Skip to main content
Erschienen in: Journal of Computer and Systems Sciences International 5/2021

01.09.2021 | CONTROL IN SYSTEMS WITH DISTRIBUTED PARAMETERS

Optimal Control of Longitudinal Motion of an Elastic Rod Using Boundary Forces

verfasst von: A. A. Gavrikov, G. V. Kostin

Erschienen in: Journal of Computer and Systems Sciences International | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study is devoted to the issues of controllability and optimization of oscillatory motions of dynamic systems with distributed parameters. The longitudinal displacements of a thin rectilinear elastic rod are considered. Based on the method of integrodifferential relations proposed by the authors, a generalized formulation of the initial-boundary value problem is given, the solution of which is sought with respect to the kinematic and dynamic variables in a Sobolev energy space. For the case of a uniform rod controlled by external forces applied at both ends, the critical time for which the system can be brought to the rest is determined and the impossibility for arbitrary initial conditions of bringing the points of the rod to the zero state is shown. For fixed time intervals longer than the critical one, the problem is posed to optimally bring the system to the zero state. In this case, the minimized functional is the mean mechanical energy stored in the rod during motion. It is shown that using the d’Alembert representation (in the form of traveling waves), taking into account the properties of the generalized solution, the two-dimensional in space and time control problem is reduced to the classical one-dimensional quadratic variational problem with fixed ends, which is specified with respect to two unknown d’Alembert functions. Using the methods of the calculus of variations, the optimal control and the corresponding motion of the rod are found explicitly. The dependence of the mean energy stored in the system on the control time is analyzed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations (Springer, Berlin, 1971).CrossRef J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations (Springer, Berlin, 1971).CrossRef
2.
Zurück zum Zitat A. G. Butkovsky, Distributed Control Systems (Elsevier, New York, 1969). A. G. Butkovsky, Distributed Control Systems (Elsevier, New York, 1969).
3.
Zurück zum Zitat N. U. Ahmed and K. L. Teo, Optimal Control of Distributed Parameter Systems (North-Holland, Amsterdam, 1981).MATH N. U. Ahmed and K. L. Teo, Optimal Control of Distributed Parameter Systems (North-Holland, Amsterdam, 1981).MATH
4.
Zurück zum Zitat W. Krabs, Optimal Control of Undamped Linear Vibrations (Heldermann, Lemgo, 1995).MATH W. Krabs, Optimal Control of Undamped Linear Vibrations (Heldermann, Lemgo, 1995).MATH
5.
Zurück zum Zitat J. E. Lagnese, G. Leugering, and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures (Birkhäuser, Boston, 1984).MATH J. E. Lagnese, G. Leugering, and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures (Birkhäuser, Boston, 1984).MATH
6.
Zurück zum Zitat G. Leugering, “A domain decomposition of optimal control problems for dynamic networks of elastic strings,” Comput. Optimiz. Appl. 16, 5–29 (2000).MathSciNetCrossRef G. Leugering, “A domain decomposition of optimal control problems for dynamic networks of elastic strings,” Comput. Optimiz. Appl. 16, 5–29 (2000).MathSciNetCrossRef
7.
Zurück zum Zitat M. Gugat, “Optimal control of networked hyperbolic systems: Evaluation of derivatives,” Adv. Model. Optimiz. 7, 9–37 (2005).MathSciNetMATH M. Gugat, “Optimal control of networked hyperbolic systems: Evaluation of derivatives,” Adv. Model. Optimiz. 7, 9–37 (2005).MathSciNetMATH
8.
Zurück zum Zitat S. P. Banks, State-Space and Frequency-Domain Methods in the Control of Distributed Parameter Systems (Peregrinus, London, 1983).MATH S. P. Banks, State-Space and Frequency-Domain Methods in the Control of Distributed Parameter Systems (Peregrinus, London, 1983).MATH
9.
