (2016)MathSciNetCrossRef Mirzazadeh, M., Ekici, M., Sonmezoglu, A., et al.: Optical solitons with complex Ginzburg-Landau equation. Nonlinear Dyn. 85, 1979–2016 (2016)MathSciNetCrossRef
Zurück zum Zitat Neuberger, J.M., Rice, D.R., Jr., Swift, J.W.: Numerical solutions of a vector Ginzburg Landau equation with a triple well potential. Int. J. Bifurc. Chaos 13, 3295–3306 (2003)MathSciNetCrossRef Neuberger, J.M., Rice, D.R., Jr., Swift, J.W.: Numerical solutions of a vector Ginzburg Landau equation with a triple well potential. Int. J. Bifurc. Chaos 13, 3295–3306 (2003)MathSciNetCrossRef
Zurück zum Zitat Rafiq, M.H., Jannat, N., Rafiq, M.N.: Sensitivity analysis and analytical study of the three-component coupled NLS-type equations in fiber optics. Opt. Quantum Electron. 55(7), 637 (2023a)CrossRef Rafiq, M.H., Jannat, N., Rafiq, M.N.: Sensitivity analysis and analytical study of the three-component coupled NLS-type equations in fiber optics. Opt. Quantum Electron. 55(7), 637 (2023a)CrossRef
Zurück zum Zitat Rafiq, M.H., Raza, N., Jhangeer, A.: Dynamic study of bifurcation, chaotic behavior and multi-soliton profiles for the system of shallow water wave equations with their stability. Chaos Solitons Fractals 171, 113436 (2023b)MathSciNetCrossRef Rafiq, M.H., Raza, N., Jhangeer, A.: Dynamic study of bifurcation, chaotic behavior and multi-soliton profiles for the system of shallow water wave equations with their stability. Chaos Solitons Fractals 171, 113436 (2023b)MathSciNetCrossRef
Zurück zum Zitat Rafiq, M.H., Jhangeer, A., Raza, N.: Symmetry and complexity: A Lie symmetry approach to bifurcation, chaos, stability and travelling wave solutions of the (3+ 1)-dimensional Kadomtsev-Petviashvili equation. Phys. Scr. 98(11), 115239 (2023c)ADSCrossRef Rafiq, M.H., Jhangeer, A., Raza, N.: Symmetry and complexity: A Lie symmetry approach to bifurcation, chaos, stability and travelling wave solutions of the (3+ 1)-dimensional Kadomtsev-Petviashvili equation. Phys. Scr. 98(11), 115239 (2023c)ADSCrossRef
Zurück zum Zitat Raza, N., Arshed, S.: Chiral bright and dark soliton solutions of Schrödinger’s equation in (1+ 2)-dimensions. Ain Shams Eng. J. 11(4), 1237–1241 (2020)CrossRef Raza, N., Arshed, S.: Chiral bright and dark soliton solutions of Schrödinger’s equation in (1+ 2)-dimensions. Ain Shams Eng. J. 11(4), 1237–1241 (2020)CrossRef
Zurück zum Zitat Raza, N., Murtaza, I.G., Sial, S., et al.: On solitons: the biomolecular nonlinear transmission line models with constant and time variable coefficients. Waves Random Complex Media 28(3), 553–569 (2018)ADSMathSciNetCrossRef Raza, N., Murtaza, I.G., Sial, S., et al.: On solitons: the biomolecular nonlinear transmission line models with constant and time variable coefficients. Waves Random Complex Media 28(3), 553–569 (2018)ADSMathSciNetCrossRef
Zurück zum Zitat Raza, N., Arshed, S., Basendwah, G.A., et al.: A class of new breather, lump, two-wave and three-wave solutions for an extended Jimbo-Miwa model in (3+ 1)-dimensions. Optik 292, 171394 (2023)ADSCrossRef Raza, N., Arshed, S., Basendwah, G.A., et al.: A class of new breather, lump, two-wave and three-wave solutions for an extended Jimbo-Miwa model in (3+ 1)-dimensions. Optik 292, 171394 (2023)ADSCrossRef
