Skip to main content
Erschienen in: Wireless Personal Communications 2/2017

19.06.2017

Optical Spatial Modulation with Diversity Combiner in Dual-Hops Amplify-and-Forward Relay Systems Over Atmospheric Impairments

verfasst von: Kehinde Oluwasesan Odeyemi, Pius Adewale Owolawi, Viranjay M. Srivastava

Erschienen in: Wireless Personal Communications | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we analyzed a dual-hop optical spatial modulation channel state information-assisted amplified and forward (AF) relay system with spatial diversity combiner under the influence of gamma-gamma atmospheric turbulence induced fading and pointing error impairments. Maximum ratio combiner (MRC) and equal gain combiner (EGC) with heterodyne detection are considered at the destination as mitigation tools to improve the system error performance. The statistical characteristics of AF relay in terms of moment generating function (MGF), probability density function and cumulative density function are derived for both impairments. Based on these expressions, the average pairwise error probability for each of the combiners under study is determined and the average bit error rate (ABER) for the system is given by using union bounding technique. By utilizing the derived ABER expressions, the effective capacity for the considered system is then obtained. The effect of turbulence strength ranging from weak to strong levels and pointing errors in terms of beam width and jitter displacement are studied. The numerical results obtained show that the more the turbulence strength and/or pointing error increases, the more the error rate and effective capacity of the system deteriorates. Under the same conditions, the results confirmed that MRC system offers an optimal performance compared with EGC.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kaushal, H. & Kaddoum, G. (2015). Optical communication in space: Challenges and mitigation techniques. In IEEE communications surveys and tutorials. Kaushal, H. & Kaddoum, G. (2015). Optical communication in space: Challenges and mitigation techniques. In IEEE communications surveys and tutorials.
2.
Zurück zum Zitat Andrews, L. C., Phillips, R. L., & Hopen, C. Y. (2001). Laser beam scintillation with applications (Vol. 99). Bellingham: SPIE Press.CrossRefMATH Andrews, L. C., Phillips, R. L., & Hopen, C. Y. (2001). Laser beam scintillation with applications (Vol. 99). Bellingham: SPIE Press.CrossRefMATH
3.
Zurück zum Zitat Tsiftsis, T. A. (2008). Performance of heterodyne wireless optical communication systems over gamma-gamma atmospheric turbulence channels. Electronics Letters, 44(5), 373.CrossRef Tsiftsis, T. A. (2008). Performance of heterodyne wireless optical communication systems over gamma-gamma atmospheric turbulence channels. Electronics Letters, 44(5), 373.CrossRef
4.
Zurück zum Zitat Aditi, M. & Preeti, S. (2015). Free space optics: current applications and future challenges. International Journal of Optics, Article ID 945483. Aditi, M. & Preeti, S. (2015). Free space optics: current applications and future challenges. International Journal of Optics, Article ID 945483.
5.
Zurück zum Zitat Nistazakis, H. E., Tsiftsis, T. A., & Tombras, G. S. (2009). Performance analysis of free-space optical communication systems over atmospheric turbulence channels. IET Communications, 3(3), 1402–1409.CrossRef Nistazakis, H. E., Tsiftsis, T. A., & Tombras, G. S. (2009). Performance analysis of free-space optical communication systems over atmospheric turbulence channels. IET Communications, 3(3), 1402–1409.CrossRef
6.
Zurück zum Zitat Epple, B. (2010). Simplified channel model for simulation of free-space optical communications. Journal of Optical Communications and Networking, 2(5), 293–304.CrossRef Epple, B. (2010). Simplified channel model for simulation of free-space optical communications. Journal of Optical Communications and Networking, 2(5), 293–304.CrossRef
7.
Zurück zum Zitat Popoola, W. O., Ghassemlooy, Z., & Ahmadi, V. (2008). Performance of sub-carrier modulated free-space optical communication link in negative exponential atmospheric turbulence environment. International Journal of Autonomous and Adaptive Communications Systems, 1(3), 342–355.CrossRef Popoola, W. O., Ghassemlooy, Z., & Ahmadi, V. (2008). Performance of sub-carrier modulated free-space optical communication link in negative exponential atmospheric turbulence environment. International Journal of Autonomous and Adaptive Communications Systems, 1(3), 342–355.CrossRef
8.