Zurück zum Zitat R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory (Springer, New York, 1995).CrossRef R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory (Springer, New York, 1995).CrossRef
10.
Zurück zum Zitat F. L. Chernousko, “Control of elastic systems by bounded distributed forces,” Appl. Math. Comput. 78, 103–110 (1996).MathSciNetMATH F. L. Chernousko, “Control of elastic systems by bounded distributed forces,” Appl. Math. Comput. 78, 103–110 (1996).MathSciNetMATH
11.
Zurück zum Zitat M. Gerdts, G. Greif, and H. J. Pesch, “Numerical optimal control of the wave equation: Optimal boundary control of a string to rest in finite time,” Math. Comput. Simul. 79, 1020–1032 (2008).MathSciNetCrossRef M. Gerdts, G. Greif, and H. J. Pesch, “Numerical optimal control of the wave equation: Optimal boundary control of a string to rest in finite time,” Math. Comput. Simul. 79, 1020–1032 (2008).MathSciNetCrossRef
12.
Zurück zum Zitat A. I. Ovseevich and A. K. Fedorov, “Asymptotically optimal control for a simplest distributed system,” Dokl. Math. 95, 194–197 (2017).CrossRef A. I. Ovseevich and A. K. Fedorov, “Asymptotically optimal control for a simplest distributed system,” Dokl. Math. 95, 194–197 (2017).CrossRef
13.
Zurück zum Zitat I. V. Romanov and A. S. Shamaev, “On the problem of precise control of the system obeying the delay string equation,” Autom. Remote Control 74, 1810 (2013).MathSciNetCrossRef I. V. Romanov and A. S. Shamaev, “On the problem of precise control of the system obeying the delay string equation,” Autom. Remote Control 74, 1810 (2013).MathSciNetCrossRef
14.
Zurück zum Zitat I. V. Romanov and A. S. Shamaev, “On a boundary controllability problem for a system governed by the two-dimensional wave equation,” J. Comput. Syst. Sci. Int. 58, 105 (2019).CrossRef I. V. Romanov and A. S. Shamaev, “On a boundary controllability problem for a system governed by the two-dimensional wave equation,” J. Comput. Syst. Sci. Int. 58, 105 (2019).CrossRef
15.
Zurück zum Zitat R. W. Lewis, P. Nithiarasu, and K. N. Seetharamu, Fundamentals of the Finite Element Method for Heat and Fluid Flow (Wiley, Chichester, 2004).CrossRef R. W. Lewis, P. Nithiarasu, and K. N. Seetharamu, Fundamentals of the Finite Element Method for Heat and Fluid Flow (Wiley, Chichester, 2004).CrossRef
16.
Zurück zum Zitat M. J. Balas, “Finite-dimensional control of distributed parameter systems by galerkin approximation of infinite dimensional controllers,” J. Math. Anal. Appl. 114, 17–36 (1986).MathSciNetCrossRef M. J. Balas, “Finite-dimensional control of distributed parameter systems by galerkin approximation of infinite dimensional controllers,” J. Math. Anal. Appl. 114, 17–36 (1986).MathSciNetCrossRef
17.
Zurück zum Zitat P. D. Christofides, Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes (Birkhäuser, Boston, 2001).CrossRef P. D. Christofides, Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes (Birkhäuser, Boston, 2001).CrossRef
18.
Zurück zum Zitat T. Belytschko, Y. Y. Lu, and L. Gu, “Element-free Galerkin method,” Int. J. Numer. Methods Eng. 37, 229–256 (1994).MathSciNetCrossRef T. Belytschko, Y. Y. Lu, and L. Gu, “Element-free Galerkin method,” Int. J. Numer. Methods Eng. 37, 229–256 (1994).MathSciNetCrossRef
19.
Zurück zum Zitat S. N. Atluri and T. Zhu, “A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics,” Comput. Mech. 22, 117–127 (1998).MathSciNetCrossRef S. N. Atluri and T. Zhu, “A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics,” Comput. Mech. 22, 117–127 (1998).MathSciNetCrossRef
20.
Zurück zum Zitat P. B. Bochev and M. D. Gunzburger, Least-Squares Finite Element Methods (Springer, New York, 2009).MATH P. B. Bochev and M. D. Gunzburger, Least-Squares Finite Element Methods (Springer, New York, 2009).MATH
21.
Zurück zum Zitat L. D. Akulenko and A. A. Gavrikov, “Controlling the one-dimensional motion of hybrid vibrational rod systems,” J. Comput. Syst. Sci. Int. 57, 349 (2018).MathSciNetCrossRef L. D. Akulenko and A. A. Gavrikov, “Controlling the one-dimensional motion of hybrid vibrational rod systems,” J. Comput. Syst. Sci. Int. 57, 349 (2018).MathSciNetCrossRef
