Skip to main content
Erschienen in: Journal of Engineering Thermophysics 3/2021

01.07.2021

Optimal Design and Analysis of Airfoil Radiator Fins Based on Weakly Compressible Turbulence

verfasst von: C. Lyu, R. Zhan

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to further improve the heat dissipation performance of forced air-cooled radiator in the simplest and most efficient way, this paper firstly proposes an airfoil optimization of the radiator fin structure. Then, based on the weakly compressible turbulence theory, a multi-physics coupling finite element model (FEM) is constructed to restore actual phenomena with high accuracy. The temperature field, velocity field, and pressure field in the radiator are analyzed and verified qualitatively and quantitatively using this FEM. Finally, comprehensive comparative analysis of the cooling power, average pressure loss, and cooling power per unit volume of traditional radiators and airfoil radiators is carried out in terms of the number of fins and the airflow rate. The results show that the performance of the airfoil radiator is significantly better than that of the traditional radiator: the cooling power increases by 8.14% at least, the average pressure loss declines greatly, by 31.15% at least, and the cooling power per unit volume grows steadily by 15.92%. It can be seen that the optimized design can take into account both efficiency and practicality. The analysis methods and conclusions presented in the article have direct guiding significance for solving practical problems, as well as universal reference value for future research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lu, J., Shen, L., Huang, Q., Sun, D., Li ,B., and Tan, Y., Investigation of a Rectangular Heat Pipe Radiator with Parallel Heat Flow Structure for Cooling High-Power IGBT Modules, Int. J. Thermal Sci., 2019, vol. 135, pp. 83–93.CrossRef Lu, J., Shen, L., Huang, Q., Sun, D., Li ,B., and Tan, Y., Investigation of a Rectangular Heat Pipe Radiator with Parallel Heat Flow Structure for Cooling High-Power IGBT Modules, Int. J. Thermal Sci., 2019, vol. 135, pp. 83–93.CrossRef
2.
Zurück zum Zitat Aihara, T., Natural Convection Heat Transfer from Vertical Rectangular-Fin Arrays: Part 2, Heat Transfer from Fin-Edges, Bull. JSME, 1970, vol. 13, pp. 1182–1191.CrossRef Aihara, T., Natural Convection Heat Transfer from Vertical Rectangular-Fin Arrays: Part 2, Heat Transfer from Fin-Edges, Bull. JSME, 1970, vol. 13, pp. 1182–1191.CrossRef
3.
Zurück zum Zitat Aihara, T., Natural Convection Heat Transfer from Vertical Rectangular-Fin Arrays: Part 3, Heat Transfer from Fin-Flats, Bull. JSME, 1970, vol. 13, pp. 1192–1200.CrossRef Aihara, T., Natural Convection Heat Transfer from Vertical Rectangular-Fin Arrays: Part 3, Heat Transfer from Fin-Flats, Bull. JSME, 1970, vol. 13, pp. 1192–1200.CrossRef
4.
Zurück zum Zitat Aihara, T., Natural Convection Heat Transfer from Vertical Rectangular-Fin Arrays: Part 4, Heat-Transfer Characteristics of Nonisothermal-Fin Arrays, Bull. JSME, 1971, vol. 14, pp. 818–828.CrossRef Aihara, T., Natural Convection Heat Transfer from Vertical Rectangular-Fin Arrays: Part 4, Heat-Transfer Characteristics of Nonisothermal-Fin Arrays, Bull. JSME, 1971, vol. 14, pp. 818–828.CrossRef
5.
Zurück zum Zitat Bar-Cohen, A. and Rohsenow, W., Thermally Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates, J. Heat Transfer, 1984, vol. 106, no. 1, pp. 116–123.CrossRef Bar-Cohen, A. and Rohsenow, W., Thermally Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates, J. Heat Transfer, 1984, vol. 106, no. 1, pp. 116–123.CrossRef
6.
Zurück zum Zitat Anand, N., Kim, S., and Fletcher, L., The Effect of Plate Spacing on Free Convection between Heated Parallel Plates, J. Heat Transfer (Trans. ASME, Ser. C), 1992, vol. 114; https://doi.org/10.1115/1.2911306.CrossRef Anand, N., Kim, S., and Fletcher, L., The Effect of Plate Spacing on Free Convection between Heated Parallel Plates, J. Heat Transfer (Trans. ASME, Ser. C), 1992, vol. 114; https://​doi.​org/​10.​1115/​1.​2911306.​CrossRef
7.