Zurück zum Zitat Al-Habash, M. A., Andrews, L. C., & Phillips, R. L. (2001). Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Optical Engineering, 40(8), 1554–1562.CrossRef Al-Habash, M. A., Andrews, L. C., & Phillips, R. L. (2001). Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Optical Engineering, 40(8), 1554–1562.CrossRef
9.
Zurück zum Zitat Trung, H. D., & Pham, A. T. (2014). Pointing error effects on performance of free-space optical communication systems using SC-QAM signals over atmospheric turbulence channels. AEU-International Journal of Electronics and Communications, 68(9), 869–876.CrossRef Trung, H. D., & Pham, A. T. (2014). Pointing error effects on performance of free-space optical communication systems using SC-QAM signals over atmospheric turbulence channels. AEU-International Journal of Electronics and Communications, 68(9), 869–876.CrossRef
10.
Zurück zum Zitat García-Zambrana, A., Castillo-Vázquez, B., & Castillo-Vázquez, C. (2012). Asymptotic error-rate analysis of FSO links using transmit laser selection over gamma-gamma atmospheric turbulence channels with pointing errors. Optics Express, 20(3), 2096–2109.CrossRef García-Zambrana, A., Castillo-Vázquez, B., & Castillo-Vázquez, C. (2012). Asymptotic error-rate analysis of FSO links using transmit laser selection over gamma-gamma atmospheric turbulence channels with pointing errors. Optics Express, 20(3), 2096–2109.CrossRef
11.
Zurück zum Zitat Lee, I. E., Ghassemlooy, Z. & Ng, W. P. (2012). Effects of aperture averaging and beam width on Gaussian free space optical links in the presence of atmospheric turbulence and pointing error. In 2012 14th International conference on transparent optical networks (ICTON) (pp. 1–4). IEEE. Lee, I. E., Ghassemlooy, Z. & Ng, W. P. (2012). Effects of aperture averaging and beam width on Gaussian free space optical links in the presence of atmospheric turbulence and pointing error. In 2012 14th International conference on transparent optical networks (ICTON) (pp. 1–4). IEEE.
12.
Zurück zum Zitat Krishnan, P., & Kumar, D. S. (2014). Bit error rate analysis of free-space optical system with spatial diversity over strong atmospheric turbulence channel with pointing errors. Optical Engineering, 53(12), 126108.CrossRef Krishnan, P., & Kumar, D. S. (2014). Bit error rate analysis of free-space optical system with spatial diversity over strong atmospheric turbulence channel with pointing errors. Optical Engineering, 53(12), 126108.CrossRef
13.
Zurück zum Zitat Sandalidis, H. G., Tsiftsis, T. A., & Karagiannidis, G. K. (2009). Optical wireless communications with heterodyne detection over turbulence channels with pointing errors. Journal of Lightwave Technology, 27(20), 4440–4445.CrossRef Sandalidis, H. G., Tsiftsis, T. A., & Karagiannidis, G. K. (2009). Optical wireless communications with heterodyne detection over turbulence channels with pointing errors. Journal of Lightwave Technology, 27(20), 4440–4445.CrossRef
14.
Zurück zum Zitat Datsikas, C. K., Peppas, K. P., Sagias, N. C., & Tombras, G. S. (2010). Serial free-space optical relaying communications over gamma-gamma atmospheric turbulence channels. Journal of Optical Communications and Networking, 2(8), 576–586.CrossRef Datsikas, C. K., Peppas, K. P., Sagias, N. C., & Tombras, G. S. (2010). Serial free-space optical relaying communications over gamma-gamma atmospheric turbulence channels. Journal of Optical Communications and Networking, 2(8), 576–586.CrossRef
15.
Zurück zum Zitat Acampora, A. S., & Krishnamurthy, S. V. (1999). A broadband wireless access network based on mesh-connected free-space optical links. IEEE Personal Communications, 6(5), 62–65.CrossRef Acampora, A. S., & Krishnamurthy, S. V. (1999). A broadband wireless access network based on mesh-connected free-space optical links. IEEE Personal Communications, 6(5), 62–65.CrossRef
16.