22.
Zurück zum Zitat G. V. Kostin and V. V. Saurin, Dynamics of Solid Structures. Methods Using Integrodifferential Relations (De Gruyter, Berlin, 2018).CrossRef G. V. Kostin and V. V. Saurin, Dynamics of Solid Structures. Methods Using Integrodifferential Relations (De Gruyter, Berlin, 2018).CrossRef
23.
Zurück zum Zitat G. V. Kostin, “Modelling and optimization of controlled longitudinal motions for an elastic rod based on the Ritz method,” in Proceedings of the 14th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy’s Conference) STAB (IEEE, Moscow, 2018), pp. 1–4. https://doi.org/10.1109/STAB.2018.8408369 G. V. Kostin, “Modelling and optimization of controlled longitudinal motions for an elastic rod based on the Ritz method,” in Proceedings of the 14th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy’s Conference) STAB (IEEE, Moscow, 2018), pp. 1–4. https://​doi.​org/​10.​1109/​STAB.​2018.​8408369
25.
Zurück zum Zitat V. A. Il’in and E. I. Moiseev, “Optimization of boundary controls of string vibrations,” Russ. Math. Surv. 60, 1093 (2005).MathSciNetCrossRef V. A. Il’in and E. I. Moiseev, “Optimization of boundary controls of string vibrations,” Russ. Math. Surv. 60, 1093 (2005).MathSciNetCrossRef
26.
Zurück zum Zitat E. I. Moiseev and A. A. Frolov, “Boundary control of string vibrations in a subcritical time under a medium resistance at the right end,” Differ. Equations 55, 541 (2019).MathSciNetCrossRef E. I. Moiseev and A. A. Frolov, “Boundary control of string vibrations in a subcritical time under a medium resistance at the right end,” Differ. Equations 55, 541 (2019).MathSciNetCrossRef
27.
Zurück zum Zitat M. Gugat, Optimal Boundary Control and Boundary Stabilization of Hyperbolic Systems (Springer, Berlin, 2015).CrossRef M. Gugat, Optimal Boundary Control and Boundary Stabilization of Hyperbolic Systems (Springer, Berlin, 2015).CrossRef
28.
Zurück zum Zitat M. Gugat, E. Trelat, and E. Zuazua, “Optimal Neumann control for the 1D wave equation: Finite horizon, infinite horizon, boundary tracking terms and the turnpike property,” Syst. Control Lett. 90, 61–70 (2016).MathSciNetCrossRef M. Gugat, E. Trelat, and E. Zuazua, “Optimal Neumann control for the 1D wave equation: Finite horizon, infinite horizon, boundary tracking terms and the turnpike property,” Syst. Control Lett. 90, 61–70 (2016).MathSciNetCrossRef
29.
Zurück zum Zitat C. Schwab, P- and hp- Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Numerical Mathematics and Scientific Computation (Oxford Univ. Press, New York, 1998).MATH C. Schwab, P- and hp- Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Numerical Mathematics and Scientific Computation (Oxford Univ. Press, New York, 1998).MATH
30.
Zurück zum Zitat A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1977; Dover, New York, 2011) A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1977; Dover, New York, 2011)
31.
Zurück zum Zitat S. G. Mikhlin, Course of Mathematical Physics (Nauka, Moscow, 1968) [in Russian]. S. G. Mikhlin, Course of Mathematical Physics (Nauka, Moscow, 1968) [in Russian].
32.
33.
Zurück zum Zitat M. Giaquinta and S. Hildebrandt, Calculus of Variations. I (Springer, Berlin, 2004).CrossRef M. Giaquinta and S. Hildebrandt, Calculus of Variations. I (Springer, Berlin, 2004).CrossRef
Metadaten
Titel
Optimal Control of Longitudinal Motion of an Elastic Rod Using Boundary Forces
verfasst von
A. A. Gavrikov
G. V. Kostin
Publikationsdatum
01.09.2021
Verlag
Pleiades Publishing
Erschienen in
Journal of Computer and Systems Sciences International / Ausgabe 5/2021
Print ISSN: 1064-2307
Elektronische ISSN: 1555-6530
DOI
https://doi.org/10.1134/S1064230721050099

Weitere Artikel der Ausgabe 5/2021

Journal of Computer and Systems Sciences International 5/2021 Zur Ausgabe

SYSTEMS ANALYSIS AND OPERATIONS RESEARCH

Reliability Analysis: from Fault Tree to Catastrophe Tree

Premium Partner