Zurück zum Zitat Knight, R.W., Goodling, J.S., and Hall, D.J., Optimal Thermal Design of Forced Convection Heat Sinks-Analytical, J. El. Pack., 1991, vol. 113, pp. 313–321.CrossRef Knight, R.W., Goodling, J.S., and Hall, D.J., Optimal Thermal Design of Forced Convection Heat Sinks-Analytical, J. El. Pack., 1991, vol. 113, pp. 313–321.CrossRef
8.
Zurück zum Zitat Teertstra, P., Yovanovich, M., and Culham, J., Analytical Forced Convection Modeling of Plate Fin Heat Sinks, J. El. Manufact., 2000, vol. 10, pp. 253–261.CrossRef Teertstra, P., Yovanovich, M., and Culham, J., Analytical Forced Convection Modeling of Plate Fin Heat Sinks, J. El. Manufact., 2000, vol. 10, pp. 253–261.CrossRef
9.
Zurück zum Zitat Lee, S., Optimum Design and Selection of Heat Sinks, IEEE Trans. Comp., Pack., Manufact. Technol.: Part A, 1995, vol. 18, pp. 812–817.CrossRef Lee, S., Optimum Design and Selection of Heat Sinks, IEEE Trans. Comp., Pack., Manufact. Technol.: Part A, 1995, vol. 18, pp. 812–817.CrossRef
10.
Zurück zum Zitat Karvinen, R., Natural and Forced Convection Heat Transfer from a Plate Fin, Int. J. Heat and Mass Transfer, 1981, vol. 24, pp. 881–885.CrossRefADS Karvinen, R., Natural and Forced Convection Heat Transfer from a Plate Fin, Int. J. Heat and Mass Transfer, 1981, vol. 24, pp. 881–885.CrossRefADS
11.
Zurück zum Zitat Karvinen, R., Efficiency of Straight Fins Cooled by Natural or Forced Convection, Int. J. Heat Mass Transfer, 1983, vol. 26, pp. 635–638.CrossRef Karvinen, R., Efficiency of Straight Fins Cooled by Natural or Forced Convection, Int. J. Heat Mass Transfer, 1983, vol. 26, pp. 635–638.CrossRef
12.
Zurück zum Zitat Al-Damook, A., Kapur, N., Summers, J., and Thompson, H., An Experimental and Computational Investigation of Thermal Air Flows through Perforated Pin Heat Sinks, Appl. Thermal Engin., 2015, vol. 89, pp. 365–376.CrossRef Al-Damook, A., Kapur, N., Summers, J., and Thompson, H., An Experimental and Computational Investigation of Thermal Air Flows through Perforated Pin Heat Sinks, Appl. Thermal Engin., 2015, vol. 89, pp. 365–376.CrossRef
13.
Zurück zum Zitat Choi, J., Jeong, M., Yoo, J., and Seo, M., A New CPU Cooler Design Based on an Active Cooling Heatsink Combined with Heat Pipes, Appl. Thermal Engin., 2012, vol. 44, pp. 50–56.CrossRef Choi, J., Jeong, M., Yoo, J., and Seo, M., A New CPU Cooler Design Based on an Active Cooling Heatsink Combined with Heat Pipes, Appl. Thermal Engin., 2012, vol. 44, pp. 50–56.CrossRef
14.
Zurück zum Zitat Adham, A.M., Mohd-Ghazali, N., and Ahmad, R., Thermal and Hydrodynamic Analysis of Microchannel Heat Sinks: A Review, Ren. Sustain. Energy Rev., 2013, vol. 21, pp. 614–622.CrossRef Adham, A.M., Mohd-Ghazali, N., and Ahmad, R., Thermal and Hydrodynamic Analysis of Microchannel Heat Sinks: A Review, Ren. Sustain. Energy Rev., 2013, vol. 21, pp. 614–622.CrossRef
15.