Zurück zum Zitat Akella, J., Yuksel, M. & Kalyanaraman, S. (2005). Error analysis of multi-hop free-space optical communication. In IEEE international conference on communications. ICC 2005 (Vol. 3, pp. 1777–1781) IEEE. Akella, J., Yuksel, M. & Kalyanaraman, S. (2005). Error analysis of multi-hop free-space optical communication. In IEEE international conference on communications. ICC 2005 (Vol. 3, pp. 1777–1781) IEEE.
17.
Zurück zum Zitat Tsiftsis, T. A., Sandalidis, H. G., Karagiannidis, G. K. & Sagias, N. C. (2006). Multihop free-space optical communications over strong turbulence channels. In 2006 IEEE international conference on communications (Vol. 6, pp. 2755–2759). IEEE. Tsiftsis, T. A., Sandalidis, H. G., Karagiannidis, G. K. & Sagias, N. C. (2006). Multihop free-space optical communications over strong turbulence channels. In 2006 IEEE international conference on communications (Vol. 6, pp. 2755–2759). IEEE.
18.
Zurück zum Zitat Anees, S., & Bhatnagar, M. R. (2015). Performance evaluation of decode-and-forward dual-hop asymmetric radio frequency-free space optical communication system. IET Optoelectronics, 9(5), 232–240.CrossRef Anees, S., & Bhatnagar, M. R. (2015). Performance evaluation of decode-and-forward dual-hop asymmetric radio frequency-free space optical communication system. IET Optoelectronics, 9(5), 232–240.CrossRef
19.
Zurück zum Zitat Tang, X., Wang, Z., Xu, Z., & Ghassemlooy, Z. (2014). Multihop free-space optical communications over turbulence channels with pointing errors using heterodyne detection. Journal of Lightwave Technology, 32(15), 2597–2604.CrossRef Tang, X., Wang, Z., Xu, Z., & Ghassemlooy, Z. (2014). Multihop free-space optical communications over turbulence channels with pointing errors using heterodyne detection. Journal of Lightwave Technology, 32(15), 2597–2604.CrossRef
20.
Zurück zum Zitat Kazemlou, S., Hranilovic, S., & Kumar, S. (2011). All-optical multihop free-space optical communication systems. Journal of Lightwave Technology, 29(18), 2663–2669.CrossRef Kazemlou, S., Hranilovic, S., & Kumar, S. (2011). All-optical multihop free-space optical communication systems. Journal of Lightwave Technology, 29(18), 2663–2669.CrossRef
21.
Zurück zum Zitat Peppas, K. P., Stassinakis, A. N., Nistazakis, H. E., & Tombras, G. S. (2013). Capacity analysis of dual amplify-and-forward relayed free-space optical communication systems over turbulence channels with pointing errors. Journal of Optical Communications and Networking, 5(9), 1032–1042.CrossRef Peppas, K. P., Stassinakis, A. N., Nistazakis, H. E., & Tombras, G. S. (2013). Capacity analysis of dual amplify-and-forward relayed free-space optical communication systems over turbulence channels with pointing errors. Journal of Optical Communications and Networking, 5(9), 1032–1042.CrossRef
22.
Zurück zum Zitat Popoola, W. O., & Ghassemlooy, Z. (2009). BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence. Journal of Lightwave Technology, 27(8), 967–973.CrossRef Popoola, W. O., & Ghassemlooy, Z. (2009). BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence. Journal of Lightwave Technology, 27(8), 967–973.CrossRef
23.
Zurück zum Zitat Aggarwal, M., Garg, P., & Puri, P. (2014). Dual-hop optical wireless relaying over turbulence channels with pointing error impairments. Journal of Lightwave Technology, 32(9), 1821–1828.CrossRef Aggarwal, M., Garg, P., & Puri, P. (2014). Dual-hop optical wireless relaying over turbulence channels with pointing error impairments. Journal of Lightwave Technology, 32(9), 1821–1828.CrossRef
24.