Zurück zum Zitat Rizvi, S.T.R., Seadawy, A.R., Farah, N., et al.: Controlling optical soliton solutions for higher order Boussinesq equation using bilinear form. Opt. Quant. Electron. 55(10), 865 (2023a)CrossRef Rizvi, S.T.R., Seadawy, A.R., Farah, N., et al.: Controlling optical soliton solutions for higher order Boussinesq equation using bilinear form. Opt. Quant. Electron. 55(10), 865 (2023a)CrossRef
Zurück zum Zitat Rizvi, S.T.R., Seadawy, A.R., Nimra, et al.: Study of lump, rogue, multi, M shaped, periodic cross kink, breather lump, kink-cross rational waves and other interactions to the Kraenkel–Manna–Merle system in a saturated ferromagnetic material. Opt. Quantum Electron. 55(9), 813 (2023b)CrossRef Rizvi, S.T.R., Seadawy, A.R., Nimra, et al.: Study of lump, rogue, multi, M shaped, periodic cross kink, breather lump, kink-cross rational waves and other interactions to the Kraenkel–Manna–Merle system in a saturated ferromagnetic material. Opt. Quantum Electron. 55(9), 813 (2023b)CrossRef
Zurück zum Zitat Rizvi, S.T.R., Seadawy, A.R., Bashir, A., et al.: Lie symmetry analysis and conservation laws with soliton solutions to a nonlinear model related to chains of atoms. Opt. Quant. Electron. 55(9), 762 (2023c)CrossRef Rizvi, S.T.R., Seadawy, A.R., Bashir, A., et al.: Lie symmetry analysis and conservation laws with soliton solutions to a nonlinear model related to chains of atoms. Opt. Quant. Electron. 55(9), 762 (2023c)CrossRef
Zurück zum Zitat Rizvi, S.T.R., Seadawy, A.R., Nimra: Discussion on Peyrard Bishop DNA model for multi and breather waves, M-shaped rational and other interactional solutions. Opt. Quantum Electron. 55(8), 670 (2023d)CrossRef Rizvi, S.T.R., Seadawy, A.R., Nimra: Discussion on Peyrard Bishop DNA model for multi and breather waves, M-shaped rational and other interactional solutions. Opt. Quantum Electron. 55(8), 670 (2023d)CrossRef
Zurück zum Zitat Seadawy, A.R., Rizvi, S.T.R., Zahed, H.: Lump-type solutions, lump solutions, and mixed rogue waves for coupled nonlinear generalized Zakharov equations. Mathematics 11(13), 2856 (2023a)CrossRef Seadawy, A.R., Rizvi, S.T.R., Zahed, H.: Lump-type solutions, lump solutions, and mixed rogue waves for coupled nonlinear generalized Zakharov equations. Mathematics 11(13), 2856 (2023a)CrossRef
Zurück zum Zitat Seadawy, A.R., Rizvi, S.T.R., Ahmed, S.: Multiwaves, homoclinic breathers, interaction solutions along with Black-Grey solitons for propagation in absence of self phase modulation with higher order dispersions. Int. J. Geom. Methods Mod. Phys. 20(12), 2350203–2351154 (2023b)MathSciNetCrossRef Seadawy, A.R., Rizvi, S.T.R., Ahmed, S.: Multiwaves, homoclinic breathers, interaction solutions along with Black-Grey solitons for propagation in absence of self phase modulation with higher order dispersions. Int. J. Geom. Methods Mod. Phys. 20(12), 2350203–2351154 (2023b)MathSciNetCrossRef
Zurück zum Zitat Seadawy, A.R., Rizvi, S.T.R., Ahmad, A., et al.: Multiwaves, rogue waves, breathers and lump solutions for an NLSE under the influence of self-stee** and Raman effects, along with cubic quintic septimal parameters. Opt. Quant. Electron. 55(9), 771 (2023c)CrossRef Seadawy, A.R., Rizvi, S.T.R., Ahmad, A., et al.: Multiwaves, rogue waves, breathers and lump solutions for an NLSE under the influence of self-stee** and Raman effects, along with cubic quintic septimal parameters. Opt. Quant. Electron. 55(9), 771 (2023c)CrossRef