Zurück zum Zitat Raghuraman, D., Raj, R.T.K., Nagarajan, P., and Rao, B., Influence of Aspect Ratio on the Thermal Performance of Rectangular Shaped Micro Channel Heat Sink Using CFD Code, Alexandria Engin. J., 2017, vol. 56, pp. 43–54.CrossRef Raghuraman, D., Raj, R.T.K., Nagarajan, P., and Rao, B., Influence of Aspect Ratio on the Thermal Performance of Rectangular Shaped Micro Channel Heat Sink Using CFD Code, Alexandria Engin. J., 2017, vol. 56, pp. 43–54.CrossRef
16.
Zurück zum Zitat Chiang, K.-T. and Chang, F.-P., Application of Response Surface Methodology in the Parametric Optimization of a Pin-Fin Type Heat Sink, Int. Commun. Heat Mass Transfer, 2006, vol. 33, pp. 836–845.CrossRef Chiang, K.-T. and Chang, F.-P., Application of Response Surface Methodology in the Parametric Optimization of a Pin-Fin Type Heat Sink, Int. Commun. Heat Mass Transfer, 2006, vol. 33, pp. 836–845.CrossRef
17.
Zurück zum Zitat Naphon, P., Klangchart, S., and Wongwises, S., Numerical Investigation on the Heat Transfer and Flow in the Mini-Fin Heat Sink for CPU, Int. Commun. Heat Mass Transfer, 2009, vol. 36, pp. 834–840.CrossRef Naphon, P., Klangchart, S., and Wongwises, S., Numerical Investigation on the Heat Transfer and Flow in the Mini-Fin Heat Sink for CPU, Int. Commun. Heat Mass Transfer, 2009, vol. 36, pp. 834–840.CrossRef
18.
Zurück zum Zitat Tari, I. and Mehrtash, M., Natural Convection Heat Transfer from Inclined Plate-Fin Heat Sinks, Int. J. Heat Mass Transfer, 2013, vol. 56, pp. 574–593.CrossRef Tari, I. and Mehrtash, M., Natural Convection Heat Transfer from Inclined Plate-Fin Heat Sinks, Int. J. Heat Mass Transfer, 2013, vol. 56, pp. 574–593.CrossRef
19.
Zurück zum Zitat Xia, G., Ma, D., Zhai, Y., Li ,Y., Liu, R., and Du, M., Experimental and Numerical Study of Fluid Flow and Heat Transfer Characteristics in Microchannel Heat Sink with Complex Structure, Energy Conv. Manag., 2015, vol. 105, pp. 848–857.CrossRef Xia, G., Ma, D., Zhai, Y., Li ,Y., Liu, R., and Du, M., Experimental and Numerical Study of Fluid Flow and Heat Transfer Characteristics in Microchannel Heat Sink with Complex Structure, Energy Conv. Manag., 2015, vol. 105, pp. 848–857.CrossRef
20.
Zurück zum Zitat Hoi, S.M., Teh, A.L., Ooi, E.H., Chew, I.M.L., and Foo, J.J., Plate-Fin Heat Sink Forced Convective Heat Transfer Augmentation with a Fractal Insert, Int. J. Thermal Sci., 2019, vol. 142, pp. 392–406.CrossRef Hoi, S.M., Teh, A.L., Ooi, E.H., Chew, I.M.L., and Foo, J.J., Plate-Fin Heat Sink Forced Convective Heat Transfer Augmentation with a Fractal Insert, Int. J. Thermal Sci., 2019, vol. 142, pp. 392–406.CrossRef
21.
Zurück zum Zitat Huang, S., Zhao, J., Gong, L., and Duan, X., Thermal Performance and Structure Optimization for Slotted Microchannel Heat Sink, Appl. Thermal Engin., 2017, vol. 115, pp. 1266–1276.CrossRef Huang, S., Zhao, J., Gong, L., and Duan, X., Thermal Performance and Structure Optimization for Slotted Microchannel Heat Sink, Appl. Thermal Engin., 2017, vol. 115, pp. 1266–1276.CrossRef
22.