Zurück zum Zitat You, R., & Kahn, J. M. (2001). Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals. IEEE Transactions on Communications, 49(12), 2164–2171.CrossRefMATH You, R., & Kahn, J. M. (2001). Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals. IEEE Transactions on Communications, 49(12), 2164–2171.CrossRefMATH
25.
Zurück zum Zitat Park, J., Lee, E., Chae, C. B., & Yoon, G. (2015). Outage probability analysis of a coherent FSO amplify-and-forward relaying system. IEEE Photonics Technology Letters, 27(11), 1204–1207.CrossRef Park, J., Lee, E., Chae, C. B., & Yoon, G. (2015). Outage probability analysis of a coherent FSO amplify-and-forward relaying system. IEEE Photonics Technology Letters, 27(11), 1204–1207.CrossRef
26.
Zurück zum Zitat Hwang, S. H., & Cheng, Y. (2014). SIM/SM-aided free-space optical communication with receiver diversity. Journal of Lightwave Technology, 32(14), 2443–2450.CrossRef Hwang, S. H., & Cheng, Y. (2014). SIM/SM-aided free-space optical communication with receiver diversity. Journal of Lightwave Technology, 32(14), 2443–2450.CrossRef
27.
Zurück zum Zitat Ozbilgin, T., & Koca, M. (2015). Optical spatial modulation over atmospheric turbulence channels. Journal of Lightwave Technology, 33, 2313–2323.CrossRef Ozbilgin, T., & Koca, M. (2015). Optical spatial modulation over atmospheric turbulence channels. Journal of Lightwave Technology, 33, 2313–2323.CrossRef
28.
Zurück zum Zitat Peppas, K. P., & Mathiopoulos, P. T. (2015). Free space optical communication with spatial modulation and coherent detection over H-K atmospheric turbulence channels. Journal of Lightwaves Technology, 33(20), 4221–4232.CrossRef Peppas, K. P., & Mathiopoulos, P. T. (2015). Free space optical communication with spatial modulation and coherent detection over H-K atmospheric turbulence channels. Journal of Lightwaves Technology, 33(20), 4221–4232.CrossRef
29.
Zurück zum Zitat Som, P. & Chockalingam, A. (2013). BER analysis of space shift keying in cooperative multi-hop multi-branch DF relaying. In IEEE 78th vehicular technology conference (VTC Fall) (pp. 1–5). IEEE. Som, P. & Chockalingam, A. (2013). BER analysis of space shift keying in cooperative multi-hop multi-branch DF relaying. In IEEE 78th vehicular technology conference (VTC Fall) (pp. 1–5). IEEE.
30.
Zurück zum Zitat Som, P. & Chockalingam, A. (2013). End-to-end BER analysis of space shift keying in decode-and-forward cooperative relaying. In 2013 IEEE wireless communications and networking conference (WCNC) (pp. 3465–3470). IEEE. Som, P. & Chockalingam, A. (2013). End-to-end BER analysis of space shift keying in decode-and-forward cooperative relaying. In 2013 IEEE wireless communications and networking conference (WCNC) (pp. 3465–3470). IEEE.
31.
Zurück zum Zitat Yang, P., Zhang, B., Xiao, Y., Dong, B., Li, S., El-Hajjar, M., et al. (2013). Detect-and-forward relaying aided cooperative spatial modulation for wireless networks. IEEE Transactions on Communications, 61(11), 4500–4511.CrossRef Yang, P., Zhang, B., Xiao, Y., Dong, B., Li, S., El-Hajjar, M., et al. (2013). Detect-and-forward relaying aided cooperative spatial modulation for wireless networks. IEEE Transactions on Communications, 61(11), 4500–4511.CrossRef
32.
Zurück zum Zitat Mesleh, R, Ikki, SS, Alwakeel, M. On the performance of dual-hop space shift keying with single amplify-and-forward relay. In 2012 IEEE wireless communications and networking conference (WCNC) (pp. 776–780). IEEE. Mesleh, R, Ikki, SS, Alwakeel, M. On the performance of dual-hop space shift keying with single amplify-and-forward relay. In 2012 IEEE wireless communications and networking conference (WCNC) (pp. 776–780). IEEE.