Zurück zum Zitat Shah, N.A., Agarwal, P., Chung, J.D., et al.: Analysis of optical solitons for nonlinear Schrödinger equation with detuning term by iterative transform method. Symmetry 12(11), 1850 (2020)ADSCrossRef Shah, N.A., Agarwal, P., Chung, J.D., et al.: Analysis of optical solitons for nonlinear Schrödinger equation with detuning term by iterative transform method. Symmetry 12(11), 1850 (2020)ADSCrossRef
Zurück zum Zitat Shwetanshumala, S.: Temporal solitons of modified complex Ginzburg-Landau equation. Prog. Electromagn. Res. Lett. 3, 17–24 (1981)CrossRef Shwetanshumala, S.: Temporal solitons of modified complex Ginzburg-Landau equation. Prog. Electromagn. Res. Lett. 3, 17–24 (1981)CrossRef
Zurück zum Zitat Tien, D.N.: A stochastic Ginzburg-Landau equation with impulsive effects. Phys. a: Stat. Mech. Appl. 392, 1962–1971 (2013)MathSciNetCrossRef Tien, D.N.: A stochastic Ginzburg-Landau equation with impulsive effects. Phys. a: Stat. Mech. Appl. 392, 1962–1971 (2013)MathSciNetCrossRef
Zurück zum Zitat Yildirim, Y., Biswas, A., Ekici, M., et al.: Optical solitons with Kudryashov’s model by a range of integration norms. Chin. J. Phys. 66, 660–672 (2020)MathSciNetCrossRef Yildirim, Y., Biswas, A., Ekici, M., et al.: Optical solitons with Kudryashov’s model by a range of integration norms. Chin. J. Phys. 66, 660–672 (2020)MathSciNetCrossRef
Zurück zum Zitat Zayed, E.M.E., Alngar, M.E.M.: Optical soliton solutions for the generalized Kudryashov equation of propagation pulse in optical fiber with power nonlinearities by three integration algorithms. Math. Methods Appl. Sci. 44, 315–324 (2021)ADSMathSciNetCrossRef Zayed, E.M.E., Alngar, M.E.M.: Optical soliton solutions for the generalized Kudryashov equation of propagation pulse in optical fiber with power nonlinearities by three integration algorithms. Math. Methods Appl. Sci. 44, 315–324 (2021)ADSMathSciNetCrossRef
Zurück zum Zitat Zayed, E.M.E., Shohib, R.M.A., Biswas, A., et al.: Optical solitons and other solutions to Kudryashov’s equation with three innovative integration norms. Optik 211, 164431 (2020a)ADSCrossRef Zayed, E.M.E., Shohib, R.M.A., Biswas, A., et al.: Optical solitons and other solutions to Kudryashov’s equation with three innovative integration norms. Optik 211, 164431 (2020a)ADSCrossRef
Zurück zum Zitat Zayed, E.M.E., Shohib, R.M.A., Biswas, A., et al.: Optical solitons with differential group delay for Kudryashov’s model by the auxiliary equation mapping method. Chin. J. Phys. 67, 631–645 (2020b)MathSciNetCrossRef Zayed, E.M.E., Shohib, R.M.A., Biswas, A., et al.: Optical solitons with differential group delay for Kudryashov’s model by the auxiliary equation mapping method. Chin. J. Phys. 67, 631–645 (2020b)MathSciNetCrossRef
Zurück zum Zitat Zayed, E.M.E., Alngar, M.E.M., Biswas, A., et al.: Optical solitons and conservation laws with generalized Kudryashov’s law of refractive index. Chaos Solitons Fractals 139, 110284 (2020c)MathSciNetCrossRef Zayed, E.M.E., Alngar, M.E.M., Biswas, A., et al.: Optical solitons and conservation laws with generalized Kudryashov’s law of refractive index. Chaos Solitons Fractals 139, 110284 (2020c)MathSciNetCrossRef