Zurück zum Zitat Moradikazerouni, A., Afrand, M., Alsarraf, J., Wongwises, S., Asadi, A., and Nguyen, T.K., Investigation of a Computer CPU Heat Sink under Laminar Forced Convection Using a Structural Stability Method, Int. J. Heat Mass Transfer, 2019, vol. 134, pp. 1218–1226.CrossRef Moradikazerouni, A., Afrand, M., Alsarraf, J., Wongwises, S., Asadi, A., and Nguyen, T.K., Investigation of a Computer CPU Heat Sink under Laminar Forced Convection Using a Structural Stability Method, Int. J. Heat Mass Transfer, 2019, vol. 134, pp. 1218–1226.CrossRef
23.
Zurück zum Zitat Chu, W.-X., Tsai, M.-K., Jan, S.-Y., Huang, H.-H., and Wang, C.-C., CFD Analysis and Experimental Verification on a New Type of Air-Cooled Heat Sink for Reducing Maximum Junction Temperature, Int. J. Heat Mass Transfer, 2020, vol. 148, p. 119094.CrossRef Chu, W.-X., Tsai, M.-K., Jan, S.-Y., Huang, H.-H., and Wang, C.-C., CFD Analysis and Experimental Verification on a New Type of Air-Cooled Heat Sink for Reducing Maximum Junction Temperature, Int. J. Heat Mass Transfer, 2020, vol. 148, p. 119094.CrossRef
24.
Zurück zum Zitat Korzeń, A. and Taler, D., Modeling of Transient Response of a Plate Fin and Tube Heat Exchanger, Int. J. Thermal Sci., 2015, vol. 92, pp. 188–198.CrossRef Korzeń, A. and Taler, D., Modeling of Transient Response of a Plate Fin and Tube Heat Exchanger, Int. J. Thermal Sci., 2015, vol. 92, pp. 188–198.CrossRef
25.
Zurück zum Zitat Castelan, A., Cougo, B., Dutour, S., and Meynard, T., 3D Analytical Modelling of Plate Fin Heat Sink on Forced Convection, Math. Comput. Simul., 2019, vol. 158, pp. 296–307.MathSciNetCrossRef Castelan, A., Cougo, B., Dutour, S., and Meynard, T., 3D Analytical Modelling of Plate Fin Heat Sink on Forced Convection, Math. Comput. Simul., 2019, vol. 158, pp. 296–307.MathSciNetCrossRef
26.
Zurück zum Zitat Ekpu, M., Finite Element Analysis of the Effect of Fin Geometry on Thermal Performance of Heat Sinks in Microelectronics, J. Appl. Sci. Envir. Manag., 2019, vol. 23, pp. 2059–2063.CrossRef Ekpu, M., Finite Element Analysis of the Effect of Fin Geometry on Thermal Performance of Heat Sinks in Microelectronics, J. Appl. Sci. Envir. Manag., 2019, vol. 23, pp. 2059–2063.CrossRef
27.
Zurück zum Zitat Boukhadia, K., Ameur, H., Sahel, D., and Bozit, M., Effect of the Perforation Design on the Fluid Flow and Heat Transfer Characteristics of a Plate Fin Heat Exchanger, Int. J. Thermal Sci., 2018, vol. 126, pp. 172–180.CrossRef Boukhadia, K., Ameur, H., Sahel, D., and Bozit, M., Effect of the Perforation Design on the Fluid Flow and Heat Transfer Characteristics of a Plate Fin Heat Exchanger, Int. J. Thermal Sci., 2018, vol. 126, pp. 172–180.CrossRef
28.
Zurück zum Zitat Ameur, H., Sahel, D., and Menni Y., Numerical Investigation of the Performance of Perforated Baffles in a Plate-Fin Heat Exchanger, Thermal Sci., 2020; https://doi.org/10.2298/TSCI190316090A.CrossRef Ameur, H., Sahel, D., and Menni Y., Numerical Investigation of the Performance of Perforated Baffles in a Plate-Fin Heat Exchanger, Thermal Sci., 2020; https://​doi.​org/​10.​2298/​TSCI190316090A.​CrossRef
Metadaten
Titel
Optimal Design and Analysis of Airfoil Radiator Fins Based on Weakly Compressible Turbulence
verfasst von
C. Lyu
R. Zhan
Publikationsdatum
01.07.2021
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 3/2021
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232821030097

Weitere Artikel der Ausgabe 3/2021

Journal of Engineering Thermophysics 3/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.