33.
Zurück zum Zitat Mesleh, R., & Ikki, S. S. (2015). Space shift keying with amplify-and-forward MIMO relaying. Transactions on Emerging Telecommunications Technologies, 26(4), 520–531.CrossRef Mesleh, R., & Ikki, S. S. (2015). Space shift keying with amplify-and-forward MIMO relaying. Transactions on Emerging Telecommunications Technologies, 26(4), 520–531.CrossRef
34.
Zurück zum Zitat Mesleh, R., Elgala, H., & Haas, H. (2011). Optical spatial modulation. IEEE Journal of Optical Communications and Networking, 3(3), 234–244.CrossRef Mesleh, R., Elgala, H., & Haas, H. (2011). Optical spatial modulation. IEEE Journal of Optical Communications and Networking, 3(3), 234–244.CrossRef
35.
Zurück zum Zitat Serafimovski, N., Younis, A., Mesleh, R., et al. (2013). Practical implementation of spatial modulation. IEEE Transcation on Vehicular Technology, 62(9), 4511–4523.CrossRef Serafimovski, N., Younis, A., Mesleh, R., et al. (2013). Practical implementation of spatial modulation. IEEE Transcation on Vehicular Technology, 62(9), 4511–4523.CrossRef
36.
Zurück zum Zitat Navidpour, S. M., Uysal, M., & Kavehrad, M. (2007). BER performance of free-space optical transmission with spatial diversity. IEEE Transactions on Wireless Communications, 6(8), 2813–2819.CrossRef Navidpour, S. M., Uysal, M., & Kavehrad, M. (2007). BER performance of free-space optical transmission with spatial diversity. IEEE Transactions on Wireless Communications, 6(8), 2813–2819.CrossRef
37.
Zurück zum Zitat Krishnan, P., & Kumar, D. S. (2014). Performance analysis of free-space optical systems employing binary polarization shift keying signaling over gamma-gamma channel with pointing errors. Optical Engineering, 53(7), 076105.CrossRef Krishnan, P., & Kumar, D. S. (2014). Performance analysis of free-space optical systems employing binary polarization shift keying signaling over gamma-gamma channel with pointing errors. Optical Engineering, 53(7), 076105.CrossRef
38.
Zurück zum Zitat Bayaki, E., & Schober, R. (2012). Performance and design of coherent and differential space-time coded FSO systems. Journal of Lightwave Technology, 30(11), 1569–1577.CrossRef Bayaki, E., & Schober, R. (2012). Performance and design of coherent and differential space-time coded FSO systems. Journal of Lightwave Technology, 30(11), 1569–1577.CrossRef
39.
Zurück zum Zitat Alexander, S. B. (1997). Optical communication receiver design. Bellingham, Washington: SPIE Optical engineering press.CrossRef Alexander, S. B. (1997). Optical communication receiver design. Bellingham, Washington: SPIE Optical engineering press.CrossRef
40.
Zurück zum Zitat Niu, M., Cheng, J., & Holzman, J. F. (2011). Error rate analysis of M-ary coherent free-space optical communication systems with K-distributed turbulence. IEEE Transactions on Communications, 59(3), 664–668.CrossRef Niu, M., Cheng, J., & Holzman, J. F. (2011). Error rate analysis of M-ary coherent free-space optical communication systems with K-distributed turbulence. IEEE Transactions on Communications, 59(3), 664–668.CrossRef
41.
Zurück zum Zitat Jeganathan, J., Ghrayeb, A., & Szczecinski, L. (2008). Spatial modulation: Optimal detection and performance anaysis. IEEE Communication Letters, 12, 1–3.CrossRef Jeganathan, J., Ghrayeb, A., & Szczecinski, L. (2008). Spatial modulation: Optimal detection and performance anaysis. IEEE Communication Letters, 12, 1–3.CrossRef
42.