Zurück zum Zitat Zayed, E.M.E., Alngar, M.E.M., Biswas, A., et al.: Solitons in magneto-optic waveguides with Kudryashov’s law of refractive index. Chaos Solitons Fractals 140, 110129 (2020d)MathSciNetCrossRef Zayed, E.M.E., Alngar, M.E.M., Biswas, A., et al.: Solitons in magneto-optic waveguides with Kudryashov’s law of refractive index. Chaos Solitons Fractals 140, 110129 (2020d)MathSciNetCrossRef
Zurück zum Zitat Zayed, E.M.E., Alngar, M.E.M., El-Horbaty, M., et al.: Optical solitons with complex Ginzburg-Landau equation having a plethora of nonlinear forms with a couple of improved integration norms. Optik 207, 163804 (2020e)ADSCrossRef Zayed, E.M.E., Alngar, M.E.M., El-Horbaty, M., et al.: Optical solitons with complex Ginzburg-Landau equation having a plethora of nonlinear forms with a couple of improved integration norms. Optik 207, 163804 (2020e)ADSCrossRef
Zurück zum Zitat Zayed, E.M.E., Alngar, M.E.M., Biswas, A., et al.: Pure-cubic optical soliton perturbation with complex Ginzburg- Landau equation having a dozen nonlinear refractive index structures. J. Commun. Technol. Electron. 66, 481–544 (2021)CrossRef Zayed, E.M.E., Alngar, M.E.M., Biswas, A., et al.: Pure-cubic optical soliton perturbation with complex Ginzburg- Landau equation having a dozen nonlinear refractive index structures. J. Commun. Technol. Electron. 66, 481–544 (2021)CrossRef
Zurück zum Zitat Zayed, E.M.E., Alngar, M.E.M., Shohib, R.M.A., et al.: Highly dispersive optical solitons in birefringent fibers for complex-Ginzburg-Landau equation with parabolic law of nonlinearity using two integration techniques. Optik 266, 169573 (2022a)ADSCrossRef Zayed, E.M.E., Alngar, M.E.M., Shohib, R.M.A., et al.: Highly dispersive optical solitons in birefringent fibers for complex-Ginzburg-Landau equation with parabolic law of nonlinearity using two integration techniques. Optik 266, 169573 (2022a)ADSCrossRef
Zurück zum Zitat Zayed, E.M.E., Alngar, M.E.M., Shohib, R.M.A., et al.: Highly dispersive optical solitons in birefringent fibers for perturbed complex Ginzburg-Landau equation having polynomial law of nonlinearity. Optik 261, 261 (2022b)CrossRef Zayed, E.M.E., Alngar, M.E.M., Shohib, R.M.A., et al.: Highly dispersive optical solitons in birefringent fibers for perturbed complex Ginzburg-Landau equation having polynomial law of nonlinearity. Optik 261, 261 (2022b)CrossRef
Zurück zum Zitat Zayed, E.M.E., Gepreel, K.A., El-Horbaty, M., et al.: Highly dispersive optical solitons in birefringent fibers of complex Ginzburg-Landau equation of sixth order with Kerr law nonlinear refractive index. Eng 4, 665–677 (2023)CrossRef Zayed, E.M.E., Gepreel, K.A., El-Horbaty, M., et al.: Highly dispersive optical solitons in birefringent fibers of complex Ginzburg-Landau equation of sixth order with Kerr law nonlinear refractive index. Eng 4, 665–677 (2023)CrossRef
Metadaten
Titel
Optical solitons in birefringent fibers for perturbed complex Ginzburg–Landau equation with polynomial law of nonlinearity
verfasst von
Yu-Hang Jiang
Chun-yan Wang
Publikationsdatum
01.03.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 3/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05922-2

Weitere Artikel der Ausgabe 3/2024

Optical and Quantum Electronics 3/2024 Zur Ausgabe

Neuer Inhalt