Zurück zum Zitat Karagiannidis, G. K., Tsiftsis, T. A., & Mallik, R. K. (2006). Bounds for multihop relayed communications in Nakagami-m fading. IEEE Transactions on Communications, 54(1), 18–22.CrossRef Karagiannidis, G. K., Tsiftsis, T. A., & Mallik, R. K. (2006). Bounds for multihop relayed communications in Nakagami-m fading. IEEE Transactions on Communications, 54(1), 18–22.CrossRef
43.
Zurück zum Zitat Andrews, L. C., & Phillips, R. L. (2005). Laser beam propagation through random media. Bellingham, WA: SPIE.CrossRef Andrews, L. C., & Phillips, R. L. (2005). Laser beam propagation through random media. Bellingham, WA: SPIE.CrossRef
44.
Zurück zum Zitat Xuegui, S., & Cheng, J. (2013). Subcarrier intensity modulated MIMO optical communications in atmospheric turbulence. Journal of Optical Communications and Networking, 5, 1001–1009.CrossRef Xuegui, S., & Cheng, J. (2013). Subcarrier intensity modulated MIMO optical communications in atmospheric turbulence. Journal of Optical Communications and Networking, 5, 1001–1009.CrossRef
45.
Zurück zum Zitat Adamchik, V. S. & Marichev, O. I. (1990). The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system. In Proceedings of the international symposium on symbolic and algebraic computation (pp. 212–224). ACM. Adamchik, V. S. & Marichev, O. I. (1990). The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system. In Proceedings of the international symposium on symbolic and algebraic computation (pp. 212–224). ACM.
46.
Zurück zum Zitat Song, X., & Cheng, J. (2012). Alamouti-type STBC for subcarrier intensity modulated wireless optical communications. In Global Communications Conference (GLOBECOM), 2012 IEEE (pp. 2936–2940). IEEE. Song, X., & Cheng, J. (2012). Alamouti-type STBC for subcarrier intensity modulated wireless optical communications. In Global Communications Conference (GLOBECOM), 2012 IEEE (pp. 2936–2940). IEEE.
47.
Zurück zum Zitat Prabu, K., & Kumar, D. S. (2015). MIMO free-space optical communication employing coherent BPOLSK modulation in atmospheric optical turbulence channel with pointing errors. Optics Communications, 343, 188–194.CrossRef Prabu, K., & Kumar, D. S. (2015). MIMO free-space optical communication employing coherent BPOLSK modulation in atmospheric optical turbulence channel with pointing errors. Optics Communications, 343, 188–194.CrossRef
48.
Zurück zum Zitat Farid, A. A., & Hranilovic, S. (2007). Outage capacity optimization for free-space optical links with pointing errors. Journal of Lightwave Technology, 25(7), 1702–1710.CrossRef Farid, A. A., & Hranilovic, S. (2007). Outage capacity optimization for free-space optical links with pointing errors. Journal of Lightwave Technology, 25(7), 1702–1710.CrossRef
49.
Zurück zum Zitat Bhatnagar, M. R., & Anees, S. (2015). On the performance of Alamouti scheme in Gamma-Gamma fading FSO links with pointing errors. IEEE Wireless Communications Letters, 4(1), 94–97.CrossRef Bhatnagar, M. R., & Anees, S. (2015). On the performance of Alamouti scheme in Gamma-Gamma fading FSO links with pointing errors. IEEE Wireless Communications Letters, 4(1), 94–97.CrossRef
50.
Zurück zum Zitat Gradshteyn, I. S., & Ryzhik, I. M. (2014). Table of integrals, series, and products. London: Academic Press.MATH Gradshteyn, I. S., & Ryzhik, I. M. (2014). Table of integrals, series, and products. London: Academic Press.MATH
51.
Zurück zum Zitat Prudnikov, A., Brychkov, Y., & Marichev, O. (1992). Integrals and series, volume 4: Direct laplace transforms. Boca Raton: CRC.MATH Prudnikov, A., Brychkov, Y., & Marichev, O. (1992). Integrals and series, volume 4: Direct laplace transforms. Boca Raton: CRC.MATH
52.
Zurück zum Zitat Skraparlis, D., Sakarellos, V. K., Panagopoulos, A. D., & Kanellopoulos, J. D. (2009). Performance of N-branch receive diversity combining in correlated lognormal channels. IEEE Communications Letters, 13(7), 489–491.CrossRef Skraparlis, D., Sakarellos, V. K., Panagopoulos, A. D., & Kanellopoulos, J. D. (2009). Performance of N-branch receive diversity combining in correlated lognormal channels. IEEE Communications Letters, 13(7), 489–491.CrossRef
53.
Zurück zum Zitat Simon, M. K., & Alouini, M. S. (1998). A unified approach to the performance analysis of digital communication over generalized fading channels. Proceedings of the IEEE, 86(9), 1860–1877.CrossRef Simon, M. K., & Alouini, M. S. (1998). A unified approach to the performance analysis of digital communication over generalized fading channels. Proceedings of the IEEE, 86(9), 1860–1877.CrossRef
54.
Zurück zum Zitat Tang, X., Xu, Z., & Ghassemlooy, Z. (2013). Coherent polarization modulated transmission through MIMO atmospheric optical turbulence channel. Journal of Lightwave Technology, 31(20), 3221–3228.CrossRef Tang, X., Xu, Z., & Ghassemlooy, Z. (2013). Coherent polarization modulated transmission through MIMO atmospheric optical turbulence channel. Journal of Lightwave Technology, 31(20), 3221–3228.CrossRef
55.
Zurück zum Zitat Chatzidiamantis, N. D., & Karagiannidis, G. K. (2011). On the distribution of the sum of gamma-gamma variates and applications in RF and optical wireless communications. IEEE Transactions on Communications, 59(5), 1298–1308.CrossRef Chatzidiamantis, N. D., & Karagiannidis, G. K. (2011). On the distribution of the sum of gamma-gamma variates and applications in RF and optical wireless communications. IEEE Transactions on Communications, 59(5), 1298–1308.CrossRef
56.
Zurück zum Zitat Soujeri, E. & Kaddoum, G. (2015). Performance comparison of spatial modulation detectors under channel impairments. In 2015 IEEE international conference on ubiquitous wireless broadband (ICUWB) (pp. 1–5). IEEE. Soujeri, E. & Kaddoum, G. (2015). Performance comparison of spatial modulation detectors under channel impairments. In 2015 IEEE international conference on ubiquitous wireless broadband (ICUWB) (pp. 1–5). IEEE.
57.
Zurück zum Zitat Anees, S., & Bhatnagar, M. R. (2015). Performance of an amplify-and-forward dual-hop asymmetric RF–FSO communication system. Journal of Optical Communications and Networking, 7(2), 124–135.CrossRef Anees, S., & Bhatnagar, M. R. (2015). Performance of an amplify-and-forward dual-hop asymmetric RF–FSO communication system. Journal of Optical Communications and Networking, 7(2), 124–135.CrossRef
58.
Zurück zum Zitat Soujeri, E., & Kaddoum, G. (2016). The impact of antenna switching time on spatial modulation. IEEE Wireless Communications Letters, 5(3), 256–259.CrossRef Soujeri, E., & Kaddoum, G. (2016). The impact of antenna switching time on spatial modulation. IEEE Wireless Communications Letters, 5(3), 256–259.CrossRef
59.
Zurück zum Zitat Prisecaru, F. A. (2010). Mutual information and capacity of spatial modulation systems. Bremen, Germany, Tech. Rep: Jacobs University. Prisecaru, F. A. (2010). Mutual information and capacity of spatial modulation systems. Bremen, Germany, Tech. Rep: Jacobs University.
Metadaten
Titel
Optical Spatial Modulation with Diversity Combiner in Dual-Hops Amplify-and-Forward Relay Systems Over Atmospheric Impairments
verfasst von
Kehinde Oluwasesan Odeyemi
Pius Adewale Owolawi
Viranjay M. Srivastava
Publikationsdatum
19.06.2017
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2017
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-4612-6

Weitere Artikel der Ausgabe 2/2017

Wireless Personal Communications 2/2017 Zur Ausgabe

Neuer Inhalt